1
|
Zhu H, Wang L, Wang Y, Jiang X, Qin Q, Song M, Huang Q. Directed-evolution mutations enhance DNA-binding affinity and protein stability of the adenine base editor ABE8e. Cell Mol Life Sci 2024; 81:257. [PMID: 38874784 PMCID: PMC11335294 DOI: 10.1007/s00018-024-05263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024]
Abstract
Adenine base editors (ABEs), consisting of CRISPR Cas nickase and deaminase, can chemically convert the A:T base pair to G:C. ABE8e, an evolved variant of the base editor ABE7.10, contains eight directed evolution mutations in its deaminase TadA8e that significantly increase its base editing activity. However, the functional implications of these mutations remain unclear. Here, we combined molecular dynamics (MD) simulations and experimental measurements to investigate the role of the directed-evolution mutations in the base editing catalysis. MD simulations showed that the DNA-binding affinity of TadA8e is higher than that of the original deaminase TadA7.10 in ABE7.10 and is mainly driven by electrostatic interactions. The directed-evolution mutations increase the positive charge density in the DNA-binding region, thereby enhancing the electrostatic attraction of TadA8e to DNA. We identified R111, N119 and N167 as the key mutations for the enhanced DNA binding and confirmed them by microscale thermophoresis (MST) and in vivo reversion mutation experiments. Unexpectedly, we also found that the directed mutations improved the thermal stability of TadA8e by ~ 12 °C (Tm, melting temperature) and that of ABE8e by ~ 9 °C, respectively. Our results demonstrate that the directed-evolution mutations improve the substrate-binding ability and protein stability of ABE8e, thus providing a rational basis for further editing optimisation of the system.
Collapse
Affiliation(s)
- Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lei Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qin Qin
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Menghua Song
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Chakraborty D, Mondal B, Thirumalai D. Brewing COFFEE: A Sequence-Specific Coarse-Grained Energy Function for Simulations of DNA-Protein Complexes. J Chem Theory Comput 2024; 20:1398-1413. [PMID: 38241144 DOI: 10.1021/acs.jctc.3c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
DNA-protein interactions are pervasive in a number of biophysical processes ranging from transcription and gene expression to chromosome folding. To describe the structural and dynamic properties underlying these processes accurately, it is important to create transferable computational models. Toward this end, we introduce Coarse-grained Force Field for Energy Estimation, COFFEE, a robust framework for simulating DNA-protein complexes. To brew COFFEE, we integrated the energy function in the self-organized polymer model with side-chains for proteins and the three interaction site model for DNA in a modular fashion, without recalibrating any of the parameters in the original force-fields. A unique feature of COFFEE is that it describes sequence-specific DNA-protein interactions using a statistical potential (SP) derived from a data set of high-resolution crystal structures. The only parameter in COFFEE is the strength (λDNAPRO) of the DNA-protein contact potential. For an optimal choice of λDNAPRO, the crystallographic B-factors for DNA-protein complexes with varying sizes and topologies are quantitatively reproduced. Without any further readjustments to the force-field parameters, COFFEE predicts scattering profiles that are in quantitative agreement with small-angle X-ray scattering experiments, as well as chemical shifts that are consistent with NMR. We also show that COFFEE accurately describes the salt-induced unraveling of nucleosomes. Strikingly, our nucleosome simulations explain the destabilization effect of ARG to LYS mutations, which do not alter the balance of electrostatic interactions but affect chemical interactions in subtle ways. The range of applications attests to the transferability of COFFEE, and we anticipate that it would be a promising framework for simulating DNA-protein complexes at the molecular length-scale.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin 78712, Texas, United States
| | - Balaka Mondal
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin 78712, Texas, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin 78712, Texas, United States
- Department of Physics, The University of Texas at Austin, 2515 Speedway, Austin 78712, Texas, United States
| |
Collapse
|
3
|
Al Masri C, Wan B, Yu J. Nonspecific vs. specific DNA binding free energetics of a transcription factor domain protein. Biophys J 2023; 122:4476-4487. [PMID: 37897044 PMCID: PMC10722393 DOI: 10.1016/j.bpj.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Transcription factor (TF) proteins regulate gene expression by binding to specific sites on the genome. In the facilitated diffusion model, an optimized search process is achieved by the TF alternating between 3D diffusion in the bulk and 1D diffusion along DNA. While undergoing 1D diffusion, the protein can switch from a search mode for fast diffusion along nonspecific DNA to a recognition mode for stable binding to specific DNA. It was recently noticed that, for a small TF domain protein, reorientations on DNA happen between the nonspecific and specific DNA binding. We here conducted all-atom molecular dynamics simulations with steering forces to reveal the protein-DNA binding free energetics, confirming that the search and recognition modes are distinguished primarily by protein orientations on the DNA. As the binding free energy difference between the specific and nonspecific DNA system slightly deviates from that being estimated directly from dissociation constants on 15-bp DNA constructs, we hypothesize that the discrepancy can come from DNA sequences flanking the 6-bp central binding sites that impact on the dissociation kinetics measurements. The hypothesis is supported by a simplified spherical protein-DNA model along with stochastic simulations and kinetic modeling.
Collapse
Affiliation(s)
- Carmen Al Masri
- Department of Physics and Astronomy, University of California, Irvine, California
| | - Biao Wan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, California; Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California.
| |
Collapse
|
4
|
Gaur NK, Ghosh B, Goyal VD, Kulkarni K, Makde RD. Evolutionary conservation of protein dynamics: insights from all-atom molecular dynamics simulations of 'peptidase' domain of Spt16. J Biomol Struct Dyn 2023; 41:1445-1457. [PMID: 34971347 DOI: 10.1080/07391102.2021.2021990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Protein function is encoded in its sequence, manifested in its three-dimensional structure, and facilitated by its dynamics. Studies have suggested that protein structures with higher sequence similarity could have more similar patterns of dynamics. However, such studies of protein dynamics within and across protein families typically rely on coarse-grained models, or approximate metrics like crystallographic B-factors. This study uses µs scale molecular dynamics (MD) simulations to explore the conservation of dynamics among homologs of ∼50 kDa N-terminal module of Spt16 (Spt16N). Spt16N from Saccharomyces cerevisiae (Sc-Spt16N) and three of its homologs with 30-40% sequence identities were available in the PDB. To make our data-set more comprehensive, the crystal structure of an additional homolog (62% sequence identity with Sc-Spt16N) was solved at 1.7 Å resolution. Cumulative MD simulations of 6 µs were carried out on these Spt16N structures and on two additional protein structures with varying degrees of similarity to it. The simulations revealed that correlation in patterns of backbone fluctuations vary linearly with sequence identity. This trend could not be inferred using crystallographic B-factors. Further, normal mode analysis suggested a similar pattern of inter-domain (inter-lobe) motions not only among Spt16N homologs, but also in the M24 peptidase structure. On the other hand, MD simulation results highlighted conserved motions that were found unique for Spt16N protein, this along with electrostatics trends shed light on functional aspects of Spt16N.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neeraj K Gaur
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India.,Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Biplab Ghosh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Venuka Durani Goyal
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
5
|
Lüking M, Elf J, Levy Y. Conformational Change of Transcription Factors from Search to Specific Binding: A lac Repressor Case Study. J Phys Chem B 2022; 126:9971-9984. [PMID: 36416228 PMCID: PMC9743208 DOI: 10.1021/acs.jpcb.2c05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In a process known as facilitated diffusion, DNA-binding proteins find their target sites by combining three-dimensional diffusion and one-dimensional scanning of the DNA. Following the trade-off between speed and stability, agile exploration of DNA requires loose binding, whereas, at the DNA target site, the searching protein needs to establish tight interactions with the DNA. To enable both efficient search and stable binding, DNA-binding proteins and DNA often switch conformations upon recognition. Here, we study the one-dimensional diffusion and DNA binding of the dimeric lac repressor (LacI), which was reported to adopt two different conformations when binding different conformations of DNA. Using coarse-grained molecular dynamic simulations, we studied the diffusion and the sequence-specific binding of these conformations of LacI, as well as their truncated or monomeric variants, with two DNA conformations: straight and bent. The simulations were compared to experimental observables. This study supports that linear diffusion along DNA combines tight rotation-coupled groove tracking and rotation-decoupled hopping, where the protein briefly dissociates and reassociates just a few base pairs away. Tight groove tracking is crucial for target-site recognition, while hopping speeds up the overall search process. We investigated the diffusion of different LacI conformations on DNA and show how the flexibility of LacI's hinge regions ensures agility on DNA as well as faithful groove tracking. If the hinge regions instead form α-helices at the protein-DNA interface, tight groove tracking is not possible. On the contrary, the helical hinge region is essential for tight binding to bent, specific DNA, for the formation of the specific complex. Based on our study of different encounter complexes, we argue that the conformational change in LacI and DNA bending are somewhat coupled. Our findings underline the importance of two distinct protein conformations for facilitated diffusion and specific binding, respectively.
Collapse
Affiliation(s)
- Malin Lüking
- Department
of Cell- and Molecular Biology-ICM, Uppsala
University, Uppsala, Uppsala County751 24, Sweden
| | - Johan Elf
- Department
of Cell- and Molecular Biology-ICM, Uppsala
University, Uppsala, Uppsala County751 24, Sweden
| | - Yaakov Levy
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, Central District76100, Israel,. Tel.: 972-8-9344587
| |
Collapse
|
6
|
Wang P, Fang X, Du R, Wang J, Liu M, Xu P, Li S, Zhang K, Ye S, You Q, Yang Y, Wang C. Principles of Amino Acid and Nucleotide Revealed by Binding Affinities between Homogeneous Oligopeptides and Single-stranded DNA Molecule s. Chembiochem 2022; 23:e202200048. [PMID: 35191574 DOI: 10.1002/cbic.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Indexed: 11/11/2022]
Abstract
We have determined the binding strengths between nucleotides of adenine, thymine, guanine and cytosine in homogeneous single stranded DNAs and homo-octapeptides consisting of 20 common amino acids. We use a bead-based fluorescence assay for these measurements in which octapeptides are immobilized on the bead surface and ssDNAs are in solutions. The results provide a molecular basis for analyzing selectivity, specificity and polymorphisms of amino-acid-nucleotide interactions. Comparative analyses of the distribution of the binding energies reveal unique binding strengths patterns assignable to each pair of DNA nucleotide and amino acid originating from the chemical structures. Pronounced favorable (such as Arg-G , etc.) and unfavorable (such as Ile-T , etc.) binding interactions can be identified in selected groups of amino acid and nucleotide pairs that could provide basis to elucidate energetics of amino-acid-nucleotide interactions. Such interaction selectivity, specificity and polymorphism manifest the contributions from DNA backbone, DNA bases, as well as main chain and side chain of the amino acids.
Collapse
Affiliation(s)
- Pengyu Wang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Xiaocui Fang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Rong Du
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Jiali Wang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Mingpeng Liu
- Tsinghua University, Department of Chemistry, CHINA
| | - Peng Xu
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Shiqi Li
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Kaiyue Zhang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Siyuan Ye
- Tsinghua University, Department of Chemistry, CHINA
| | - Qing You
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Yanlian Yang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Chen Wang
- National Center for NanoScience and Technology, China(NCNST), Beijing, CHINA
| |
Collapse
|
7
|
Revealing atomic-scale molecular diffusion of a plant-transcription factor WRKY domain protein along DNA. Proc Natl Acad Sci U S A 2021; 118:2102621118. [PMID: 34074787 PMCID: PMC8201915 DOI: 10.1073/pnas.2102621118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In transcription factors’ search for target genes, one-dimensional diffusion of the protein along DNA is essential. Experimentally, it remains challenging to resolve the individual diffusional steps of protein on DNA. Here, we report mainly all-atom equilibrium simulations of a WRKY domain protein in association with and diffusion along DNA. We demonstrate a complete stepping cycle of the protein for one base pair on DNA within microseconds, along with stochastic motions. Processive protein diffusions on DNA have been further sampled in a coarse-grained model. We have also found preferential DNA-strand association of the domain protein, which becomes most prominent at specific DNA binding, and it can be common for small-domain proteins to balance movements on the DNA with the sequence recognition. Transcription factor (TF) target search on genome is highly essential for gene expression and regulation. High-resolution determination of TF diffusion along DNA remains technically challenging. Here, we constructed a TF model system using the plant WRKY domain protein in complex with DNA from crystallography and demonstrated microsecond diffusion dynamics of WRKY on DNA by employing all-atom molecular-dynamics (MD) simulations. Notably, we found that WRKY preferentially binds to one strand of DNA with significant energetic bias compared with the other, or nonpreferred strand. The preferential DNA-strand binding becomes most prominent in the static process, from nonspecific to specific DNA binding, but less distinct during diffusive movements of the domain protein on the DNA. Remarkably, without employing acceleration forces or bias, we captured a complete one-base-pair stepping cycle of the protein tracking along major groove of DNA with a homogeneous poly-adenosine sequence, as individual hydrogen bonds break and reform at the protein–DNA binding interface. Further DNA-groove tracking motions of the protein forward or backward, with occasional sliding as well as strand crossing to minor groove of DNA, were also captured. The processive diffusion of WRKY along DNA has been further sampled via coarse-grained MD simulations. The study thus provides structural dynamics details on diffusion of a small TF domain protein, suggests how the protein approaches a specific recognition site on DNA, and supports further high-precision experimental detection. The stochastic movements revealed in the TF diffusion also provide general clues about how other protein walkers step and slide along DNA.
Collapse
|
8
|
Carzaniga T, Zanchetta G, Frezza E, Casiraghi L, Vanjur L, Nava G, Tagliabue G, Dieci G, Buscaglia M, Bellini T. A Bit Stickier, a Bit Slower, a Lot Stiffer: Specific vs. Nonspecific Binding of Gal4 to DNA. Int J Mol Sci 2021; 22:ijms22083813. [PMID: 33916983 PMCID: PMC8067546 DOI: 10.3390/ijms22083813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022] Open
Abstract
Transcription factors regulate gene activity by binding specific regions of genomic DNA thanks to a subtle interplay of specific and nonspecific interactions that is challenging to quantify. Here, we exploit Reflective Phantom Interface (RPI), a label-free biosensor based on optical reflectivity, to investigate the binding of the N-terminal domain of Gal4, a well-known gene regulator, to double-stranded DNA fragments containing or not its consensus sequence. The analysis of RPI-binding curves provides interaction strength and kinetics and their dependence on temperature and ionic strength. We found that the binding of Gal4 to its cognate site is stronger, as expected, but also markedly slower. We performed a combined analysis of specific and nonspecific binding—equilibrium and kinetics—by means of a simple model based on nested potential wells and found that the free energy gap between specific and nonspecific binding is of the order of one kcal/mol only. We investigated the origin of such a small value by performing all-atom molecular dynamics simulations of Gal4–DNA interactions. We found a strong enthalpy–entropy compensation, by which the binding of Gal4 to its cognate sequence entails a DNA bending and a striking conformational freezing, which could be instrumental in the biological function of Gal4.
Collapse
Affiliation(s)
- Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, 20054 Segrate (MI), Italy; (T.C.); (L.C.); (L.V.); (G.N.)
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, 20054 Segrate (MI), Italy; (T.C.); (L.C.); (L.V.); (G.N.)
- Correspondence: (G.Z.); (M.B.); (T.B.)
| | - Elisa Frezza
- CiTCoM, CNRS, Université de Paris, F-75006 Paris, France;
| | - Luca Casiraghi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, 20054 Segrate (MI), Italy; (T.C.); (L.C.); (L.V.); (G.N.)
| | - Luka Vanjur
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, 20054 Segrate (MI), Italy; (T.C.); (L.C.); (L.V.); (G.N.)
| | - Giovanni Nava
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, 20054 Segrate (MI), Italy; (T.C.); (L.C.); (L.V.); (G.N.)
| | | | - Giorgio Dieci
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy;
| | - Marco Buscaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, 20054 Segrate (MI), Italy; (T.C.); (L.C.); (L.V.); (G.N.)
- Correspondence: (G.Z.); (M.B.); (T.B.)
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, 20054 Segrate (MI), Italy; (T.C.); (L.C.); (L.V.); (G.N.)
- Correspondence: (G.Z.); (M.B.); (T.B.)
| |
Collapse
|
9
|
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. Temperature and molecular crowding effects on the sensitivity of T30695 aptamer toward Pb2+ion: a joint molecular dynamics simulation and experimental study. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1751842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
10
|
Mondal S, Bandyopadhyay S. Flexibility of the Binding Regions of a Protein-DNA Complex and the Structure and Ordering of Interfacial Water. J Chem Inf Model 2019; 59:4427-4437. [PMID: 31580657 DOI: 10.1021/acs.jcim.9b00685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Noncovalent interactions between protein and DNA are important to comprehend different biological activities in living organisms. One important issue is how the protein identifies the target DNA and the influence of the resulting protein-DNA complex on the hydration environment around it. In this study, we have carried out atomistic molecular dynamics simulations of the protein-DNA complex formed by the dimeric form of the α-helical N-terminal domain of the λ-repressor protein with its operator DNA. Local heterogeneous flexibilities of the residues of the protein and the DNA components that are involved in binding and the microscopic structure and ordering of water around those have been investigated in detail. The calculations revealed concurrent existence of highly ordered as well as disordered water molecules at the interface. It is found that a fraction of doubly coordinated water molecules exhibit high degree of ordering at the interface, while the randomly oriented ones are coordinated with three water molecules. The effect has been found to be more around the protein and DNA residues that are in contact in the complexed state. We believe that such highly ordered two-coordinated water molecules are likely to act as an adhesive to facilitate the formation of a protein-DNA complex and maintain its structural stability.
Collapse
|
11
|
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. The investigation of the G-quadruplex aptamer selectivity to Pb 2+ ion: a joint molecular dynamics simulation and density functional theory study. J Biomol Struct Dyn 2019; 38:3659-3675. [PMID: 31496379 DOI: 10.1080/07391102.2019.1664933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aptamers with the ability to form a G-quadruplex structure can be stable in the presence of some ions. Hence, study of the interactions between such aptamers and ions can be beneficial to determine the highest selective aptamer toward an ion. In this article, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations have been applied to investigate the selectivity of the T30695 aptamer toward Pb2+ in comparison with some ions. The Free Energy Landscape (FEL) analysis indicates that Pb2+ has remained inside the aptamer during the MD simulation, while the other ions have left it. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding energies prove that the conformational stability of the aptamer is the highest in the presence of Pb2+. According to the compaction parameters, the greatest compressed ion-aptamer complex, and hence, the highest ion-aptamer interaction have been induced in the presence of Pb2+. The contact maps clarify the closer contacts between the nucleotides of the aptamer in the presence of Pb2+. The density functional theory (DFT) results show that Pb2+ forms the most stable complex with the aptamer, which is consistent with the MD results. The QM calculations reveal that the N-H bonds and the O…H distances are the longest and the shortest, respectively, in the presence of Pb2+. The obtained results verify that the strongest hydrogen bonds (HBs), and hence, the most compressed aptamer structure are induced by Pb2+. Besides, atoms in molecules (AIM) and natural bond orbital (NBO) analyses confirm the results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
12
|
How B-DNA Dynamics Decipher Sequence-Selective Protein Recognition. J Mol Biol 2019; 431:3845-3859. [DOI: 10.1016/j.jmb.2019.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022]
|
13
|
Theoretical design and experimental study of new aptamers with the improved target-affinity: New insights into the Pb2+-specific aptamers as a case study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Liao Q, Lüking M, Krüger DM, Deindl S, Elf J, Kasson PM, Lynn Kamerlin SC. Long Time-Scale Atomistic Simulations of the Structure and Dynamics of Transcription Factor-DNA Recognition. J Phys Chem B 2019; 123:3576-3590. [PMID: 30952192 DOI: 10.1021/acs.jpcb.8b12363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent years have witnessed an explosion of interest in computational studies of DNA binding proteins, including both coarse-grained and atomistic simulations of transcription factor-DNA recognition, to understand how these transcription factors recognize their binding sites on the DNA with such exquisite specificity. The present study performs microsecond time scale all-atom simulations of the dimeric form of the lactose repressor (LacI), both in the absence of any DNA and in the presence of both specific and nonspecific complexes, considering three different DNA sequences. We examine, specifically, the conformational differences between specific and nonspecific protein-DNA interactions, as well as the behavior of the helix-turn-helix motif of LacI when interacting with the DNA. Our simulations suggest that stable LacI binding occurs primarily to bent A-form DNA, with a loss of LacI conformational entropy and optimization of correlated conformational equilibria across the protein. In addition, binding to the specific operator sequence involves a slightly larger number of stabilizing DNA-protein hydrogen bonds (in comparison to nonspecific complexes), which may account for the experimentally observed specificity for this operator. In doing so, our simulations provide a detailed atomistic description of potential structural drivers for LacI selectivity.
Collapse
Affiliation(s)
- Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC , Uppsala University , BMC Box 576, S-751 24 Uppsala , Sweden
| | - Malin Lüking
- Science for Life Laboratory, Department of Chemistry-BMC , Uppsala University , BMC Box 576, S-751 24 Uppsala , Sweden
| | - Dennis M Krüger
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden.,Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Bioinformatics Unit , German Center for Neurodegenerative Diseases, Göttingen , von Siebold Strasse 3A , 37075 Göttingen , Germany
| | - Sebastian Deindl
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden
| | - Johan Elf
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Chemistry-BMC , Uppsala University , BMC Box 576, S-751 24 Uppsala , Sweden
| |
Collapse
|
15
|
Seckfort D, Montgomery Pettitt B. Price of disorder in the lac repressor hinge helix. Biopolymers 2019; 110:e23239. [PMID: 30485404 PMCID: PMC6335174 DOI: 10.1002/bip.23239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/12/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022]
Abstract
The Lac system of genes has been pivotal in understanding gene regulation. When the lac repressor protein binds to the correct DNA sequence, the hinge region of the protein goes through a disorder to order transition. The structure of this region of the protein is well understood when it is in this bound conformation, but less so when it is not. Structural studies show that this region is flexible. Our simulations show this region is extremely flexible in solution; however, a high concentration of salt can help kinetically trap the hinge helix. Thermodynamically, disorder is more favorable without the DNA present.
Collapse
Affiliation(s)
- Danielle Seckfort
- Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas
| | - B Montgomery Pettitt
- Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
16
|
Yesudhas D, Anwar MA, Choi S. Structural mechanism of DNA-mediated Nanog–Sox2 cooperative interaction. RSC Adv 2019; 9:8121-8130. [PMID: 35521171 PMCID: PMC9061787 DOI: 10.1039/c8ra10085c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/04/2019] [Indexed: 01/06/2023] Open
Abstract
The efficiency of stem cell transcriptional regulation always depends on the cooperative association and expression of transcription factors (TFs). Among these, Oct4, Sox2, and Nanog play major roles. Their cooperativity is facilitated via direct protein–protein interactions or DNA-mediated interactions, yet the mechanism is not clear. Most biochemical studies have examined Oct4/Sox2 cooperativity, whereas few studies have evaluated how Nanog competes in the connection between these TFs. In this study, using computational models and molecular dynamics simulations, we built a framework representing the DNA-mediated cooperative interaction between Nanog and Sox2 and analyzed the plausible interaction factors experienced by Nanog because of Sox2, its cooperative binding partner. Comparison of a wild-type and mutant Nanog/Sox2 model with the Nanog crystal structure revealed the regulatory structural mechanism between Nanog/Sox2–DNA-mediated cooperative bindings. Along with the transactivation domains interaction, the DNA-mediated allosteric interactions are also necessary for Nanog cooperative binding. DNA-mediated Nanog–Sox2 cooperativity influences the protein conformational changes and a stronger interaction profile was observed for Nanog-Mut (L103E) in comparison with the Nanog-WT complex. The efficiency of stem cell transcriptional regulation always depends on the cooperative association and expression of transcription factors (TFs).![]()
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology
- Ajou University
- Suwon
- Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology
- Ajou University
- Suwon
- Korea
| |
Collapse
|
17
|
Li Q, Chen HF. Synergistic regulation mechanism of iperoxo and LY2119620 for muscarinic acetylcholine M2 receptor. RSC Adv 2018; 8:13067-13074. [PMID: 35542505 PMCID: PMC9079678 DOI: 10.1039/c8ra01545g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022] Open
Abstract
Muscarinic acetylcholine receptors are GPCRs that regulate the activity of a diverse array of central and peripheral functions in the human body, including the parasympathetic actions of acetylcholine. The M2 muscarinic receptor subtype plays a key role in modulating cardiac function and many important central processes. The orthosteric agonist and allosteric modulator can bind the pocket of M2. However, the detailed relationship between orthosteric agonist and allosteric modulator of M2 is still unclear. In this study, we intend to elucidate the residue-level regulation mechanism and pathway via a combined approach of dynamical correlation network and molecular dynamics simulation. Specifically computational residue-level fluctuation correlation data was analyzed to reveal detailed dynamics signatures in the regulation process. A hypothesis of "synergistic regulation" is proposed to reveal the cooperation affection between the orthosteric agonist and allosteric modulator, which is subsequently validated by perturbation and mutation analyses. Two possible synergistic regulation pathways of 2CU-I178-Y403-W400-F396-L114-Y440-Nb9 and IXO-V111-F396-L114-Y440-Nb9 were identified by the shortest path algorithm and were confirmed by the mutation of junction node. Furthermore, the efficiency of information transfer of bound M2 is significant higher than any single binding system. Our study shows that targeting the synergistic regulation pathways may better regulate the calcium channel of M2. The knowledge gained in this study may help develop drugs for diseases of the central nervous system and metabolic disorders.
Collapse
Affiliation(s)
- Quan Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiaotong University Shanghai 200240 China +86-21-34204348 +86-21-34204348
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiaotong University Shanghai 200240 China +86-21-34204348 +86-21-34204348
- Shanghai Center for Bioinformation Technology Shanghai 200235 China
| |
Collapse
|
18
|
Wieczór M, Czub J. How proteins bind to DNA: target discrimination and dynamic sequence search by the telomeric protein TRF1. Nucleic Acids Res 2017. [PMID: 28633355 PMCID: PMC5737604 DOI: 10.1093/nar/gkx534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Target search as performed by DNA-binding proteins is a complex process, in which multiple factors contribute to both thermodynamic discrimination of the target sequence from overwhelmingly abundant off-target sites and kinetic acceleration of dynamic sequence interrogation. TRF1, the protein that binds to telomeric tandem repeats, faces an intriguing variant of the search problem where target sites are clustered within short fragments of chromosomal DNA. In this study, we use extensive (>0.5 ms in total) MD simulations to study the dynamical aspects of sequence-specific binding of TRF1 at both telomeric and non-cognate DNA. For the first time, we describe the spontaneous formation of a sequence-specific native protein-DNA complex in atomistic detail, and study the mechanism by which proteins avoid off-target binding while retaining high affinity for target sites. Our calculated free energy landscapes reproduce the thermodynamics of sequence-specific binding, while statistical approaches allow for a comprehensive description of intermediate stages of complex formation.
Collapse
Affiliation(s)
- Milosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
19
|
Yesudhas D, Batool M, Anwar MA, Panneerselvam S, Choi S. Proteins Recognizing DNA: Structural Uniqueness and Versatility of DNA-Binding Domains in Stem Cell Transcription Factors. Genes (Basel) 2017; 8:genes8080192. [PMID: 28763006 PMCID: PMC5575656 DOI: 10.3390/genes8080192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins in the form of transcription factors (TFs) bind to specific DNA sites that regulate cell growth, differentiation, and cell development. The interactions between proteins and DNA are important toward maintaining and expressing genetic information. Without knowing TFs structures and DNA-binding properties, it is difficult to completely understand the mechanisms by which genetic information is transferred between DNA and proteins. The increasing availability of structural data on protein-DNA complexes and recognition mechanisms provides deeper insights into the nature of protein-DNA interactions and therefore, allows their manipulation. TFs utilize different mechanisms to recognize their cognate DNA (direct and indirect readouts). In this review, we focus on these recognition mechanisms as well as on the analysis of the DNA-binding domains of stem cell TFs, discussing the relative role of various amino acids toward facilitating such interactions. Unveiling such mechanisms will improve our understanding of the molecular pathways through which TFs are involved in repressing and activating gene expression.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
20
|
Shanak S, Ulucan O, Helms V. Methylation-targeted specificity of the DNA binding proteins R.DpnI and MeCP2 studied by molecular dynamics simulations. J Mol Model 2017; 23:152. [DOI: 10.1007/s00894-017-3318-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2017] [Indexed: 12/28/2022]
|
21
|
Mondal S, Chakraborty K, Bandyopadhyay S. Microscopic understanding of the conformational features of a protein–DNA complex. Phys Chem Chem Phys 2017; 19:32459-32472. [DOI: 10.1039/c7cp05161a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein–DNA interactions play crucial roles in different stages of genetic activities, such as replication of genome, initiation of transcription,etc.
Collapse
Affiliation(s)
- Sandip Mondal
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Kaushik Chakraborty
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
22
|
Hikiri S, Yoshidome T, Ikeguchi M. Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates. J Chem Theory Comput 2016; 12:5990-6000. [DOI: 10.1021/acs.jctc.6b00563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simon Hikiri
- Graduate School of Medical
Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Yoshidome
- Graduate School of Medical
Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical
Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
23
|
Liu H, Ye W, Chen HF. Positive cooperative regulation of double binding sites for human acetylcholinesterase. Chem Biol Drug Des 2016; 89:694-704. [DOI: 10.1111/cbdd.12891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/06/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Hao Liu
- State Key Laboratory of Microbial Metabolism; Department of Bioinformatics and Biostatistics; College of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai China
| | - Wei Ye
- State Key Laboratory of Microbial Metabolism; Department of Bioinformatics and Biostatistics; College of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism; Department of Bioinformatics and Biostatistics; College of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai China
- Shanghai Center for Bioinformation Technology; Shanghai China
| |
Collapse
|
24
|
Grottesi A, Cecconi S, Molina R, D'abramo M. Effect of DNA on the conformational dynamics of the endonucleases I-DmoI as provided by molecular dynamics simulations. Biopolymers 2016; 105:898-904. [DOI: 10.1002/bip.22933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Alessandro Grottesi
- SuperComputing Applications and Innovations; CINECA; via dei Tizii 6 Rome 00185 Italy
| | - Simone Cecconi
- Department of Chemistry; Sapienza University of Rome; P.le A. Moro, 5 Rome 00185 Italy
| | - Rafael Molina
- Department of Crystallography and Structural Biology; Inst. Química-Física “Rocasolano”, CSIC; Serrano 119 Madrid 28006 Spain
| | - Marco D'abramo
- Department of Chemistry; Sapienza University of Rome; P.le A. Moro, 5 Rome 00185 Italy
| |
Collapse
|
25
|
Yang J, Liu H, Liu X, Gu C, Luo R, Chen HF. Synergistic Allosteric Mechanism of Fructose-1,6-bisphosphate and Serine for Pyruvate Kinase M2 via Dynamics Fluctuation Network Analysis. J Chem Inf Model 2016; 56:1184-1192. [PMID: 27227511 DOI: 10.1021/acs.jcim.6b00115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pyruvate kinase M2 (PKM2) plays a key role in tumor metabolism and regulates the rate-limiting final step of glycolysis. In tumor cells, there are two allosteric effectors for PKM2: fructose-1,6-bisphosphate (FBP) and serine. However, the relationship between FBP and serine for allosteric regulation of PKM2 is unknown. Here we constructed residue/residue fluctuation correlation network based on all-atom molecular dynamics simulations to reveal the regulation mechanism. The results suggest that the correlation network in bound PKM2 is distinctly different from that in the free state, FBP/PKM2, or Ser/PKM2. The community network analysis indicates that the information can freely transfer from the allosteric sites of FBP and serine to the substrate site in bound PKM2, while there exists a bottleneck for information transfer in the network of the free state. Furthermore, the binding free energy between the substrate and PKM2 for bound PKM2 is significantly lower than either of FBP/PKM2 or Ser/PKM2. Thus, a hypothesis of "synergistic allosteric mechanism" is proposed for the allosteric regulation of FBP and serine. This hypothesis was further confirmed by the perturbational and mutational analyses of community networks and binding free energies. Finally, two possible synergistic allosteric pathways of FBP-K433-T459-R461-A109-V71-R73-MG2-OXL and Ser-I47-C49-R73-MG2-OXL were identified based on the shortest path algorithm and were confirmed by the network perturbation analysis. Interestingly, no similar pathways could be found in the free state. The process targeting on the allosteric pathways can better regulate the glycolysis of PKM2 and significantly inhibit the progression of tumor.
Collapse
Affiliation(s)
- Jingxu Yang
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Liu
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaorui Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chengbo Gu
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical Engineering and Materials Science, Biomedical Engineering, University of California, Irvine, California 92697-3900, USA
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
26
|
Dans PD, Walther J, Gómez H, Orozco M. Multiscale simulation of DNA. Curr Opin Struct Biol 2016; 37:29-45. [DOI: 10.1016/j.sbi.2015.11.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023]
|
27
|
Sun L, Tabaka M, Hou S, Li L, Burdzy K, Aksimentiev A, Maffeo C, Zhang X, Holyst R. The Hinge Region Strengthens the Nonspecific Interaction between Lac-Repressor and DNA: A Computer Simulation Study. PLoS One 2016; 11:e0152002. [PMID: 27008630 PMCID: PMC4805274 DOI: 10.1371/journal.pone.0152002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/06/2016] [Indexed: 11/30/2022] Open
Abstract
LacI is commonly used as a model to study the protein-DNA interaction and gene regulation. The headpiece of the lac-repressor (LacI) protein is an ideal system for investigation of nonspecific binding of the whole LacI protein to DNA. The hinge region of the headpiece has been known to play a key role in the specific binding of LacI to DNA, whereas its role in nonspecific binding process has not been elucidated. Here, we report the results of explicit solvent molecular dynamics simulation and continuum electrostatic calculations suggesting that the hinge region strengthens the nonspecific interaction, accounting for up to 50% of the micro-dissociation free energy of LacI from DNA. Consequently, the rate of microscopic dissociation of LacI from DNA is reduced by 2~3 orders of magnitude in the absence of the hinge region. We find the hinge region makes an important contribution to the electrostatic energy, the salt dependence of electrostatic energy, and the number of salt ions excluded from binding of the LacI-DNA complex.
Collapse
Affiliation(s)
- Lili Sun
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01–224, Warsaw, Poland
| | - Marcin Tabaka
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01–224, Warsaw, Poland
| | - Sen Hou
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01–224, Warsaw, Poland
| | - Lin Li
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, South Carolina, 29634, United States of America
| | - Krzysztof Burdzy
- Department of Mathematics, University of Washington, Seattle, Washington, 98195–4350, United States of America
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, Urbana, Illinois, 61801, United States of America
| | - Christopher Maffeo
- Department of Physics, University of Illinois, Urbana, Illinois, 61801, United States of America
| | - Xuzhu Zhang
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01–224, Warsaw, Poland
| | - Robert Holyst
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01–224, Warsaw, Poland
- * E-mail:
| |
Collapse
|
28
|
Sun L, Tabaka M, Hou S, Li L, Burdzy K, Aksimentiev A, Maffeo C, Zhang X, Holyst R. The Hinge Region Strengthens the Nonspecific Interaction between Lac-Repressor and DNA: A Computer Simulation Study. PLoS One 2016; 11:e0152002. [PMID: 27008630 DOI: 10.1371/joumal.pone.0152002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/06/2016] [Indexed: 05/27/2023] Open
Abstract
LacI is commonly used as a model to study the protein-DNA interaction and gene regulation. The headpiece of the lac-repressor (LacI) protein is an ideal system for investigation of nonspecific binding of the whole LacI protein to DNA. The hinge region of the headpiece has been known to play a key role in the specific binding of LacI to DNA, whereas its role in nonspecific binding process has not been elucidated. Here, we report the results of explicit solvent molecular dynamics simulation and continuum electrostatic calculations suggesting that the hinge region strengthens the nonspecific interaction, accounting for up to 50% of the micro-dissociation free energy of LacI from DNA. Consequently, the rate of microscopic dissociation of LacI from DNA is reduced by 2~3 orders of magnitude in the absence of the hinge region. We find the hinge region makes an important contribution to the electrostatic energy, the salt dependence of electrostatic energy, and the number of salt ions excluded from binding of the LacI-DNA complex.
Collapse
Affiliation(s)
- Lili Sun
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marcin Tabaka
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Sen Hou
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Lin Li
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, South Carolina, 29634, United States of America
| | - Krzysztof Burdzy
- Department of Mathematics, University of Washington, Seattle, Washington, 98195-4350, United States of America
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, Urbana, Illinois, 61801, United States of America
| | - Christopher Maffeo
- Department of Physics, University of Illinois, Urbana, Illinois, 61801, United States of America
| | - Xuzhu Zhang
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Robert Holyst
- Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
29
|
Anwar MA, Yesudhas D, Shah M, Choi S. Structural and conformational insights into SOX2/OCT4-bound enhancer DNA: a computational perspective. RSC Adv 2016. [DOI: 10.1039/c6ra15176k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The roles of SOX2 and OCT4 are critical in stem cell maintenance either in the context of iPSCs generation or cancer stem cell growth; therefore, it is imperative to study their cooperative binding and SOX2/OCT4-induced DNA conformational switching.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Dhanusha Yesudhas
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Masaud Shah
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| |
Collapse
|
30
|
Etheve L, Martin J, Lavery R. Dynamics and recognition within a protein-DNA complex: a molecular dynamics study of the SKN-1/DNA interaction. Nucleic Acids Res 2015; 44:1440-8. [PMID: 26721385 PMCID: PMC4756839 DOI: 10.1093/nar/gkv1511] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
Molecular dynamics simulations of the Caenorhabditis elegans transcription factor SKN-1 bound to its cognate DNA site show that the protein–DNA interface undergoes significant dynamics on the microsecond timescale. A detailed analysis of the simulation shows that movements of two key arginine side chains between the major groove and the backbone of DNA generate distinct conformational sub-states that each recognize only part of the consensus binding sequence of SKN-1, while the experimentally observed binding specificity results from a time-averaged view of the dynamic recognition occurring within this complex.
Collapse
Affiliation(s)
- Loïc Etheve
- BMSSI UMR 5086 CNRS/Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Juliette Martin
- BMSSI UMR 5086 CNRS/Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Richard Lavery
- BMSSI UMR 5086 CNRS/Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| |
Collapse
|
31
|
Hauser K, Essuman B, He Y, Coutsias E, Garcia-Diaz M, Simmerling C. A human transcription factor in search mode. Nucleic Acids Res 2015; 44:63-74. [PMID: 26673724 PMCID: PMC4705650 DOI: 10.1093/nar/gkv1091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.
Collapse
Affiliation(s)
- Kevin Hauser
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Yiqing He
- Great Neck South High School, Great Neck, NY 11023, USA
| | - Evangelos Coutsias
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carlos Simmerling
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
32
|
SURESH GORLE, PRIYAKUMAR UDEVA. Atomistic details of the molecular recognition of DNA-RNA hybrid duplex by ribonuclease H enzyme. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0942-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Zhou Q, Xia X, Luo Z, Liang H, Shakhnovich E. Searching the Sequence Space for Potent Aptamers Using SELEX in Silico. J Chem Theory Comput 2015; 11:5939-46. [PMID: 26642994 DOI: 10.1021/acs.jctc.5b00707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To isolate functional nucleic acids that bind to defined targets with high affinity and specificity, which are known as aptamers, the systematic evolution of ligands by exponential enrichment (SELEX) methodology has emerged as the preferred approach. Here, we propose a computational approach, SELEX in silico, that allows the sequence space to be more thoroughly explored regarding binding of a certain target. Our approach consists of two steps: (i) secondary structure-based sequence screening, which aims to collect the sequences that can form a desired RNA motif as an enhanced initial library, followed by (ii) sequence enrichment regarding target binding by molecular dynamics simulation-based virtual screening. Our SELEX in silico method provided a practical computational solution to three key problems in aptamer sequence searching: design of nucleic acid libraries, knowledge of sequence enrichment, and identification of potent aptamers. Six potent theophylline-binding aptamers, which were isolated by SELEX in silico from a sequence space containing 4(13) sequences, were experimentally verified to bind theophylline with high affinity: Kd ranging from 0.16 to 0.52 μM, compared with the dissociation constant of the original aptamer-theophylline, 0.32 μM. These results demonstrate the significant potential of SELEX in silico as a new method for aptamer discovery and optimization.
Collapse
Affiliation(s)
- Qingtong Zhou
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Xiaole Xia
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | | | | | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
34
|
Pessoa J, Fonseca F, Furini S, Morais-Cabral JH. Determinants of ligand selectivity in a cyclic nucleotide-regulated potassium channel. ACTA ACUST UNITED AC 2015; 144:41-54. [PMID: 24981229 PMCID: PMC4076524 DOI: 10.1085/jgp.201311145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preference for cGMP binding to a cyclic nucleotide–binding domain can achieved by compensating for ligand dehydration or through retention of solvation waters in the bound state. Cyclic nucleotide–binding (CNB) domains regulate the activity of channels, kinases, exchange factors, and transcription factors. These proteins are highly variable in their ligand selectivity; some are highly selective for either cAMP or cGMP, whereas others are not. Several molecular determinants of ligand selectivity in CNB domains have been defined, but these do not provide a complete view of the selectivity mechanism. We performed a thorough analysis of the ligand-binding properties of mutants of the CNB domain from the MlotiK1 potassium channel. In particular, we defined which residues specifically favor cGMP or cAMP. Inversion of ligand selectivity, from favoring cAMP to favoring cGMP, was only achieved through a combination of three mutations in the ligand-binding pocket. We determined the x-ray structure of the triple mutant bound to cGMP and performed molecular dynamics simulations and a biochemical analysis of the effect of the mutations. We concluded that the increase in cGMP affinity and selectivity does not result simply from direct interactions between the nucleotide base and the amino acids introduced in the ligand-binding pocket residues. Rather, tighter cGMP binding over cAMP results from the polar chemical character of the mutations, from greater accessibility of water molecules to the ligand in the bound state, and from an increase in the structural flexibility of the mutated binding pocket.
Collapse
Affiliation(s)
- João Pessoa
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, PortugalInstituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - Fátima Fonseca
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - João H Morais-Cabral
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| |
Collapse
|
35
|
Tabaka M, Burdzy K, Hołyst R. Method for the analysis of contribution of sliding and hopping to a facilitated diffusion of DNA-binding protein: Application to in vivo data. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022721. [PMID: 26382446 DOI: 10.1103/physreve.92.022721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 06/05/2023]
Abstract
DNA-binding protein searches for its target, a specific site on DNA, by means of diffusion. The search process consists of many recurrent steps of one-dimensional diffusion (sliding) along the DNA chain and three-dimensional diffusion (hopping) after dissociation of a protein from the DNA chain. Here we propose a computational method that allows extracting the contribution of sliding and hopping to the search process in vivo from the measurements of the kinetics of the target search by the lac repressor in Escherichia coli [P. Hammar et al., Science 336, 1595 (2012)]. The method combines lattice Monte Carlo simulations with the Brownian excursion theory and includes explicitly steric constraints for hopping due to the helical structure of DNA. The simulation results including all experimental data reveal that the in vivo target search is dominated by sliding. The short-range hopping to the same base pair interrupts one-dimensional sliding while long-range hopping does not contribute significantly to the kinetics of the search of the target in vivo.
Collapse
Affiliation(s)
- Marcin Tabaka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Burdzy
- Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195, USA
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
36
|
Xu L, Ye W, Jiang C, Yang J, Zhang J, Feng Y, Luo R, Chen HF. Recognition Mechanism between Lac Repressor and DNA with Correlation Network Analysis. J Phys Chem B 2015; 119:2844-56. [DOI: 10.1021/jp510940w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lishi Xu
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wei Ye
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Cheng Jiang
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jingxu Yang
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinmai Zhang
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Feng
- State
Key Laboratory of Microbial Metabolism, Department of Biotechnology,
College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ray Luo
- Departments of Molecular
Biology and Biochemistry, Chemical Engineering and Materials Science,
Biomedical Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Hai-Feng Chen
- State Key
Laboratory of Microbial Metabolism, Department of Bioinformatics and
Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
37
|
Bagchi A. Structural characterization of Fis — A transcriptional regulator from pathogenic Pasteurella multocida essential for expression of virulence factors. Gene 2015; 554:249-53. [DOI: 10.1016/j.gene.2014.10.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/07/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
38
|
Furini S, Domene C. DNA recognition process of the lactose repressor protein studied via metadynamics and umbrella sampling simulations. J Phys Chem B 2014; 118:13059-65. [PMID: 25341013 DOI: 10.1021/jp505885j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lactose repressor, LacI, finds its DNA target sites via a process that is faster than what it is expected from a diffusion-driven mechanism. This is possible thanks to nonspecific binding of LacI to DNA, followed by diffusion along the DNA molecule. The diffusion of the protein along DNA might lead to a fast-searching mechanism only if LacI binds with comparable strength to different nonspecific sequences and if, in addition, the value of the binding energy remarkably decreases in the presence of a binding site. The first condition would be favored by loose interactions with the base edges, while the second would take advantage from the opposite situation. In order to understand how the protein satisfies these two opposing requirements, the DNA recognition process was studied by a combination of umbrella sampling and metadynamics simulations. The simulations revealed that when aligned with a specific sequence, LacI establishes polar interactions with the base edges that require ∼4 kcal/mol to be disrupted. In contrast, these interactions are not stable when the protein is aligned with nonspecific sequences. These results confirm that LacI is able to efficiently recognize a specific sequence while sliding along DNA before any structural change of the protein-DNA complex occurs.
Collapse
Affiliation(s)
- Simone Furini
- Department of Medical Biotechnologies, University of Siena , viale Mario Bracci 16, I-53100, Siena, Italy
| | | |
Collapse
|
39
|
McHarris DM, Barr DA. Truncated variants of the GCN4 transcription activator protein bind DNA with dramatically different dynamical motifs. J Chem Inf Model 2014; 54:2869-75. [PMID: 25204850 DOI: 10.1021/ci500448e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The yeast protein GCN4 is a transcriptional activator in the basic leucine zipper (bZip) family, whose distinguishing feature is the "chopstick-like" homodimer of alpha helices formed at the DNA-binding interface. While experiments have shown that truncated versions of the protein retain biologically relevant DNA-binding affinity, we present the results of a computational study revealing that these variants show a wide variety of dynamical modes in their interaction with the target DNA sequence. We have performed all-atom molecular dynamics simulations of the full-length GCN4 protein as well as three truncated variants; our data indicate that the truncated mutants show dramatically different correlation patterns. We conclude that although the truncated mutants still retain DNA-binding ability, the bZip interface present in the full-length protein provides important stability for the protein-DNA complex.
Collapse
Affiliation(s)
- Danielle M McHarris
- Department of Chemistry and Biochemistry, Utica College , 1600 Burrstone Road, Utica, New York 13502, United States
| | | |
Collapse
|
40
|
Jose JC, Chatterjee P, Sengupta N. Cross dimerization of amyloid-β and αsynuclein proteins in aqueous environment: a molecular dynamics simulations study. PLoS One 2014; 9:e106883. [PMID: 25210774 PMCID: PMC4161357 DOI: 10.1371/journal.pone.0106883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Self-assembly of the intrinsically unstructured proteins, amyloid beta (Aβ) and alpha synclein (αSyn), are associated with Alzheimer's Disease, and Parkinson's and Lewy Body Diseases, respectively. Importantly, pathological overlaps between these neurodegenerative diseases, and the possibilities of interactions between Aβ and αSyn in biological milieu emerge from several recent clinical reports and in vitro studies. Nevertheless, there are very few molecular level studies that have probed the nature of spontaneous interactions between these two sequentially dissimilar proteins and key characteristics of the resulting cross complexes. In this study, we have used atomistic molecular dynamics simulations to probe the possibility of cross dimerization between αSyn1-95 and Aβ1-42, and thereby gain insights into their plausible early assembly pathways in aqueous environment. Our analyses indicate a strong probability of association between the two sequences, with inter-protein attractive electrostatic interactions playing dominant roles. Principal component analysis revealed significant heterogeneity in the strength and nature of the associations in the key interaction modes. In most, the interactions of repeating Lys residues, mainly in the imperfect repeats 'KTKEGV' present in αSyn1-95 were found to be essential for cross interactions and formation of inter-protein salt bridges. Additionally, a hydrophobicity driven interaction mode devoid of salt bridges, where the non-amyloid component (NAC) region of αSyn1-95 came in contact with the hydrophobic core of Aβ1-42 was observed. The existence of such hetero complexes, and therefore hetero assembly pathways may lead to polymorphic aggregates with variations in pathological attributes. Our results provide a perspective on development of therapeutic strategies for preventing pathogenic interactions between these proteins.
Collapse
Affiliation(s)
- Jaya C. Jose
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Neelanjana Sengupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
41
|
Merino F, Ng C, Veerapandian V, Schöler H, Jauch R, Cojocaru V. Structural Basis for the SOX-Dependent Genomic Redistribution of OCT4 in Stem Cell Differentiation. Structure 2014; 22:1274-1286. [DOI: 10.1016/j.str.2014.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 01/12/2023]
|
42
|
van der Vaart A. Coupled binding-bending-folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2014; 1850:1091-1098. [PMID: 25161164 DOI: 10.1016/j.bbagen.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. SCOPE OF REVIEW This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. MAJOR CONCLUSIONS Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. GENERAL SIGNIFICANCE Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205, Tampa, FL 33620, USA.
| |
Collapse
|
43
|
Shang YD, Zhang JL, Zhang HX, Zheng QC. Molecular simulation investigation on the interaction between barrier-to-autointegration factor or its Gly25Glu mutant and DNA. J Mol Model 2014; 20:2246. [PMID: 24797088 DOI: 10.1007/s00894-014-2246-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/09/2014] [Indexed: 11/25/2022]
Abstract
In order to understand the binding mechanism between Barrier-to-autointegration factor (BAF) and DNA, two DNA:BAF complexes with wild type (WT) BAF and its Gly25Glu point mutate type (MT) were generated by molecular docking on the basis of the crystal structures of BAF (PDB code: 2ODG, chain A) and DNA (PDB code: 2BZF, chain B and C). Then, molecular dynamics (MD) simulations were performed on the two docked structures, as well as BAF (WT) and BAF (MT). The results show that monomer BAF is more flexible than BAF in DNA:BAF complex, suggesting that DNA is effective to stabilize conformation of BAF, which is in good agreement with the experimental results. Besides, the mutated Glu25 in DNA:BAF (MT) can change the BAF conformation to some extent. With deeper investigation on the DNA:BAF structures, the hydrogen bonds are found to make great contribution to the interaction between DNA and BAF. The hydrogen bonds in DNA:BAF (MT) are fewer than those in DNA:BAF (WT), indicating that the Gly25Glu mutation in BAF has an important effect on the hydrogen bonds in the DNA:BAF complex. Besides, the binding free energy in DNA:BAF (MT) is also higher than that in DNA:BAF (WT). It results from the influence of Glu25 side chain on the orientation of Lys6 and Lys33 in the interface between DNA and BAF. The binding free energy of Lys72, another key residue, decreases a lot in DNA:BAF (MT) anomalously. The decreasing energy causes the destruction of hydrophobic pocket in the binding site between DNA and BAF (MT). Our results are helpful for further experimental investigations.
Collapse
Affiliation(s)
- Yu-Dong Shang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, Jilin, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Yonetani Y, Kono H. Dissociation Free-Energy Profiles of Specific and Nonspecific DNA–Protein Complexes. J Phys Chem B 2013; 117:7535-45. [DOI: 10.1021/jp402664w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yoshiteru Yonetani
- Molecular Modeling and Simulation Group, Quantum Beam
Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modeling and Simulation Group, Quantum Beam
Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|