1
|
An C, Li D, Lu L, Liu C, Xu X, Xie S, Wang J, Liu R, Yang C, Qin Y, Zheng P. Insights into the Genomic Background of Nine Common Chinese Medicinal Plants by Flow Cytometry and Genome Survey. PLANTS (BASEL, SWITZERLAND) 2024; 13:3536. [PMID: 39771235 PMCID: PMC11679336 DOI: 10.3390/plants13243536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a different plant family, including Sarcandra glabra (Chloranthaceae), Nekemias grossedentata (Vitaceae), Uraria crinita (Fabaceae), Gynostemma pentaphyllum (Cucurbitaceae), Reynoutria japonica (Polygonaceae), Pseudostellaria heterophylla (Caryophyllaceae), Morinda officinalis (Rubiaceae), Vitex rotundifolia (Lamiaceae), and Gynura formosana (Asteraceae), to estimate their genome sizes and conduct preliminary genomic surveys. The estimated genome sizes by flow cytometry were 3.66 Gb, 0.65 Gb, 0.58 Gb, 1.02 Gb, 3.96 Gb, 2.99 Gb, 0.43 Gb, 0.78 Gb, and 7.27 Gb, respectively. The genome sizes of M. officinalis, R. japonica, and G. pentaphyllum have been previously reported. Comparative analyses suggest that variations in genome size may arise due to differences in measurement methods and sample sources. Therefore, employing multiple approaches to assess genome size is necessary to provide more reliable information for further genomic research. Based on the genome survey, species with considerable genome size variation or polyploidy, such as G. pentaphyllum, should undergo a ploidy analysis in conjunction with population genomics studies to elucidate the development of the diversified genome size. Additionally, a genome survey of U. crinita, a medicinal plant with a relatively small genome size (509.08 Mb) and of considerable interest in southern China, revealed a low heterozygosity rate (0.382%) and moderate repeat content (51.24%). Given the limited research costs, this species represents a suitable candidate for further genomic studies on Leguminous medicinal plants characteristic of southern China. This foundational genomic information will serve as a critical reference for the sustainable development and utilization of these medicinal plants.
Collapse
Affiliation(s)
- Chang An
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Denglin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Lin Lu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Chaojia Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Xiaowen Xu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Shiyu Xie
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Jing Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Ruoyu Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzi Yang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Bureš P, Elliott TL, Veselý P, Šmarda P, Forest F, Leitch IJ, Nic Lughadha E, Soto Gomez M, Pironon S, Brown MJM, Šmerda J, Zedek F. The global distribution of angiosperm genome size is shaped by climate. THE NEW PHYTOLOGIST 2024; 242:744-759. [PMID: 38264772 DOI: 10.1111/nph.19544] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.
Collapse
Affiliation(s)
- Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Tammy L Elliott
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
- Department of Biological Sciences, University of Cape Town, Cape Town, 7700, South Africa
| | - Pavel Veselý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
| | | | | | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL, UK
| | | | - Jakub Šmerda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| |
Collapse
|
3
|
Kapoor B, Kumar P, Verma V, Irfan M, Sharma R, Bhargava B. How plants conquered land: evolution of terrestrial adaptation. J Evol Biol 2023; 36:5-14. [PMID: 36083189 DOI: 10.1111/jeb.14062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023]
Abstract
The transition of plants from water to land is considered one of the most significant events in the evolution of life on Earth. The colonization of land by plants, accompanied by their morphological, physiological and developmental changes, resulted in plant biodiversity. Besides significantly influencing oxygen levels in the air and on land, plants manufacture organic matter from CO2 and water with the help of sunlight, paving the way for the diversification of nonplant lineages ranging from microscopic organisms to animals. Land plants regulate the climate by adjusting total biomass and energy flow. At the genetic level, these innovations are achieved through the rearrangement of pre-existing genetic information. Advances in genome sequencing technology are revamping our understanding of plant evolution. This study highlights the morphological and genomic innovations that allow plants to integrate life on Earth.
Collapse
Affiliation(s)
- Bhuvnesh Kapoor
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, USA
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
4
|
Viotti C, Albrecht K, Amaducci S, Bardos P, Bertheau C, Blaudez D, Bothe L, Cazaux D, Ferrarini A, Govilas J, Gusovius HJ, Jeannin T, Lühr C, Müssig J, Pilla M, Placet V, Puschenreiter M, Tognacchini A, Yung L, Chalot M. Nettle, a Long-Known Fiber Plant with New Perspectives. MATERIALS 2022; 15:ma15124288. [PMID: 35744347 PMCID: PMC9230748 DOI: 10.3390/ma15124288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
The stinging nettle Urticadioica L. is a perennial crop with low fertilizer and pesticide requirements, well adapted to a wide range of environmental conditions. It has been successfully grown in most European climatic zones while also promoting local flora and fauna diversity. The cultivation of nettle could help meet the strong increase in demand for raw materials based on plant fibers as a substitute for artificial fibers in sectors as diverse as the textile and automotive industries. In the present review, we present a historical perspective of selection, harvest, and fiber processing features where the state of the art of nettle varietal selection is detailed. A synthesis of the general knowledge about its biology, adaptability, and genetics constituents, highlighting gaps in our current knowledge on interactions with other organisms, is provided. We further addressed cultivation and processing features, putting a special emphasis on harvesting systems and fiber extraction processes to improve fiber yield and quality. Various uses in industrial processes and notably for the restoration of marginal lands and avenues of future research on this high-value multi-use plant for the global fiber market are described.
Collapse
Affiliation(s)
- Chloé Viotti
- UMR Chrono-Environnement, CNRS 6249, Université Bourgogne Franche-Comté, 25000 Besançon, France; (C.V.); (C.B.)
| | - Katharina Albrecht
- The Biological Materials Group, Department of Biomimetics, HSB—City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany; (K.A.); (L.B.); (J.M.)
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (S.A.); (A.F.); (M.P.)
| | - Paul Bardos
- r3 Environmental Technology Ltd., Earley Gate, Reading RG6 6AT, UK;
| | - Coralie Bertheau
- UMR Chrono-Environnement, CNRS 6249, Université Bourgogne Franche-Comté, 25000 Besançon, France; (C.V.); (C.B.)
| | - Damien Blaudez
- LIEC, CNRS, Université de Lorraine, 54000 Nancy, France; (D.B.); (L.Y.)
| | - Lea Bothe
- The Biological Materials Group, Department of Biomimetics, HSB—City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany; (K.A.); (L.B.); (J.M.)
| | | | - Andrea Ferrarini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (S.A.); (A.F.); (M.P.)
| | - Jason Govilas
- Department of Applied Mechanics, FEMTO-ST Institute, Université Bourgogne Franche-Comté, 25000 Besançon, France; (J.G.); (T.J.); (V.P.)
| | - Hans-Jörg Gusovius
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; (H.-J.G.); (C.L.)
| | - Thomas Jeannin
- Department of Applied Mechanics, FEMTO-ST Institute, Université Bourgogne Franche-Comté, 25000 Besançon, France; (J.G.); (T.J.); (V.P.)
| | - Carsten Lühr
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; (H.-J.G.); (C.L.)
| | - Jörg Müssig
- The Biological Materials Group, Department of Biomimetics, HSB—City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany; (K.A.); (L.B.); (J.M.)
| | - Marcello Pilla
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (S.A.); (A.F.); (M.P.)
| | - Vincent Placet
- Department of Applied Mechanics, FEMTO-ST Institute, Université Bourgogne Franche-Comté, 25000 Besançon, France; (J.G.); (T.J.); (V.P.)
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria; (M.P.); (A.T.)
| | - Alice Tognacchini
- Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria; (M.P.); (A.T.)
| | - Loïc Yung
- LIEC, CNRS, Université de Lorraine, 54000 Nancy, France; (D.B.); (L.Y.)
| | - Michel Chalot
- UMR Chrono-Environnement, CNRS 6249, Université Bourgogne Franche-Comté, 25000 Besançon, France; (C.V.); (C.B.)
- Faculté des Sciences et Technologies, Université de Lorraine, 54000 Nancy, France
- Correspondence:
| |
Collapse
|
5
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
6
|
Molecular Study of Selected Taxonomically Critical Taxa of the Genus Iris L. from the Broader Alpine-Dinaric Area. PLANTS 2020; 9:plants9091229. [PMID: 32961899 PMCID: PMC7570032 DOI: 10.3390/plants9091229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Some wild, morphologically diverse taxa of the genus Iris in the broad Alpine-Dinaric area have never been explored molecularly, and/or have ambiguous systematic status. The main aims of our research were to perform a molecular study of critical Iris taxa from that area (especially a narrow endemic accepted species I. adriatica, for which we also analysed genome size) and to explore the contribution of eight microsatellites and highly variable chloroplast DNA (ndhJ, rpoC1) markers to the understanding of the Iris taxa taxonomy and phylogeny. Both the microsatellite-based UPGMA and plastid markers-based maximum likelihood analysis discriminated three main clusters in the set of 32 analysed samples, which correspond well to the lower taxonomic categories of the genus, and support separate status of ambiguous regional taxa (e.g., I. sibirica subsp. erirrhiza, I. x croatica and I. x rotschildii). The first molecular data on I. adriatica revealed its genome size (2C = 12.639 ± 0.202 pg) and indicated the existence of ecotypes. For future molecular characterisation of the genus we recommend the utilisation of microsatellite markers supplemented with a combination of plastid markers.
Collapse
|
7
|
Boutanaev AM, Nemchinov LG. Genome Size Dynamics within Multiple Genera of Diploid Seed Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Pellicer J, Leitch IJ. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. THE NEW PHYTOLOGIST 2020; 226:301-305. [PMID: 31608445 DOI: 10.1111/nph.16261] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/08/2019] [Indexed: 05/07/2023]
Affiliation(s)
- Jaume Pellicer
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
| |
Collapse
|
9
|
Martinez B, Reaser JK, Dehgan A, Zamft B, Baisch D, McCormick C, Giordano AJ, Aicher R, Selbe S. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02146-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe 2016–2018National Invasive Species Council (NISC) Management Plan and Executive Order 13751 call for US federal agencies to foster technology development and application to address invasive species and their impacts. This paper complements and draws on an Innovation Summit, review of advanced biotechnologies applicable to invasive species management, and a survey of federal agencies that respond to these high-level directives. We provide an assessment of federal government capacities for the early detection of and rapid response to invasive species (EDRR) through advances in technology application; examples of emerging technologies for the detection, identification, reporting, and response to invasive species; and guidance for fostering further advancements in applicable technologies. Throughout the paper, we provide examples of how federal agencies are applying technologies to improve programmatic effectiveness and cost-efficiencies. We also highlight the outstanding technology-related needs identified by federal agencies to overcome barriers to enacting EDRR. Examples include improvements in research facility infrastructure, data mobilization across a wide range of invasive species parameters (from genetic to landscape scales), promotion of and support for filling key gaps in technological capacity (e.g., portable, field-ready devices with automated capacities), and greater investments in technology prizes and challenge competitions.
Collapse
|
10
|
Genomic Survey, Transcriptome, and Metabolome Analysis of Apocynum venetum and Apocynum hendersonii to Reveal Major Flavonoid Biosynthesis Pathways. Metabolites 2019; 9:metabo9120296. [PMID: 31817331 PMCID: PMC6950674 DOI: 10.3390/metabo9120296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Apocynum plants, especially A. venetum and A. hendersonii, are rich in flavonoids. In the present study, a whole genome survey of the two species was initially carried out to optimize the flavonoid biosynthesis-correlated gene mining. Then, the metabolome and transcriptome analyses were combined to elucidate the flavonoid biosynthesis pathways. Both species have small genome sizes of 232.80 Mb (A. venetum) and 233.74 Mb (A. hendersonii) and showed similar metabolite profiles with flavonols being the main differentiated flavonoids between the two specie. Positive correlation of gene expression levels (flavonone-3 hydroxylase, anthocyanidin reductase, and flavonoid 3-O-glucosyltransferase) and total flavonoid content were observed. The contents of quercitrin, hyperoside, and total anthocyanin in A. venetum were found to be much higher than in A. hendersonii, and such was thought to be the reason for the morphological difference in color of A. venetum and A. hendersonii. This study provides valuable genomic and metabolome information for understanding of A. venetum and A. hendersonii, and lays a foundation for elucidating Apocynum genus plant flavonoid biosynthesis.
Collapse
|
11
|
Jones KE, Fér T, Schmickl RE, Dikow RB, Funk VA, Herrando‐Moraira S, Johnston PR, Kilian N, Siniscalchi CM, Susanna A, Slovák M, Thapa R, Watson LE, Mandel JR. An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11295. [PMID: 31667023 PMCID: PMC6814182 DOI: 10.1002/aps3.11295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/05/2019] [Indexed: 05/23/2023]
Abstract
PREMISE Hybrid capture with high-throughput sequencing (Hyb-Seq) is a powerful tool for evolutionary studies. The applicability of an Asteraceae family-specific Hyb-Seq probe set and the outcomes of different phylogenetic analyses are investigated here. METHODS Hyb-Seq data from 112 Asteraceae samples were organized into groups at different taxonomic levels (tribe, genus, and species). For each group, data sets of non-paralogous loci were built and proportions of parsimony informative characters estimated. The impacts of analyzing alternative data sets, removing long branches, and type of analysis on tree resolution and inferred topologies were investigated in tribe Cichorieae. RESULTS Alignments of the Asteraceae family-wide Hyb-Seq locus set were parsimony informative at all taxonomic levels. Levels of resolution and topologies inferred at shallower nodes differed depending on the locus data set and the type of analysis, and were affected by the presence of long branches. DISCUSSION The approach used to build a Hyb-Seq locus data set influenced resolution and topologies inferred in phylogenetic analyses. Removal of long branches improved the reliability of topological inferences in maximum likelihood analyses. The Astereaceae Hyb-Seq probe set is applicable at multiple taxonomic depths, which demonstrates that probe sets do not necessarily need to be lineage-specific.
Collapse
Affiliation(s)
- Katy E. Jones
- Botanischer Garten und Botanisches Museum BerlinFreie Universität BerlinKönigin‐Luise‐Str. 6–814195BerlinGermany
| | - Tomáš Fér
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
| | - Roswitha E. Schmickl
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
- Institute of BotanyThe Czech Academy of SciencesZámek 1CZ 25243PrůhoniceCzech Republic
| | - Rebecca B. Dikow
- Data Science LabOffice of the Chief Information OfficerSmithsonian InstitutionWashingtonD.C.20013‐7012USA
| | - Vicki A. Funk
- Department of BotanyNational Museum of Natural HistorySmithsonian InstitutionWashingtonD.C.20013‐7012USA
| | | | - Paul R. Johnston
- Freie Universität BerlinEvolutionary BiologyBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Norbert Kilian
- Botanischer Garten und Botanisches Museum BerlinFreie Universität BerlinKönigin‐Luise‐Str. 6–814195BerlinGermany
| | - Carolina M. Siniscalchi
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB‐CSIC‐ICUB)Pg. del Migdia s.n.ES 08038BarcelonaSpain
| | - Marek Slovák
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
- Plant Science and Biodiversity CentreSlovak Academy of SciencesSK‐84523BratislavaSlovakia
| | - Ramhari Thapa
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| | - Linda E. Watson
- Department of Plant Biology, Ecology, and EvolutionOklahoma State UniversityStillwaterOklahoma74078USA
| | - Jennifer R. Mandel
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| |
Collapse
|
12
|
Vitales D, Fernández P, Garnatje T, Garcia S. Progress in the study of genome size evolution in Asteraceae: analysis of the last update. Database (Oxford) 2019; 2019:baz098. [PMID: 31608375 PMCID: PMC6790504 DOI: 10.1093/database/baz098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 11/14/2022]
Abstract
The Genome Size in Asteraceae Database (GSAD, http://www.asteraceaegenomesize.com) has been recently updated, with data from papers published or in press until July 2018. This constitutes the third release of GSAD, currently containing 4350 data entries for 1496 species, which represent a growth of 22.52% in the number of species with available genome size data compared with the previous release, and a growth of 57.72% in terms of entries. Approximately 6% of Asteraceae species are covered in terms of known genome sizes. The number of source papers included in this release (198) means a 48.87% increase with respect to release 2.0. The significant data increase was exploited to study the genome size evolution in the family from a phylogenetic perspective. Our results suggest that the role of chromosome number in genome size diversity within Asteraceae is basically associated to polyploidy, while dysploidy would only cause minor variation in the DNA amount along the family. Among diploid taxa, we found that the evolution of genome size shows a strong phylogenetic signal. However, this trait does not seem to evolve evenly across the phylogeny, but there could be significant scale and clade-dependent patterns. Our analyses indicate that the phylogenetic signal is stronger at low taxonomic levels, with certain tribes standing out as hotspots of autocorrelation between genome size and phylogeny. Finally, we also observe meaningful associations among nuclear DNA content on Asteraceae species and other phenotypical and ecological traits (i.e. plant habit and invasion ability). Overall, this study emphasizes the need to continue generating and analysing genome size data in order to puzzle out the evolution of this parameter and its many biological correlates.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
- Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08038 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Transcriptional Profiles of Secondary Metabolite Biosynthesis Genes and Cytochromes in the Leaves of Four Papaver Species. DATA 2018. [DOI: 10.3390/data3040055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Poppies are well-known plants in the family Papaveraceae that are rich in alkaloids. This family contains 61 species, and in this study we sequenced the transcriptomes of four species’ (Papaver rhoeas, Papaver nudicaule, Papaver fauriei, and Papaver somniferum) leaves. These transcripts were systematically assessed for the expression of secondary metabolite biosynthesis (SMB) genes and cytochromes, and their expression profiles were assessed for use in bioinformatics analyses. This study contributed 265 Gb (13 libraries with three biological replicates) of leaf transcriptome data from three Papaver plant developmental stages. Sequenced transcripts were assembled into 815 Mb of contigs, including 226 Mb of full-length transcripts. The transcripts for 53 KEGG pathways, 55 cytochrome superfamilies, and benzylisoquinoline alkaloid biosynthesis (BIA) were identified and compared to four other alkaloid-rich genomes. Additionally, 22 different alkaloids and their relative expression profiles in three developmental stages of Papaver species were assessed by targeted metabolomics using LC-QTOF-MS/MS. Collectively, the results are given in co-occurrence heat-maps to help researchers obtain an overview of the transcripts and their differential expression in the Papaver development life cycle, particularly in leaves. Moreover, this dataset will be a valuable resource to derive hypotheses to mitigate an array of Papaver developmental and secondary metabolite biosynthesis issues in the future.
Collapse
|
14
|
Inostroza L, Bhakta M, Acuña H, Vásquez C, Ibáñez J, Tapia G, Mei W, Kirst M, Resende M, Munoz P. Understanding the Complexity of Cold Tolerance in White Clover using Temperature Gradient Locations and a GWAS Approach. THE PLANT GENOME 2018; 11. [PMID: 30512038 DOI: 10.3835/plantgenome2017.11.0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
White clover ( L.) is the most important grazing perennial forage legume in temperate climates. However, its limited capacity to survive and restore growth after low temperatures during winter constrains the productivity and wide adoption of the crop. Despite the importance of cold tolerance for white clover cultivar development, the genetic basis of this trait remains largely unknown. Hence, in this study, we performed the first genome-wide association study (GWAS) analyses in white clover to identify quantitative trait loci (QTL) for cold-tolerance-related traits. Seeds from 192 divergent genotypes from six populations in the Patagonia region of South America were collected and seed-derived plants were further clonally propagated. Clonal trials were established in three locations representing temperature gradient associated with elevation. Given the allotetraploid nature of the white clover genome, distinct genetic models (diploid and tetraploid) were tested. Only the tetraploid parameterization was able to detect the 53 loci associated with cold-tolerance traits. Out of the 53 single nucleotide polymorphism (SNP) trait associations, 17 controlled more than one trait or were stable across multiple sites. This work represents the first report of QTL for cold-tolerance-related traits, providing insights into its genetic basis and candidate genomic regions for further functional validation studies.
Collapse
|
15
|
Kolarčik V, Kocová V, Vašková D. Flow cytometric seed screen data are consistent with models of chromosome inheritance in asymmetrically compensating allopolyploids. Cytometry A 2018; 93:737-748. [PMID: 30071155 DOI: 10.1002/cyto.a.23511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/10/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Angiosperms have evolved a mechanism of double fertilization, which results in the production of a separate embryo (new individual) and endosperm (nutritive tissue). The flow cytometric seed screen (FCSS) was developed to infer plant reproduction modes based on endosperm-to-embryo DNA content ratio (Pind ). A ratio of 1.5 indicates sexual reproduction, whereas higher values of ≥2.0 are consistent with apomixis. Although FCSS has been successfully applied to the study of sexual and asexual plants, the limits of FCSS and particularly its potential for determination of reproduction modes in hemisexual plants have not been explored. Here, we evaluated the application of FCSS to the study of reproduction modes in two asymmetrically compensating allopolyploids (ACAs), Onosma arenaria and Rosa canina. These two species are characterized by the presence of asexually inherited univalent-forming and sexually inherited bivalent-forming chromosome sets. They both use asymmetric meiosis, which eliminates univalent-forming chromosome sets from the male gamete and retains them in the female gamete. Different chromosomal behavior in male and female meiosis in these plants is reflected in different theoretically derived Pind values, which deviate from a sexual 1.5 value. Here, we determined Pind FCSS-based values in seeds of ACAs, and compared the results to sexual species. As expected, we determined that the mean Pind is 1.51, 1.52, and 1.52 in the sexual plants, that is, Capsella bursa-pastoris, Crataegus monogyna, and O. pseudoarenaria, respectively. In the ACAs, different mean Pind values were determined for O. arenaria (1.61) and R. canina (1.82). These values are consistent with the theoretical Pind values determined based on models of chromosome inheritance. This study highlights the precision of flow cytometry in determining DNA content and it's utility in screening reproduction modes. Additionally, it advocates for more in-depth investigations into rapid screening of accessions where the Pind ratio has deviated from the 1.5 value typical of sexual species, which may indicate meiotic irregularities.
Collapse
Affiliation(s)
- V Kolarčik
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54, Košice, Slovak Republic
| | - V Kocová
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54, Košice, Slovak Republic
| | - D Vašková
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54, Košice, Slovak Republic
| |
Collapse
|
16
|
Lee J, Yang EC, Graf L, Yang JH, Qiu H, Zelzion U, Chan CX, Stephens TG, Weber APM, Boo GH, Boo SM, Kim KM, Shin Y, Jung M, Lee SJ, Yim HS, Lee JH, Bhattacharya D, Yoon HS. Analysis of the Draft Genome of the Red Seaweed Gracilariopsis chorda Provides Insights into Genome Size Evolution in Rhodophyta. Mol Biol Evol 2018; 35:1869-1886. [DOI: 10.1093/molbev/msy081] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Eun Chan Yang
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Huan Qiu
- Department of Ecology Evolution and Natural Resources, Rutgers University, New Brunswick, NJ
| | - Udi Zelzion
- Department of Ecology Evolution and Natural Resources, Rutgers University, New Brunswick, NJ
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Duesseldorf, Germany
| | - Ga Hun Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Kyeong Mi Kim
- National Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - Younhee Shin
- Bioinformatics Group, R&D Center, Insilicogen, Inc., Suwon, Korea
| | - Myunghee Jung
- Bioinformatics Group, R&D Center, Insilicogen, Inc., Suwon, Korea
| | | | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
17
|
Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes (Basel) 2018; 9:E88. [PMID: 29443885 PMCID: PMC5852584 DOI: 10.3390/genes9020088] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/09/2023] Open
Abstract
Genome size is a biodiversity trait that shows staggering diversity across eukaryotes, varying over 64,000-fold. Of all major taxonomic groups, land plants stand out due to their staggering genome size diversity, ranging ca. 2400-fold. As our understanding of the implications and significance of this remarkable genome size diversity in land plants grows, it is becoming increasingly evident that this trait plays not only an important role in shaping the evolution of plant genomes, but also in influencing plant community assemblages at the ecosystem level. Recent advances and improvements in novel sequencing technologies, as well as analytical tools, make it possible to gain critical insights into the genomic and epigenetic mechanisms underpinning genome size changes. In this review we provide an overview of our current understanding of genome size diversity across the different land plant groups, its implications on the biology of the genome and what future directions need to be addressed to fill key knowledge gaps.
Collapse
Affiliation(s)
- Jaume Pellicer
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| | - Oriane Hidalgo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| | - Steven Dodsworth
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew TW9 3DS, UK.
| |
Collapse
|
18
|
Hidalgo O, Pellicer J, Christenhusz M, Schneider H, Leitch AR, Leitch IJ. Is There an Upper Limit to Genome Size? TRENDS IN PLANT SCIENCE 2017; 22:567-573. [PMID: 28506667 DOI: 10.1016/j.tplants.2017.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/08/2023]
Abstract
At 50-fold the size of the human genome (3 Gb), the staggeringly huge genome of 147.3 Gb recently discovered in the fern Tmesipteris obliqua is comparable in size to those of the other plant and animal record-holders (i.e., Paris japonica, a flowering plant with a genome size of 148.8 Gb, and Protopterus aethiopicus, a lungfish with a genome of 130 Gb). The synthesis of available information on giant genomes suggests that the biological limit to genome size expansion in eukaryotes may have been reached. We propose several explanations for why the genomes of ferns, flowering plants, and lungfish, all of which have independently undergone dramatic increases in genome size through a variety of mechanisms, do not exceed 150 Gb.
Collapse
Affiliation(s)
| | | | | | - Harald Schneider
- Department of Life Sciences, Natural History Museum, London W7 5BD, UK; Xishuangbanna Tropical Botanical Garden, Centre for Integrative Conservation, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, PR China
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | |
Collapse
|
19
|
Roa F, Telles MPDC. The Cerrado (Brazil) plant cytogenetics database. COMPARATIVE CYTOGENETICS 2017; 11:285-297. [PMID: 28919965 PMCID: PMC5596992 DOI: 10.3897/compcytogen.11(2).11395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Cerrado is a biodiversity hotspot that has lost ca. 50% of its original vegetation cover and hosts ca. 11,000 species belonging to 1,423 genera of phanerogams. For a fraction of those species some cytogenetic characteristics like chromosome numbers and C-value were available in databases, while other valuable information such as karyotype formula and banding patterns are missing. In order to integrate and share all cytogenetic information published for Cerrado species, including frequency of cytogenetic attributes and scientometrics aspects, Cerrado plant species were searched in bibliographic sources, including the 50 richest genera (with more than 45 taxa) and 273 genera with only one species in Cerrado. Determination of frequencies and the database website (http://cyto.shinyapps.io/cerrado) were developed in R. Studies were pooled by employed technique and decade, showing a rise in non-conventional cytogenetics since 2000. However, C-value estimation, heterochromatin staining and molecular cytogenetics are still not common for any family. For the richest and best sampled families, the following modal 2n counts were observed: Oxalidaceae 2n = 12, Lythraceae 2n = 30, Sapindaceae 2n = 24, Solanaceae 2n = 24, Cyperaceae 2n = 10, Poaceae 2n = 20, Asteraceae 2n = 18 and Fabaceae 2n = 26. Chromosome number information is available for only 16.1% of species, while there are genome size data for only 1.25%, being lower than the global percentages. In general, genome sizes were small, ranging from 2C = ca. 1.5 to ca. 3.5 pg. Intra-specific 2n number variation and higher 2n counts were mainly related to polyploidy, which relates to the prevalence of even haploid numbers above the mode of 2n in most major plant clades. Several orphan genera with almost no cytogenetic studies for Cerrado were identified. This effort represents a complete diagnosis for cytogenetic attributes of plants of Cerrado.
Collapse
Affiliation(s)
- Fernando Roa
- Programa de pós-graduação em Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Mariana Pires de Campos Telles
- Programa de pós-graduação em Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
- Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, 74605-010, Goiânia, GO, Brazil
| |
Collapse
|
20
|
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, Xia L, Froenicke L, Lavelle DO, Truco MJ, Xia R, Zhu S, Xu C, Xu H, Xu X, Cox K, Korf I, Meyers BC, Michelmore RW. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun 2017; 8:14953. [PMID: 28401891 PMCID: PMC5394340 DOI: 10.1038/ncomms14953] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/15/2017] [Indexed: 01/03/2023] Open
Abstract
Lettuce (Lactuca sativa) is a major crop and a member of the large, highly successful Compositae family of flowering plants. Here we present a reference assembly for the species and family. This was generated using whole-genome shotgun Illumina reads plus in vitro proximity ligation data to create large superscaffolds; it was validated genetically and superscaffolds were oriented in genetic bins ordered along nine chromosomal pseudomolecules. We identify several genomic features that may have contributed to the success of the family, including genes encoding Cycloidea-like transcription factors, kinases, enzymes involved in rubber biosynthesis and disease resistance proteins that are expanded in the genome. We characterize 21 novel microRNAs, one of which may trigger phasiRNAs from numerous kinase transcripts. We provide evidence for a whole-genome triplication event specific but basal to the Compositae. We detect 26% of the genome in triplicated regions containing 30% of all genes that are enriched for regulatory sequences and depleted for genes involved in defence.
Collapse
Affiliation(s)
| | | | | | | | - Siwaret Arikit
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Chi Song
- BGI Shenzhen, Shenzhen 518083, China
| | | | | | | | | | - Rui Xia
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132, USA
| | | | | | - Huaqin Xu
- UC Davis Genome Center, Davis, California 95616, USA
| | - Xun Xu
- BGI Shenzhen, Shenzhen 518083, China
| | - Kyle Cox
- UC Davis Genome Center, Davis, California 95616, USA
| | - Ian Korf
- UC Davis Genome Center, Davis, California 95616, USA
- Department of Molecular & Cellular Biology, UC Davis, California 95616, USA
| | - Blake C. Meyers
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132, USA
| | - Richard W. Michelmore
- UC Davis Genome Center, Davis, California 95616, USA
- Department of Molecular & Cellular Biology, UC Davis, California 95616, USA
- Department of Plant Sciences, UC Davis, California 95616, USA
- Department of Medical Microbiology & Immunology, UC Davis, California 95616, USA
| |
Collapse
|
21
|
Useful parasites: the evolutionary biology and biotechnology applications of transposable elements. J Genet 2017; 95:1039-1052. [PMID: 27994207 DOI: 10.1007/s12041-016-0702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transposable elements usually comprise the most abundant nongenic fraction of eukaryotic genomes. Because of their capacity to selfreplicate and to induce a wide range of mutations, transposable elements have long been considered as 'parasitic' or 'selfish'. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. Numerous studies have provided evidences that mobile elements have the potential to act as agents of evolution by increasing, rearranging and diversifying the genetic repertoire of their hosts. With large-scale sequencing becoming increasingly available, more and more scientists come across transposable element sequences in their data. I will provide examples that transposable elements, although having signatures of 'selfish' DNA, play a significant biological role in the maintainance of genome integrity and providing novel regulatoty networks. These features, along with the transpositional and mutagenic capacity to produce a raw genetic diversity, make the genome mobile fraction, a key player in species adaptation and microevolution. The last but not least, transposable elements stand as informative DNA markers that may complement other conventional DNA markers. Altogether, transposable elements represent a promising, but still largely unexplored research niche and deserve to be included into the agenda of molecular ecologists, evolutionary geneticists, conservation biologists and plant breeders.
Collapse
|
22
|
Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour 2016; 17:142-152. [PMID: 27860289 DOI: 10.1111/1755-0998.12635] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
Abstract
Understanding how and why populations evolve is of fundamental importance to molecular ecology. Restriction site-associated DNA sequencing (RADseq), a popular reduced representation method, has ushered in a new era of genome-scale research for assessing population structure, hybridization, demographic history, phylogeography and migration. RADseq has also been widely used to conduct genome scans to detect loci involved in adaptive divergence among natural populations. Here, we examine the capacity of those RADseq-based genome scan studies to detect loci involved in local adaptation. To understand what proportion of the genome is missed by RADseq studies, we developed a simple model using different numbers of RAD-tags, genome sizes and extents of linkage disequilibrium (length of haplotype blocks). Under the best-case modelling scenario, we found that RADseq using six- or eight-base pair cutting restriction enzymes would fail to sample many regions of the genome, especially for species with short linkage disequilibrium. We then surveyed recent studies that have used RADseq for genome scans and found that the median density of markers across these studies was 4.08 RAD-tag markers per megabase (one marker per 245 kb). The length of linkage disequilibrium for many species is one to three orders of magnitude less than density of the typical recent RADseq study. Thus, we conclude that genome scans based on RADseq data alone, while useful for studies of neutral genetic variation and genetic population structure, will likely miss many loci under selection in studies of local adaptation.
Collapse
Affiliation(s)
- David B Lowry
- Plant Biology Laboratories, Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Sean Hoban
- The Morton Arboretum, Lisle, IL, USA.,National Institute for Mathematical and Biological Synthesis (NIMBioS), Knoxville, TN, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - Laura K Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35406, USA
| | - Michael F Antolin
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
23
|
Veeckman E, Ruttink T, Vandepoele K. Are We There Yet? Reliably Estimating the Completeness of Plant Genome Sequences. THE PLANT CELL 2016; 28:1759-68. [PMID: 27512012 PMCID: PMC5006709 DOI: 10.1105/tpc.16.00349] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/13/2016] [Accepted: 08/09/2016] [Indexed: 05/18/2023]
Abstract
Genome sequencing is becoming cheaper and faster thanks to the introduction of next-generation sequencing techniques. Dozens of new plant genome sequences have been released in recent years, ranging from small to gigantic repeat-rich or polyploid genomes. Most genome projects have a dual purpose: delivering a contiguous, complete genome assembly and creating a full catalog of correctly predicted genes. Frequently, the completeness of a species' gene catalog is measured using a set of marker genes that are expected to be present. This expectation can be defined along an evolutionary gradient, ranging from highly conserved genes to species-specific genes. Large-scale population resequencing studies have revealed that gene space is fairly variable even between closely related individuals, which limits the definition of the expected gene space, and, consequently, the accuracy of estimates used to assess genome and gene space completeness. We argue that, based on the desired applications of a genome sequencing project, different completeness scores for the genome assembly and/or gene space should be determined. Using examples from several dicot and monocot genomes, we outline some pitfalls and recommendations regarding methods to estimate completeness during different steps of genome assembly and annotation.
Collapse
Affiliation(s)
- Elisabeth Veeckman
- Institute for Agricultural and Fisheries Research, Plant Sciences Unit, Growth and Development, B-9090 Melle, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Tom Ruttink
- Institute for Agricultural and Fisheries Research, Plant Sciences Unit, Growth and Development, B-9090 Melle, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Klaas Vandepoele
- Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
24
|
Li Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW, Rieseberg LH, Barker MS. Early genome duplications in conifers and other seed plants. SCIENCE ADVANCES 2015; 1:e1501084. [PMID: 26702445 PMCID: PMC4681332 DOI: 10.1126/sciadv.1501084] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/14/2015] [Indexed: 05/18/2023]
Abstract
Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Anthony E. Baniaga
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Emily B. Sessa
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Moira Scascitelli
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sean W. Graham
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Loren H. Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Michael S. Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Corresponding author. E-mail:
| |
Collapse
|
25
|
Elliott TA, Gregory TR. What's in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140331. [PMID: 26323762 PMCID: PMC4571570 DOI: 10.1098/rstb.2014.0331] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2015] [Indexed: 01/13/2023] Open
Abstract
Some notable exceptions aside, eukaryotic genomes are distinguished from those of Bacteria and Archaea in a number of ways, including chromosome structure and number, repetitive DNA content, and the presence of introns in protein-coding regions. One of the most notable differences between eukaryotic and prokaryotic genomes is in size. Unlike their prokaryotic counterparts, eukaryotes exhibit enormous (more than 60,000-fold) variability in genome size which is not explained by differences in gene number. Genome size is known to correlate with cell size and division rate, and by extension with numerous organism-level traits such as metabolism, developmental rate or body size. Less well described are the relationships between genome size and other properties of the genome, such as gene content, transposable element content, base pair composition and related features. The rapid expansion of 'complete' genome sequencing projects has, for the first time, made it possible to examine these relationships across a wide range of eukaryotes in order to shed new light on the causes and correlates of genome size diversity. This study presents the results of phylogenetically informed comparisons of genome data for more than 500 species of eukaryotes. Several relationships are described between genome size and other genomic parameters, and some recommendations are presented for how these insights can be extended even more broadly in the future.
Collapse
Affiliation(s)
- Tyler A Elliott
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - T Ryan Gregory
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
26
|
Olanj N, Garnatje T, Sonboli A, Vallès J, Garcia S. The striking and unexpected cytogenetic diversity of genus Tanacetum L. (Asteraceae): a cytometric and fluorescent in situ hybridisation study of Iranian taxa. BMC PLANT BIOLOGY 2015; 15:174. [PMID: 26152193 PMCID: PMC4494159 DOI: 10.1186/s12870-015-0564-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/26/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although karyologically well studied, the genus Tanacetum (Asteraceae) is poorly known from the perspective of molecular cytogenetics. The prevalence of polyploidy, including odd ploidy warranted an extensive cytogenetic study. We studied several species native to Iran, one of the most important centres of diversity of the genus. We aimed to characterise Tanacetum genomes through fluorochrome banding, fluorescent in situ hybridisation (FISH) of rRNA genes and the assessment of genome size by flow cytometry. We appraise the effect of polyploidy and evaluate the existence of intraspecific variation based on the number and distribution of GC-rich bands and rDNA loci. Finally, we infer ancestral genome size and other cytogenetic traits considering phylogenetic relationships within the genus. RESULTS We report first genome size (2C) estimates ranging from 3.84 to 24.87 pg representing about 11 % of those recognised for the genus. We found striking cytogenetic diversity both in the number of GC-rich bands and rDNA loci. There is variation even at the population level and some species have undergone massive heterochromatic or rDNA amplification. Certain morphometric data, such as pollen size or inflorescence architecture, bear some relationship with genome size. Reconstruction of ancestral genome size, number of CMA+ bands and number of rDNA loci show that ups and downs have occurred during the evolution of these traits, although genome size has mostly increased and the number of CMA+ bands and rDNA loci have decreased in present-day taxa compared with ancestral values. CONCLUSIONS Tanacetum genomes are highly unstable in the number of GC-rich bands and rDNA loci, although some patterns can be established at the diploid and tetraploid levels. In particular, aneuploid taxa and some odd ploidy species show greater cytogenetic instability than the rest of the genus. We have also confirmed a linked rDNA arrangement for all the studied Tanacetum species. The labile scenario found in Tanacetum proves that some cytogenetic features previously regarded as relatively constant, or even diagnostic, can display high variability, which is better interpreted within a phylogenetic context.
Collapse
Affiliation(s)
- Nayyereh Olanj
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Iran.
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, 08038, Barcelona, Catalonia, Spain.
| | - Ali Sonboli
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran.
| | - Joan Vallès
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| | - Sònia Garcia
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
27
|
Freeling M, Xu J, Woodhouse M, Lisch D. A Solution to the C-Value Paradox and the Function of Junk DNA: The Genome Balance Hypothesis. MOLECULAR PLANT 2015; 8:899-910. [PMID: 25743198 DOI: 10.1016/j.molp.2015.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/03/2015] [Accepted: 02/18/2015] [Indexed: 05/11/2023]
Abstract
The Genome Balance Hypothesis originated from a recent study that provided a mechanism for the phenomenon of genome dominance in ancient polyploids: unique 24nt RNA coverage near genes is greater in genes on the recessive subgenome irrespective of differences in gene expression. 24nt RNAs target transposons. Transposon position effects are now hypothesized to balance the expression of networked genes and provide spring-like tension between pericentromeric heterochromatin and microtubules. The balance (coordination) of gene expression and centromere movement is under selection. Our hypothesis states that this balance can be maintained by many or few transposons about equally well. We explain known balanced distributions of junk DNA within genomes and between subgenomes in allopolyploids (and our hypothesis passes "the onion test" for any so-called solution to the C-value paradox). Importantly, when the allotetraploid maize chromosomes delete redundant genes, their nearby transposons are also lost; this result is explained if transposons near genes function. The Genome Balance Hypothesis is hypothetical because the position effect mechanisms implicated are not proved to apply to all junk DNA, and the continuous nature of the centromeric and gene position effects have not yet been studied as a single phenomenon.
Collapse
Affiliation(s)
- Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | - Jie Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Margaret Woodhouse
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Kim JH, Park SB, Roh HJ, Park S, Shin MK, Moon GI, Hong JH, Kim HY. A simplified and accurate detection of the genetically modified wheat MON71800 with one calibrator plasmid. Food Chem 2015; 176:1-6. [DOI: 10.1016/j.foodchem.2014.12.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/13/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
|
29
|
Peruzzi L, Altınordu F. A proposal for a multivariate quantitative approach to infer karyological relationships among taxa. COMPARATIVE CYTOGENETICS 2014; 8:337-49. [PMID: 25610547 PMCID: PMC4296720 DOI: 10.3897/compcytogen.v8i4.8564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/20/2014] [Indexed: 05/23/2023]
Abstract
Until now, basic karyological parameters have been used in different ways by researchers to infer karyological relationships among organisms. In the present study, we propose a standardized approach to this aim, integrating six different, not redundant, parameters in a multivariate PCoA analysis. These parameters are chromosome number, basic chromosome number, total haploid chromosome length, MCA (Mean Centromeric Asymmetry), CVCL (Coefficient of Variation of Chromosome Length) and CVCI (Coefficient of Variation of Centromeric Index). The method is exemplified with the application to several plant taxa, and its significance and limits are discussed in the light of current phylogenetic knowledge of these groups.
Collapse
Affiliation(s)
- Lorenzo Peruzzi
- Department of Biology, Unit of Botany, Pisa University, Via L. Ghini 13, 56126 Pisa, Italy
| | - Fahim Altınordu
- Department of Biology, Science Faculty, Selçuk University, Konya, Turkey
| |
Collapse
|
30
|
Sessa EB, Banks JA, Barker MS, Der JP, Duffy AM, Graham SW, Hasebe M, Langdale J, Li FW, Marchant DB, Pryer KM, Rothfels CJ, Roux SJ, Salmi ML, Sigel EM, Soltis DE, Soltis PS, Stevenson DW, Wolf PG. Between two fern genomes. Gigascience 2014; 3:15. [PMID: 25324969 PMCID: PMC4199785 DOI: 10.1186/2047-217x-3-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/18/2014] [Indexed: 11/10/2022] Open
Abstract
Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.
Collapse
Affiliation(s)
- Emily B Sessa
- Department of Biology, Box 118525, University of Florida, Gainesville, FL 32611, USA ; Genetics Institute, University of Florida, Box 103610, Gainesville, FL 32611, USA
| | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Joshua P Der
- Department of Biology, Penn State University, 201 Life Science Building, University Park, PA 16801, USA ; Current address: Department of Biological Science, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Aaron M Duffy
- Ecology Center and Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Sean W Graham
- Department of Botany, University of British Columbia, 3529-6720 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, 38 Nishigounaka, Myo-daiji-cho, Okazaki 444-8585, Japan
| | - Jane Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Fay-Wei Li
- Department of Biology, Duke University, Post Office Box 90338, Durham, NC 27708, USA
| | - D Blaine Marchant
- Department of Biology, Box 118525, University of Florida, Gainesville, FL 32611, USA ; Florida Museum of Natural History, Dickinson Hall, University of Florida, Gainesville, FL 32611, USA
| | - Kathleen M Pryer
- Department of Biology, Duke University, Post Office Box 90338, Durham, NC 27708, USA
| | - Carl J Rothfels
- Department of Zoology, University of British Columbia, 2329 W. Mall, WAITING Vancouver, BC V6T 1Z4, Canada ; Current address: University Herbarium and Department of Integrative Biology, University of California, 1001 Valley Life Sciences Building, Berkeley, Berkeley, CA 94720, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, 205 W. 24th Street, Austin, TX 78712, USA
| | - Mari L Salmi
- Department of Molecular Biosciences, University of Texas, 205 W. 24th Street, Austin, TX 78712, USA
| | - Erin M Sigel
- Department of Biology, Duke University, Post Office Box 90338, Durham, NC 27708, USA
| | - Douglas E Soltis
- Department of Biology, Box 118525, University of Florida, Gainesville, FL 32611, USA ; Genetics Institute, University of Florida, Box 103610, Gainesville, FL 32611, USA ; Florida Museum of Natural History, Dickinson Hall, University of Florida, Gainesville, FL 32611, USA
| | - Pamela S Soltis
- Genetics Institute, University of Florida, Box 103610, Gainesville, FL 32611, USA ; Florida Museum of Natural History, Dickinson Hall, University of Florida, Gainesville, FL 32611, USA
| | - Dennis W Stevenson
- New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Paul G Wolf
- Ecology Center and Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|