1
|
Dhahri H, Saintilnord WN, Chandler D, Fondufe-Mittendorf YN. Beyond the Usual Suspects: Examining the Role of Understudied Histone Variants in Breast Cancer. Int J Mol Sci 2024; 25:6788. [PMID: 38928493 PMCID: PMC11203562 DOI: 10.3390/ijms25126788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | - Wesley N. Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center of Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | | |
Collapse
|
2
|
Tatsumi A, Hirakochi H, Inoue S, Tanaka Y, Furuno H, Ikeda M, Ishibashi S, Taguchi T, Yamamoto K, Onishi I, Sachs Z, Largaespada DA, Kitagawa M, Kurata M. Identification of NRAS Downstream Genes with CRISPR Activation Screening. BIOLOGY 2022; 11:1551. [PMID: 36358254 PMCID: PMC9687188 DOI: 10.3390/biology11111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Mutations in NRAS constitutively activate cell proliferation signaling in malignant neoplasms, such as leukemia and melanoma, and the clarification of comprehensive downstream genes of NRAS might lead to the control of cell-proliferative signals of NRAS-driven cancers. We previously established that NRAS expression and proliferative activity can be controlled with doxycycline and named as THP-1 B11. Using a CRISPR activation library on THP-1 B11 cells with the NRAS-off state, survival clones were harvested, and 21 candidate genes were identified. By inducting each candidate guide RNA with the CRISPR activation system, DOHH, HIST1H2AC, KRT32, and TAF6 showed higher cell-proliferative activity. The expression of DOHH, HIST1H2AC, and TAF6 was definitely upregulated with NRAS expression. Furthermore, MEK inhibitors resulted in the decreased expression of DOHH, HIST1H2AC, and TAF6 proteins in parental THP-1 cells. The knockdown of DOHH, HIST1H2AC, and TAF6 was found to reduce proliferation in THP-1 cells, indicating that they are involved in the downstream proliferation of NRAS. These molecules are expected to be new therapeutic targets for NRAS-mutant leukemia cells.
Collapse
Affiliation(s)
- Akiya Tatsumi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Chiba 286-8686, Japan
| | - Haruka Hirakochi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satomi Inoue
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yosuke Tanaka
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hidehiro Furuno
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Towako Taguchi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Zohar Sachs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
3
|
Cheng X, Murthy SRK, Zhuang T, Ly L, Jones O, Basadonna G, Keidar M, Kanaan Y, Canady J. Canady Helios Cold Plasma Induces Breast Cancer Cell Death by Oxidation of Histone mRNA. Int J Mol Sci 2021; 22:ijms22179578. [PMID: 34502492 PMCID: PMC8430908 DOI: 10.3390/ijms22179578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Its molecular receptor marker status and mutational subtypes complicate clinical therapies. Cold atmospheric plasma is a promising adjuvant therapy to selectively combat many cancers, including breast cancer, but not normal tissue; however, the underlying mechanisms remain unexplored. Here, four breast cancer cell lines with different marker status were treated with Canady Helios Cold Plasma™ (CHCP) at various dosages and their differential progress of apoptosis was monitored. Inhibition of cell proliferation, induction of apoptosis, and disruption of the cell cycle were observed. At least 16 histone mRNA types were oxidized and degraded immediately after CHCP treatment by 8-oxoguanine (8-oxoG) modification. The expression of DNA damage response genes was up-regulated 12 h post-treatment, indicating that 8-oxoG modification and degradation of histone mRNA during the early S phase of the cell cycle, rather than DNA damage, is the primary cause of cancer cell death induced by CHCP. Our report demonstrates for the first time that CHCP effectively induces cell death in breast cancer regardless of subtyping, through histone mRNA oxidation and degradation during the early S phase of the cell cycle.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Saravana R. K. Murthy
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Taisen Zhuang
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Lawan Ly
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Olivia Jones
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Giacomo Basadonna
- School of Medicine, University of Massachusetts, Worcester, MA 01605, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA;
| | - Yasmine Kanaan
- Microbiology Department, Howard University, Washington, DC 20060, USA;
- Howard University Cancer Center, Howard University, Washington, DC 20060, USA
| | - Jerome Canady
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA;
- Department of Surgery, Holy Cross Hospital, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +1-(301)-270-0147
| |
Collapse
|
4
|
Espiritu D, Gribkova AK, Gupta S, Shaytan AK, Panchenko AR. Molecular Mechanisms of Oncogenesis through the Lens of Nucleosomes and Histones. J Phys Chem B 2021; 125:3963-3976. [PMID: 33769808 DOI: 10.1021/acs.jpcb.1c00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the cellular level, cancer is the disease of both the genome and the epigenome, and the interplay between genetic mutations and epigenetic states may occur at the level of elementary chromatin units, the nucleosomes. They are formed by a segment of DNA wrapped around an octamer of histone proteins. In this review, we survey various mechanisms of cancer etiology and progression mediated by histones and nucleosomes. In particular, we discuss the effects of mutations in histones, changes in their expression and slicing on epigenetic dysregulation and carcinogenesis. The links between cancer phenotypes and differential expression of histone variants and isoforms are summarized. Finally, we discourse the geometric and steric effects of DNA compaction in nucleosomes on DNA mutation rate, interactions with transcription factors, including pioneer transcription factors, and prospects of cancer cells' genome and epigenome editing.
Collapse
Affiliation(s)
- Daniel Espiritu
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Anna K Gribkova
- Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia.,Sirius University of Science and Technology, 1 Olympic Avenue, Sochi, 354340, Russia
| | - Shubhangi Gupta
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alexey K Shaytan
- Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia.,Sirius University of Science and Technology, 1 Olympic Avenue, Sochi, 354340, Russia.,Bioinformatics Lab, Faculty of Computer Science, HSE University, 11 Pokrovsky Boulevard, Moscow, 109028, Russia
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Bhattacharya S, Reddy D, Jani V, Gadewal N, Shah S, Reddy R, Bose K, Sonavane U, Joshi R, Smoot D, Ashktorab H, Gupta S. Histone isoform H2A1H promotes attainment of distinct physiological states by altering chromatin dynamics. Epigenetics Chromatin 2017; 10:48. [PMID: 29047414 PMCID: PMC5648446 DOI: 10.1186/s13072-017-0155-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background The distinct functional effects of the replication-dependent histone H2A isoforms have been demonstrated; however, the mechanistic basis of the non-redundancy remains unclear. Here, we have investigated the specific functional contribution of the histone H2A isoform H2A1H, which differs from another isoform H2A2A3 in the identity of only three amino acids. Results H2A1H exhibits varied expression levels in different normal tissues and human cancer cell lines (H2A1C in humans). It also promotes cell proliferation in a context-dependent manner when exogenously overexpressed. To uncover the molecular basis of the non-redundancy, equilibrium unfolding of recombinant H2A1H-H2B dimer was performed. We found that the M51L alteration at the H2A–H2B dimer interface decreases the temperature of melting of H2A1H-H2B by ~ 3 °C as compared to the H2A2A3-H2B dimer. This difference in the dimer stability is also reflected in the chromatin dynamics as H2A1H-containing nucleosomes are more stable owing to M51L and K99R substitutions. Molecular dynamic simulations suggest that these substitutions increase the number of hydrogen bonds and hydrophobic interactions of H2A1H, enabling it to form more stable nucleosomes. Conclusion We show that the M51L and K99R substitutions, besides altering the stability of histone–histone and histone–DNA complexes, have the most prominent effect on cell proliferation, suggesting that the nucleosome stability is intimately linked with the physiological effects observed. Our work provides insights into the molecular basis of the non-redundancy of the histone H2A isoforms that are being increasingly reported to be functionally important in varied physiological contexts. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0155-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saikat Bhattacharya
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400085, India.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Divya Reddy
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400085, India
| | - Vinod Jani
- Bioinformatics Group, Centre for Development of Advanced Computing (C-DAC), University of Pune Campus, Pune, MH, 411007, India
| | - Nikhil Gadewal
- BTIS, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
| | - Sanket Shah
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400085, India
| | - Raja Reddy
- Integrated Biophysics and Structural Biology Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400085, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400085, India
| | - Uddhavesh Sonavane
- Bioinformatics Group, Centre for Development of Advanced Computing (C-DAC), University of Pune Campus, Pune, MH, 411007, India
| | - Rajendra Joshi
- Bioinformatics Group, Centre for Development of Advanced Computing (C-DAC), University of Pune Campus, Pune, MH, 411007, India
| | | | | | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400085, India.
| |
Collapse
|
6
|
Su CH, Lin IH, Tzeng TY, Hsieh WT, Hsu MT. Regulation of IL-20 Expression by Estradiol through KMT2B-Mediated Epigenetic Modification. PLoS One 2016; 11:e0166090. [PMID: 27806114 PMCID: PMC5091760 DOI: 10.1371/journal.pone.0166090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
Cytokines are low molecular weight regulatory proteins, or glycoproteins, with both tumor-promoting and inhibitory effects on breast cancer growth. Different cytokines play important roles in breast cancer initiation and progression. Here, we show that of the 39 interleukin (IL) genes, IL-20 is the only gene over-expressed in MCF-7 cells treated with estradiol (E2) and that induction of IL-20 expression by estrogen was epigenetically regulated. Methylation of histone H3K4 in the IL-20 promoter was shown to occur via the specific recruitment of KMT2B by estrogen receptor alpha (ERα), but not by other members of the mixed-lineage leukemia (MLL) family of histone methyltransferases. Depletion of KMT2B, or IL-20, disrupts estrogen signaling, attenuates cell proliferation, reduces colony formation, and results in cell cycle arrest. Furthermore, we demonstrated that KMT2B-mediated epigenetic modification also affected the expression of several ERα target genes. IL-20 and KMT2B expression were also associated with ERα-positive breast cancer tissues. We have revealed an important role for KMT2B in the epigenetic transcriptional regulation of cytokine IL-20, and other ERα-responsive genes, in breast cancer cells. Inhibition of IL-20 and KMT2B may have therapeutic benefits in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Chia-Hsin Su
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | - I-Hsuan Lin
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Tzeng
- VYM Genome Research Center, National Yang-Ming University, University System of Taiwan, Taipei 11221, Taiwan, Republic of China
| | - Wen-Ting Hsieh
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | - Ming-Ta Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
- Chien-Tien Hsu Cancer Research Foundation, Taipei 11221, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
7
|
Su CH, Cheng C, Tzeng TY, Lin IH, Hsu MT. An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity. PLoS One 2016; 11:e0156378. [PMID: 27228173 PMCID: PMC4882029 DOI: 10.1371/journal.pone.0156378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/13/2016] [Indexed: 11/19/2022] Open
Abstract
Telomeres are capped at the ends of eukaryotic chromosomes and are composed of TTAGGG repeats bound to the shelterin complex. Here we report that a replication-dependent histone H2A isotype, H2ac, was associated with telomeres in human cells and co-immunoprecipitates with telomere repeat factor 2 (TRF2) and protection of telomeres protein 1 (POT1), whereas other histone H2A isotypes and mutations of H2ac did not bind to telomeres or these two proteins. The amino terminal basic domain of TRF2 was necessary for the association with H2ac and for the recruitment of H2ac to telomeres. Depletion of H2ac led to loss of telomeric repeat sequences, the appearance of dysfunctional telomeres, and chromosomal instability, including chromosomal breaks and anaphase bridges, as well as accumulation of telomere-associated DNA damage factors in H2ac depleted cells. Additionally, knockdown of H2ac elicits an ATM-dependent DNA damage response at telomeres and depletion of XPF protects telomeres against H2ac-deficiency-induced G-strand overhangs loss and DNA damage response, and prevents chromosomal instability. These findings suggest that the H2A isotype, H2ac, plays an essential role in maintaining telomere functional integrity.
Collapse
Affiliation(s)
- Chia-Hsin Su
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
| | - Ching Cheng
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
| | - Tsai-Yu Tzeng
- VYM Genome Research Center, National Yang-Ming University, University System of Taiwan, Taipei, 11221, Taiwan, Republic of China
| | - I-Hsuan Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
| | - Ming-Ta Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
- VYM Genome Research Center, National Yang-Ming University, University System of Taiwan, Taipei, 11221, Taiwan, Republic of China
- Chien-Tien Hsu Cancer Research Foundation, Taipei, 11221, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
8
|
Singh R, Harshman SW, Ruppert AS, Mortazavi A, Lucas DM, Thomas-Ahner JM, Clinton SK, Byrd JC, Freitas MA, Parthun MR. Proteomic profiling identifies specific histone species associated with leukemic and cancer cells. Clin Proteomics 2015; 12:22. [PMID: 26321891 PMCID: PMC4551702 DOI: 10.1186/s12014-015-9095-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin is an extraordinarily complex structure. Much of this complexity results from the presence of numerous histone post-translational modifications and histone variants. Alterations in the patterns of histone post-translational modifications are emerging as a feature of many types of cancer and have been shown to have prognostic value. RESULTS We have applied a liquid chromatography/mass spectrometry-based approach to comprehensively characterize the histone proteome in primary samples from chronic lymphocytic leukemia (CLL) patients, as well as bladder and breast cancer cell culture models. When compared to non-malignant CD19+ B cells from healthy donors, the CLL histone proteome showed a distinct signature of differentially expressed species, spanning all the histones studied and including both post-translationally modified species and unmodified, non-allelic replication-dependent histone isoforms. However, the large changes in histone H3 and H4 that are characteristic of many cancer types were not observed. One of species of H2A (mass = 14,063 Da) was the most strongly associated with time to treatment in CLL patients. CLL patient samples also demonstrated histone profiles that were distinct from those of the bladder and breast cancer cells. CONCLUSIONS Signatures of histone profiles are complex and can distinguish between healthy individuals and CLL patients and may provide prognostic markers. In addition, histone profiles may define tissue specific malignancies.
Collapse
Affiliation(s)
- Rajbir Singh
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210 USA
| | - Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210 USA
| | - Amy S Ruppert
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Amir Mortazavi
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - David M Lucas
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210 USA ; Division of Medicinal Chemistry in the College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | | | - Steven K Clinton
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - John C Byrd
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Michael A Freitas
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210 USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
9
|
Molden RC, Bhanu NV, LeRoy G, Arnaudo AM, Garcia BA. Multi-faceted quantitative proteomics analysis of histone H2B isoforms and their modifications. Epigenetics Chromatin 2015; 8:15. [PMID: 25922622 PMCID: PMC4411797 DOI: 10.1186/s13072-015-0006-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/25/2015] [Indexed: 01/01/2023] Open
Abstract
Background Histone isoforms and their post-translational modifications (PTMs) play an important role in the control of many chromatin-related processes including transcription and DNA damage. Variants of histones H2A and H3 have been studied in depth and have been found to have distinct functions. Although 13 somatic histone H2B isoforms have been identified by various biochemical and mass spectrometric (MS) approaches, the distinct roles of these isoforms within human cells are as yet unknown. Here, we have developed quantitative MS techniques to characterize isoform-specific H2B expression across the cell cycle, in differentiated myogenic cells, and in different cancer cell lines to illuminate potential functional roles. Results Using the MS strategies that we developed, we identified differences in H2B isoform levels between different cancer cell types, suggesting cancer or tissue-specific H2B isoform regulation. In particular, we found large variations in the levels of isoforms H2B1B and H2B1M across the panel of cell lines. We also found that, while individual H2B isoforms do not differ in their acetylation levels, trends in the acetylation on all H2B isoforms correlated with acetylation on other histone family members in the cancer cell line panel. We also used the MS strategies to study H2B protein expression across the cell cycle and determined that H2B isoforms that are alternatively spliced to carry a polyadenylation signal rather than the standard histone downstream element are expressed independently of the cell cycle. However, the level of protein produced from the polyadenylated transcripts does not contribute significantly to the total pool of H2B isoforms translated across the cell cycle or in non-cycling myogenic cells. Conclusions Our results show that H2B isoforms are expressed at varying levels in different cells, suggesting isoform-specific, and possibly cell-type-specific, H2B gene regulation. The bottom-up mass spectrometry technique we developed for H2B quantification is compatible with the current standard histone H3 and H4 bottom-up ‘one-pot’ analysis platform so that H2B isoforms and their modifications can be studied in future experiments at the same time as histone H3 and H4 modifications. Therefore, we have expanded the histone landscape that can be interrogated in future experiments. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0006-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rosalynn C Molden
- Department of Chemistry, Princeton University, Princeton, NJ 08544 USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, PA 19104 USA
| | - Gary LeRoy
- Department of Chemistry, Princeton University, Princeton, NJ 08544 USA
| | - Anna M Arnaudo
- Department of Chemistry, Princeton University, Princeton, NJ 08544 USA ; Department of Biochemistry and Biophysics, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, PA 19104 USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, PA 19104 USA
| |
Collapse
|
10
|
Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, Vom Saal FS, Rosenfeld CS. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 2015; 214:195-219. [PMID: 25277515 DOI: 10.1016/j.ygcen.2014.09.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/08/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
Endocrine disrupting chemicals (EDCs), including the mass-produced component of plastics, bisphenol A (BPA) are widely prevalent in aquatic and terrestrial habitats. Many aquatic species, such as fish, amphibians, aquatic reptiles and mammals, are exposed daily to high concentrations of BPA and ethinyl estradiol (EE2), estrogen in birth control pills. In this review, we will predominantly focus on BPA and EE2, well-described estrogenic EDCs. First, the evidence that BPA and EE2 are detectable in almost all bodies of water will be discussed. We will consider how BPA affects sexual and neural development in these species, as these effects have been the best characterized across taxa. For instance, such chemicals have been in many cases reported to cause sex-reversal of males to females. Even if these chemicals do not overtly alter the gonadal sex, there are indications that several EDCs might demasculinize male-specific behaviors that are essential for attracting a mate. In so doing, these chemicals may reduce the likelihood that these males reproduce. If exposed males do reproduce, the concern is that they will then be passing on compromised genetic fitness to their offspring and transmitting potential transgenerational effects through their sperm epigenome. We will thus consider how diverse epigenetic changes might be a unifying mechanism of how BPA and EE2 disrupt several processes across species. Such changes might also serve as universal species diagnostic biomarkers of BPA and other EDCs exposure. Lastly, the evidence that estrogenic EDCs-induced effects in aquatic species might translate to humans will be considered.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Veterinary Clinical Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dawn K Holliday
- Department of Biology and Environmental Science, Westminster College, Fulton, MO 65251, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caitlin M Jandegian
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA; Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Masters in Public Health Program, University of Missouri, Columbia, MO 65211, USA
| | | | - Susan C Nagel
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Obstetrics, Gynecology, & Women's Health, University of Missouri, Columbia, MO 65211, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | | | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program Faculty Member, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Cava C, Bertoli G, Ripamonti M, Mauri G, Zoppis I, Rosa PAD, Gilardi MC, Castiglioni I. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS One 2014; 9:e97681. [PMID: 24866763 PMCID: PMC4035288 DOI: 10.1371/journal.pone.0097681] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/23/2014] [Indexed: 12/20/2022] Open
Abstract
Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Marilena Ripamonti
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communications, University of Milan–Bicocca, Milan, Italy
| | - Italo Zoppis
- Department of Informatics, Systems and Communications, University of Milan–Bicocca, Milan, Italy
| | | | - Maria Carla Gilardi
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|