1
|
Wang JY, Xie ZX, Cui YZ, Li BZ, Yuan YJ. Artificial design of the genome: from sequences to the 3D structure of chromosomes. Trends Biotechnol 2025; 43:304-317. [PMID: 39299833 DOI: 10.1016/j.tibtech.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Genome design is the foundation of genome synthesis, which provides a new platform for deepening our understanding of biological systems by exploring the fundamental components and structure of the genome. Artificial genome designs can endow unnatural genomes with desired functions. We provide a comprehensive overview of genome design principles ranging from DNA sequences to the 3D structure of chromosomes. Furthermore, we highlight applications of genome design in gene expression, genome structure, genome function, and biocontainment, and discuss the potential of artificial intelligence (AI) in genome design.
Collapse
Affiliation(s)
- Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ze-Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Ravagnan G, Schmid J. Promising non-model microbial cell factories obtained by genome reduction. Front Bioeng Biotechnol 2024; 12:1427248. [PMID: 39161352 PMCID: PMC11330790 DOI: 10.3389/fbioe.2024.1427248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/21/2024] Open
Abstract
The development of sustainable processes is the most important basis to realize the shift from the fossil-fuel based industry to bio-based production. Non-model microbes represent a great resource due to their advantageous traits and unique repertoire of bioproducts. However, most of these microbes require modifications to improve their growth and production capacities as well as robustness in terms of genetic stability. For this, genome reduction is a valuable and powerful approach to meet industry requirements and to design highly efficient production strains. Here, we provide an overview of various genome reduction approaches in prokaryotic microorganisms, with a focus on non-model organisms, and highlight the example of a successful genome-reduced model organism chassis. Furthermore, we discuss the advances and challenges of promising non-model microbial chassis.
Collapse
Affiliation(s)
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Rahiminejad S, De Sanctis B, Pevzner P, Mushegian A. Synthetic lethality and the minimal genome size problem. mSphere 2024; 9:e0013924. [PMID: 38904396 PMCID: PMC11288024 DOI: 10.1128/msphere.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Gene knockout studies suggest that ~300 genes in a bacterial genome and ~1,100 genes in a yeast genome cannot be deleted without loss of viability. These single-gene knockout experiments do not account for negative genetic interactions, when two or more genes can each be deleted without effect, but their joint deletion is lethal. Thus, large-scale single-gene deletion studies underestimate the size of a minimal gene set compatible with cell survival. In yeast Saccharomyces cerevisiae, the viability of all possible deletions of gene pairs (2-tuples), and of some deletions of gene triplets (3-tuples), has been experimentally tested. To estimate the size of a yeast minimal genome from that data, we first established that finding the size of a minimal gene set is equivalent to finding the minimum vertex cover in the lethality (hyper)graph, where the vertices are genes and (hyper)edges connect k-tuples of genes whose joint deletion is lethal. Using the Lovász-Johnson-Chvatal greedy approximation algorithm, we computed the minimum vertex cover of the synthetic-lethal 2-tuples graph to be 1,723 genes. We next simulated the genetic interactions in 3-tuples, extrapolating from the existing triplet sample, and again estimated minimum vertex covers. The size of a minimal gene set in yeast rapidly approaches the size of the entire genome even when considering only synthetic lethalities in k-tuples with small k. In contrast, several studies reported successful experimental reductions of yeast and bacterial genomes by simultaneous deletions of hundreds of genes, without eliciting synthetic lethality. We discuss possible reasons for this apparent contradiction.IMPORTANCEHow can we estimate the smallest number of genes sufficient for a unicellular organism to survive on a rich medium? One approach is to remove genes one at a time and count how many of such deletion strains are unable to grow. However, the single-gene knockout data are insufficient, because joint gene deletions may result in negative genetic interactions, also known as synthetic lethality. We used a technique from graph theory to estimate the size of minimal yeast genome from partial data on synthetic lethality. The number of potential synthetic lethal interactions grows very fast when multiple genes are deleted, revealing a paradoxical contrast with the experimental reductions of yeast genome by ~100 genes, and of bacterial genomes by several hundreds of genes.
Collapse
Affiliation(s)
- Sara Rahiminejad
- Department of Bioengineering, University of California—San Diego, La Jolla, California, USA
| | - Bianca De Sanctis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Ecology and Evolutionary Biology, University of California—Santa Cruz, Santa Cruz, California, USA
| | - Pavel Pevzner
- Department of Computer Science and Engineering, University of California—San Diego, La Jolla, California, USA
| | - Arcady Mushegian
- Molecular and Cellular Biosciences Division, National Science Foundation, Alexandria, Virginia, USA
- Clare Hall College, Cambridge, United Kingdom
| |
Collapse
|
4
|
Lyu XH, Suo F, Li W, Jia GS, Yang YS, Du LL. Diverse modes of chromosome terminal deletion in spontaneous canavanine-resistant Schizosaccharomyces pombe mutants. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001132. [PMID: 38404922 PMCID: PMC10884838 DOI: 10.17912/micropub.biology.001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/03/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Canavanine resistance has been used to analyze mutation rates in the fission yeast Schizosaccharomyces pombe . However, the genetic basis of canavanine resistance in this organism remains incompletely understood. Here, we performed whole genome sequencing on five spontaneously arising canavanine-resistant S. pombe mutants, including the can2-1 mutant isolated in the 1970s. This analysis revealed that three mutants, including can2-1 , experienced terminal deletions of the left arm of chromosome II, leading to the loss of multiple amino acid transporter genes. Interestingly, these three mutants underwent chromosome terminal deletion through distinct mechanisms, including homology-driven translocation, homology-independent chromosome fusion, and de novo telomere addition. Our findings shed new light on the genetic basis of canavanine resistance and mechanisms underlying chromosome terminal deletions in fission yeast.
Collapse
Affiliation(s)
- Xiao-Hui Lyu
- National Institute of Biological Sciences, Beijing, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing, China
| | - Wen Li
- National Institute of Biological Sciences, Beijing, China
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing, China
| | - Yu-Sheng Yang
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Xu X, Meier F, Blount BA, Pretorius IS, Ellis T, Paulsen IT, Williams TC. Trimming the genomic fat: minimising and re-functionalising genomes using synthetic biology. Nat Commun 2023; 14:1984. [PMID: 37031253 PMCID: PMC10082837 DOI: 10.1038/s41467-023-37748-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Naturally evolved organisms typically have large genomes that enable their survival and growth under various conditions. However, the complexity of genomes often precludes our complete understanding of them, and limits the success of biotechnological designs. In contrast, minimal genomes have reduced complexity and therefore improved engineerability, increased biosynthetic capacity through the removal of unnecessary genetic elements, and less recalcitrance to complete characterisation. Here, we review the past and current genome minimisation and re-functionalisation efforts, with an emphasis on the latest advances facilitated by synthetic genomics, and provide a critical appraisal of their potential for industrial applications.
Collapse
Affiliation(s)
- Xin Xu
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Felix Meier
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Benjamin A Blount
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Wellcome Trust Sanger Institute, Cambridgeshire, CB10 1SA, UK
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thomas C Williams
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
6
|
Abstract
Saccharomyces cerevisiae, whose evolutionary past includes a whole-genome duplication event, is characterized by a mosaic genome configuration with substantial apparent genetic redundancy. This apparent redundancy raises questions about the evolutionary driving force for genomic fixation of “minor” paralogs and complicates modular and combinatorial metabolic engineering strategies. While isoenzymes might be important in specific environments, they could be dispensable in controlled laboratory or industrial contexts. The present study explores the extent to which the genetic complexity of the central carbon metabolism (CCM) in S. cerevisiae, here defined as the combination of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and a limited number of related pathways and reactions, can be reduced by elimination of (iso)enzymes without major negative impacts on strain physiology. Cas9-mediated, groupwise deletion of 35 of the 111 genes yielded a “minimal CCM” strain which, despite the elimination of 32% of CCM-related proteins, showed only a minimal change in phenotype on glucose-containing synthetic medium in controlled bioreactor cultures relative to a congenic reference strain. Analysis under a wide range of other growth and stress conditions revealed remarkably few phenotypic changes from the reduction of genetic complexity. Still, a well-documented context-dependent role of GPD1 in osmotolerance was confirmed. The minimal CCM strain provides a model system for further research into genetic redundancy of yeast genes and a platform for strategies aimed at large-scale, combinatorial remodeling of yeast CCM.
Collapse
|
7
|
Rang J, Li Y, Cao L, Shuai L, Liu Y, He H, Wan Q, Luo Y, Yu Z, Zhang Y, Sun Y, Ding X, Hu S, Xie Q, Xia L. Deletion of a hybrid NRPS-T1PKS biosynthetic gene cluster via Latour gene knockout system in Saccharopolyspora pogona and its effect on butenyl-spinosyn biosynthesis and growth development. Microb Biotechnol 2021; 14:2369-2384. [PMID: 33128503 PMCID: PMC8601190 DOI: 10.1111/1751-7915.13694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
Butenyl-spinosyn, a promising biopesticide produced by Saccharopolyspora pogona, exhibits stronger insecticidal activity and a broader pesticidal spectrum. However, its titre in the wild-type S. pogona strain is too low to meet the industrial production requirements. Deletion of non-target natural product biosynthetic gene clusters resident in the genome of S. pogona could reduce the consumption of synthetic precursors, thereby promoting the biosynthesis of butenyl-spinosyn. However, it has always been a challenge for scientists to genetically engineer S. pogona. In this study, the Latour gene knockout system (linear DNA fragment recombineering system) was established in S. pogona. Using the Latour system, a hybrid NRPS-T1PKS cluster (˜20 kb) which was responsible for phthoxazolin biosynthesis was efficiently deleted in S. pogona. The resultant mutant S. pogona-Δura4-Δc14 exhibited an extended logarithmic phase, increased biomass and a lower glucose consumption rate. Importantly, the production of butenyl-spinosyn in S. pogona-Δura4-Δc14 was increased by 4.72-fold compared with that in the wild-type strain. qRT-PCR analysis revealed that phthoxazolin biosynthetic gene cluster deletion could promote the expression of the butenyl-spinosyn biosynthetic gene cluster. Furthermore, a TetR family transcriptional regulatory gene that could regulate the butenyl-spinosyn biosynthesis has been identified from the phthoxazolin biosynthetic gene cluster. Because dozens of natural product biosynthetic gene clusters exist in the genome of S. pogona, the strategy reported here will be used to further promote the production of butenyl-spinosyn by deleting other secondary metabolite synthetic gene clusters.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of ResourcesCollege of Chemistry and Chemical EngineeringHunan Normal UniversityChangsha410081China
| | - Yunlong Li
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Qianqian Wan
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Yuewen Luo
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Youming Zhang
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of ResourcesCollege of Chemistry and Chemical EngineeringHunan Normal UniversityChangsha410081China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| |
Collapse
|
8
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Rang J, Zhu Z, Li Y, Cao L, He H, Tang J, Hu J, Chen J, Hu S, Huang W, Yu Z, Ding X, Sun Y, Xie Q, Xia L. Identification of a TetR family regulator and a polyketide synthase gene cluster involved in growth development and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. Appl Microbiol Biotechnol 2021; 105:1519-1533. [PMID: 33484320 DOI: 10.1007/s00253-021-11105-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and broad pesticidal spectrum. However, its synthetic level was low in the wild-type strain. At present, important functional genes involved in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently editing its genome to improve the butenyl-spinosyn yield. To accelerate the genetic modification of S. pogona, we conducted comparative proteomics analysis to screen differentially expressed proteins related to butenyl-spinosyn biosynthesis. A TetR family regulatory protein was selected from the 289 differentially expressed proteins, and its encoding gene (SP_1288) was successfully deleted by CRISPR/Cas9 system. We further deleted a 32-kb polyketide synthase gene cluster (cluster 28) to reduce the competition for precursors. Phenotypic analysis revealed that the deletion of the SP_1288 and cluster 28 resulted in a 3.10-fold increase and a 35.4% decrease in the butenyl-spinosyn levels compared with the wild-type strain, respectively. The deletion of cluster 28 affected the cell growth, glucose consumption, mycelium morphology, and sporulation by controlling the expression of ptsH, ptsI, amfC, and other genes related to sporulation, whereas SP_1288 did not. These findings confirmed not only that the CRISPR/Cas9 system can be applied to the S. pogona genome editing but also that SP_1288 and cluster 28 are closely related to the butenyl-spinosyn biosynthesis and growth development of S. pogona. The strategy reported here will be useful to reveal the regulatory mechanism of butenyl-spinosyn and improve antibiotic production in other actinomycetes. KEY POINTS: • SP_1288 deletion can significantly promote the butenyl-spinosyn biosynthesis. • Cluster 28 deletion showed pleiotropic effects on S. pogona. • SP_1288 and cluster 28 were deleted by CRISPR/Cas9 system in S. pogona.
Collapse
Affiliation(s)
- Jie Rang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Zirong Zhu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunlong Li
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Haocheng He
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianli Tang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jinjuan Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianming Chen
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weitao Huang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ziquan Yu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xuezhi Ding
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunjun Sun
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
10
|
Luo Z, Yu K, Xie S, Monti M, Schindler D, Fang Y, Zhao S, Liang Z, Jiang S, Luan M, Xiao C, Cai Y, Dai J. Compacting a synthetic yeast chromosome arm. Genome Biol 2021; 22:5. [PMID: 33397424 PMCID: PMC7780613 DOI: 10.1186/s13059-020-02232-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Redundancy is a common feature of genomes, presumably to ensure robust growth under different and changing conditions. Genome compaction, removing sequences nonessential for given conditions, provides a novel way to understand the core principles of life. The synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) system is a unique feature implanted in the synthetic yeast genome (Sc2.0), which is proposed as an effective tool for genome minimization. As the Sc2.0 project is nearing its completion, we have begun to explore the application of the SCRaMbLE system in genome compaction. RESULTS We develop a method termed SCRaMbLE-based genome compaction (SGC) and demonstrate that a synthetic chromosome arm (synXIIL) can be efficiently reduced. The pre-introduced episomal essential gene array significantly enhances the compacting ability of SGC, not only by enabling the deletion of nonessential genes located in essential gene containing loxPsym units but also by allowing more chromosomal sequences to be removed in a single SGC process. Further compaction is achieved through iterative SGC, revealing that at least 39 out of 65 nonessential genes in synXIIL can be removed collectively without affecting cell viability at 30 °C in rich medium. Approximately 40% of the synthetic sequence, encoding 28 genes, is found to be dispensable for cell growth at 30 °C in rich medium and several genes whose functions are needed under specified conditions are identified. CONCLUSIONS We develop iterative SGC with the aid of eArray as a generic yet effective tool to compact the synthetic yeast genome.
Collapse
Affiliation(s)
- Zhouqing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Kang Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shangqian Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University, Haikou, 570228, China
| | - Marco Monti
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Present Address: Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Yuan Fang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shijun Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenzhen Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Meiwei Luan
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University, Haikou, 570228, China
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yizhi Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Systematic analysis reveals the prevalence and principles of bypassable gene essentiality. Nat Commun 2019; 10:1002. [PMID: 30824696 PMCID: PMC6397241 DOI: 10.1038/s41467-019-08928-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Gene essentiality is a variable phenotypic trait, but to what extent and how essential genes can become dispensable for viability remain unclear. Here, we investigate 'bypass of essentiality (BOE)' - an underexplored type of digenic genetic interaction that renders essential genes dispensable. Through analyzing essential genes on one of the six chromosome arms of the fission yeast Schizosaccharomyces pombe, we find that, remarkably, as many as 27% of them can be converted to non-essential genes by BOE interactions. Using this dataset we identify three principles of essentiality bypass: bypassable essential genes tend to have lower importance, tend to exhibit differential essentiality between species, and tend to act with other bypassable genes. In addition, we delineate mechanisms underlying bypassable essentiality, including the previously unappreciated mechanism of dormant redundancy between paralogs. The new insights gained on bypassable essentiality deepen our understanding of genotype-phenotype relationships and will facilitate drug development related to essential genes.
Collapse
|
12
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
13
|
Tashiro S, Nishihara Y, Kugou K, Ohta K, Kanoh J. Subtelomeres constitute a safeguard for gene expression and chromosome homeostasis. Nucleic Acids Res 2017; 45:10333-10349. [PMID: 28981863 PMCID: PMC5737222 DOI: 10.1093/nar/gkx780] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
The subtelomere, a telomere-adjacent chromosomal domain, contains species-specific homologous DNA sequences, in addition to various genes. However, the functions of subtelomeres, particularly subtelomeric homologous (SH) sequences, remain elusive. Here, we report the first comprehensive analyses of the cellular functions of SH sequences in the fission yeast, Schizosaccharomyces pombe. Complete removal of SH sequences from the genome revealed that they are dispensable for mitosis, meiosis and telomere length control. However, when telomeres are lost, SH sequences prevent deleterious inter-chromosomal end fusion by facilitating intra-chromosomal circularization. Surprisingly, SH-deleted cells sometimes survive telomere loss through inter-chromosomal end fusions via homologous loci such as LTRs, accompanied by centromere inactivation of either chromosome. Moreover, SH sequences function as a buffer region against the spreading of subtelomeric heterochromatin into the neighboring gene-rich regions. Furthermore, we found a nucleosome-free region at the subtelomeric border, which may be a second barrier that blocks heterochromatin spreading into the subtelomere-adjacent euchromatin. Thus, our results demonstrate multiple defense functions of subtelomeres in chromosome homeostasis and gene expression.
Collapse
Affiliation(s)
- Sanki Tashiro
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Nishihara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuto Kugou
- Department of Life Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Junko Kanoh
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Abstract
Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome.
Collapse
|
15
|
Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality. Mol Cell Biol 2016; 36:1412-24. [PMID: 26951197 DOI: 10.1128/mcb.01064-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/26/2016] [Indexed: 12/15/2022] Open
Abstract
Hsp90 is a molecular chaperone that aids in the folding of its metastable client proteins. Past studies have shown that it can exert a strong impact on some cellular pathways by controlling key regulators. However, it is unknown whether several components of a single pathway are collectively regulated by Hsp90. Here, we observe that Hsp90 influences the protein abundance of multiple Gal proteins and the efficiency of galactose utilization even after the galactose utilization pathway (GAL pathway) is fully induced. The effect of Hsp90 on Gal proteins is not at the transcriptional level. Moreover, Gal1 is found to physically interact with Hsp90, and its stability is reduced in low-Hsp90 cells. When Hsp90 is compromised, several Gal proteins form protein aggregates that colocalize with the disaggregase Hsp104. These results suggest that Gal1 and other Gal proteins are probably the clients of Hsp90. An unbalanced GAL pathway has been known to cause fatal growth arrest due to accumulation of toxic galactose metabolic intermediates. It is likely that Hsp90 chaperones multiple Gal proteins to maintain proteostasis and prevent cell lethality especially in a fluctuating environment.
Collapse
|
16
|
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 2015; 15:1-16. [PMID: 25130199 DOI: 10.1111/1567-1364.12195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022] Open
Abstract
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
17
|
Does a shift to limited glucose activate checkpoint control in fission yeast? FEBS Lett 2014; 588:2373-8. [PMID: 24815688 DOI: 10.1016/j.febslet.2014.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 11/20/2022]
Abstract
Here we review cell cycle control in the fission yeast, Schizosaccharomyces pombe, in response to an abrupt reduction of glucose concentration in culture media. S. pombe arrests cell cycle progression when transferred from media containing 2.0% glucose to media containing 0.1%. After a delay, S. pombe resumes cell division at a surprisingly fast rate, comparable to that observed in 2% glucose. We found that a number of genes, including zinc-finger transcription factor Scr1, CaMKK-like protein kinase Ssp1, and glucose transporter Ght5, enable rapid cell division in low glucose. In this article, we examine whether cell cycle checkpoint-like control operates during the delay and after resumption of cell division in limited-glucose. Using microarray analysis and genetic screening, we identified several candidate genes that may be involved in controlling this low-glucose adaptation.
Collapse
|
18
|
Tsoy O, Yurieva M, Kucharavy A, O'Reilly M, Mushegian A. Minimal genome encoding proteins with constrained amino acid repertoire. Nucleic Acids Res 2013; 41:8444-51. [PMID: 23873957 PMCID: PMC3794579 DOI: 10.1093/nar/gkt610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Minimal bacterial gene set comprises the genetic elements needed for survival of engineered bacterium on a rich medium. This set is estimated to include 300-350 protein-coding genes. One way of simplifying an organism with such a minimal genome even further is to constrain the amino acid content of its proteins. In this study, comparative genomics approaches and the results of gene knockout experiments were used to extrapolate the minimal gene set of mollicutes, and bioinformatics combined with the knowledge-based analysis of the structure-function relationships in these proteins and their orthologs, paralogs and analogs was applied to examine the challenges of completely replacing the rarest residue, cysteine. Among several known functions of cysteine residues, their roles in the active centers of the enzymes responsible for deoxyribonucleoside synthesis and transfer RNA modification appear to be crucial, as no alternative chemistry is known for these reactions. Thus, drastic reduction of the content of the rarest amino acid in a minimal proteome appears to be possible, but its complete elimination is challenging.
Collapse
Affiliation(s)
- Olga Tsoy
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny per. 19, Moscow, 127994, Russia, Faculty of Bioengineering and Bioinformatics, Moscow State University, Vorobievy Gory 1-73, Moscow 119992, Russia, Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA, École Polytechnique, Palaiseau Cedex, 91128, France, O'Reilly Science Art, LLC, P.O. Box 416 Cardiff, CA 92007, USA and Department of Microbiology, Molecular Genetics and Immunology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|