1
|
Engineering Aptazyme Switches for Conditional Gene Expression in Mammalian Cells Utilizing an In Vivo Screening Approach. Methods Mol Biol 2021. [PMID: 34086282 DOI: 10.1007/978-1-0716-1499-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Artificial RNA switches are an emerging class of genetic controllers suitable for synthetic biology applications. Aptazymes are fusions composed of an aptamer domain and a self-cleaving ribozyme. The utilization of aptazymes for conditional gene expression displays several advantages over employing conventional transcription factor-based techniques as aptazymes require minimal genomic space, fulfill their function without the need of protein cofactors and most importantly are reprogrammable with respect to ligand selectivity and the RNA function to be regulated. Technologies that enable the generation of aptazymes to defined input ligands are of interest for the construction of biocomputing devices and biosensing applications. In this chapter we present a method that facilitates the in vivo screening of randomized pools of aptazymes in mammalian cells.
Collapse
|
2
|
Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv 2019; 37:107452. [DOI: 10.1016/j.biotechadv.2019.107452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
|
3
|
Patel S, Panchasara H, Braddick D, Gohil N, Singh V. Synthetic small RNAs: Current status, challenges, and opportunities. J Cell Biochem 2018; 119:9619-9639. [DOI: 10.1002/jcb.27252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Shreya Patel
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Happy Panchasara
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | | | - Nisarg Gohil
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Vijai Singh
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| |
Collapse
|
4
|
McCutcheon SR, Chiu KL, Lewis DD, Tan C. CRISPR-Cas Expands Dynamic Range of Gene Expression From T7RNAP Promoters. Biotechnol J 2017; 13:e1700167. [DOI: 10.1002/biot.201700167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/02/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Sean R. McCutcheon
- Department of Biomedical Engineering; University of California; Davis CA 95616 USA
| | - Kwan Lun Chiu
- Department of Biomedical Engineering; University of California; Davis CA 95616 USA
| | - Daniel D. Lewis
- Department of Biomedical Engineering; University of California; Davis CA 95616 USA
- Integrative Genetics and Genomics; University of California; Davis CA 95616 USA
| | - Cheemeng Tan
- Department of Biomedical Engineering; University of California; Davis CA 95616 USA
| |
Collapse
|
5
|
Rodrigo G, Prakash S, Shen S, Majer E, Daròs JA, Jaramillo A. Model-based design of RNA hybridization networks implemented in living cells. Nucleic Acids Res 2017; 45:9797-9808. [PMID: 28934501 PMCID: PMC5766206 DOI: 10.1093/nar/gkx698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022] Open
Abstract
Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Institute of Systems and Synthetic Biology, Université d'Évry Val d'Essonne-CNRS, F-91000 Évry, France.,Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Satya Prakash
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Shensi Shen
- Institute of Systems and Synthetic Biology, Université d'Évry Val d'Essonne-CNRS, F-91000 Évry, France
| | - Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alfonso Jaramillo
- Institute of Systems and Synthetic Biology, Université d'Évry Val d'Essonne-CNRS, F-91000 Évry, France.,Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.,Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| |
Collapse
|
6
|
Felletti M, Hartig JS. Ligand-dependent ribozymes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27687155 DOI: 10.1002/wrna.1395] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
The discovery of catalytic RNA (ribozymes) more than 30 years ago significantly widened the horizon of RNA-based functions in natural systems. Similarly to the activity of protein enzymes that are often modulated by the presence of an interaction partner, some examples of naturally occurring ribozymes are influenced by ligands that can either act as cofactors or allosteric modulators. Recent discoveries of new and widespread ribozyme motifs in many different genetic contexts point toward the existence of further ligand-dependent RNA catalysts. In addition to the presence of ligand-dependent ribozymes in nature, researchers have engineered ligand dependency into natural and artificial ribozymes. Because RNA functions can often be assembled in a truly modular way, many different systems have been obtained utilizing different ligand-sensing domains and ribozyme activities in diverse applications. We summarize the occurrence of ligand-dependent ribozymes in nature and the many examples realized by researchers that engineered ligand-dependent catalytic RNA motifs. We will also highlight methods for obtaining ligand dependency as well as discuss the many interesting applications of ligand-controlled catalytic RNAs. WIREs RNA 2017, 8:e1395. doi: 10.1002/wrna.1395 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michele Felletti
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
7
|
Felletti M, Stifel J, Wurmthaler LA, Geiger S, Hartig JS. Twister ribozymes as highly versatile expression platforms for artificial riboswitches. Nat Commun 2016; 7:12834. [PMID: 27670347 PMCID: PMC5052635 DOI: 10.1038/ncomms12834] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022] Open
Abstract
The utilization of ribozyme-based synthetic switches in biotechnology has many advantages such as an increased robustness due to incis regulation, small coding space and a high degree of modularity. The report of small endonucleolytic twister ribozymes provides new opportunities for the development of advanced tools for engineering synthetic genetic switches. Here we show that the twister ribozyme is distinguished as an outstandingly flexible expression platform, which in conjugation with three different aptamer domains, enables the construction of many different one- and two-input regulators of gene expression in both bacteria and yeast. Besides important implications in biotechnology and synthetic biology, the observed versatility in artificial genetic control set-ups hints at possible natural roles of this widespread ribozyme class. Twister ribozymes are small endonucleolytic RNA motifs. Here the authors develop twister ribozymes into RNA logic gates and cross-species synthetic genetic regulators.
Collapse
Affiliation(s)
- Michele Felletti
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (Kors-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Julia Stifel
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (Kors-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Lena A Wurmthaler
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (Kors-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Sophie Geiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (Kors-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Abstract
The recent description of a new class of small endonucleolytic ribozymes termed twister opened new avenues into the development of artificial riboswitches, providing new tools for the development of artificial genetic circuits in bacteria. Here we present a method to develop new ligand-dependent riboswitches, employing the newly described catalytic motif as an expression platform in conjugation with naturally occurring or in vitro-selected aptameric domains. The twister motif is an outstandingly flexible tool for the development of highly active ribozyme-based riboswitches able to control gene expression in a ligand-dependent manner in Escherichia coli.
Collapse
|
9
|
Müller S, Appel B, Balke D, Hieronymus R, Nübel C. Thirty-five years of research into ribozymes and nucleic acid catalysis: where do we stand today? F1000Res 2016; 5. [PMID: 27408700 PMCID: PMC4926735 DOI: 10.12688/f1000research.8601.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/28/2022] Open
Abstract
Since the discovery of the first catalytic RNA in 1981, the field of ribozyme research has developed from the discovery of catalytic RNA motifs in nature and the elucidation of their structures and catalytic mechanisms, into a field of engineering and design towards application in diagnostics, molecular biology and medicine. Owing to the development of powerful protocols for selection of nucleic acid catalysts with a desired functionality from random libraries, the spectrum of nucleic acid supported reactions has greatly enlarged, and importantly, ribozymes have been accompanied by DNAzymes. Current areas of research are the engineering of allosteric ribozymes for artificial regulation of gene expression, the design of ribozymes and DNAzymes for medicinal and environmental diagnostics, and the demonstration of RNA world relevant ribozyme activities. In addition, new catalytic motifs or novel genomic locations of known motifs continue to be discovered in all branches of life by the help of high-throughput bioinformatic approaches. Understanding the biological role of the catalytic RNA motifs widely distributed in diverse genetic contexts belongs to the big challenges of future RNA research.
Collapse
Affiliation(s)
- Sabine Müller
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Bettina Appel
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Darko Balke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Robert Hieronymus
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Claudia Nübel
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Bejugam PR, Singh S. Computing Molecular Devices in L.major through Transcriptome Analysis: Structured Simulation Approach. PLoS One 2016; 11:e0148909. [PMID: 26901858 PMCID: PMC4768835 DOI: 10.1371/journal.pone.0148909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
In the modern era of post genomics and transcriptomics, non-coding RNAs and non-coding regions of many RNAs are a big puzzle when we try deciphering their role in specific gene function. Gene function assessment is a main task wherein high throughput technologies provide an impressive body of data that enables the design of hypotheses linking genes to phenotypes. Gene knockdown technologies and RNA-dependent gene silencing are the most frequent approaches to assess the role of key effectors in a particular scenario. Ribozymes are effective modulators of gene expression because of their simple structure, site-specific cleavage activity, and catalytic potential. In our study, after an extensive transcriptomic search of Leishmania major transcriptome we found a Putative ATP dependent DNA helicase (Lmjf_09_0590) 3’ UTR which has a structural signature similar to well-known HDV hammerhead ribozyme, even though they have variable sequence motifs. Henceforth, to determine their structural stability and sustainability we analyzed our predicted structural model of this 3’UTR with a 30ns MD simulation, further confirmed with 100ns MD simulation in presence of 5mM MgCl2 ionic environment. In this environment, structural stability was significantly improved by bonded interactions between a RNA backbone and Mg2+ ions. These predictions were further validated in silico using RNA normal mode analysis and anisotropic network modelling (ANM) studies. The study may be significantly imparted to know the functional importance of many such 3’UTRs to predict their role in a mechanistic manner.
Collapse
Affiliation(s)
| | - Shailza Singh
- National Centre for Cell Science, Pune, India
- * E-mail:
| |
Collapse
|
11
|
Rehm C, Klauser B, Hartig JS. Engineering aptazyme switches for conditional gene expression in mammalian cells utilizing an in vivo screening approach. Methods Mol Biol 2016; 1316:127-40. [PMID: 25967058 DOI: 10.1007/978-1-4939-2730-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Artificial RNA switches are an emerging class of genetic controllers suitable for synthetic biology applications. Aptazymes are fusions composed of an aptamer domain and a self-cleaving ribozyme. The utilization of aptazymes for conditional gene expression displays several advantages over employing conventional transcription factor-based techniques as aptazymes require minimal genomic space, fulfill their function without the need of protein cofactors, and most importantly are reprogrammable with respect to ligand selectivity and the RNA function to be regulated. Technologies that enable the generation of aptazymes to defined input ligands are of interest for the construction of biocomputing devices and biosensing applications. In this chapter we present a method that facilitates the in vivo screening of randomized pools of aptazymes in mammalian cells.
Collapse
Affiliation(s)
- Charlotte Rehm
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | | | | |
Collapse
|
12
|
Rodrigo G, Prakash S, Cordero T, Kushwaha M, Jaramillo A. Functionalization of an Antisense Small RNA. J Mol Biol 2016; 428:889-92. [PMID: 26756967 PMCID: PMC4819895 DOI: 10.1016/j.jmb.2015.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/24/2022]
Abstract
In order to explore the possibility of adding new functions to preexisting genes, we considered a framework of riboregulation. We created a new riboregulator consisting of the reverse complement of a known riboregulator. Using computational design, we engineered a cis-repressing 5′ untranslated region that can be activated by this new riboregulator. As a result, both RNAs can orthogonally trans-activate translation of their cognate, independent targets. The two riboregulators can also repress each other by antisense interaction, although not symmetrically. Our work highlights that antisense small RNAs can work as regulatory agents beyond the antisense paradigm and that, hence, they could be interfaced with other circuits used in synthetic biology. We have engineered a riboregulator as the negative-sense strand of another riboregulator. This new RNA molecule performs the cellular function of titration of a functional molecule or trans-activation of gene expression. We have followed a computational design approach with energetic and structural criteria to obtain the nucleotide sequence of a 5′ untranslated region responding to the new riboregulator. We have engineered different regulatory circuits with trans-activating and anti-trans-activating small RNAs and characterized them at the population and single-cell levels.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Satya Prakash
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Manish Kushwaha
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alfonso Jaramillo
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom; Institute of Systems and Synthetic Biology, Centre National de la Recherche Scientifique, Université d'Evry val d'Essonne, 91000 Évry, France.
| |
Collapse
|
13
|
KARAGIANNIS P, FUJITA Y, SAITO H. RNA-based gene circuits for cell regulation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:412-422. [PMID: 27840389 PMCID: PMC5328788 DOI: 10.2183/pjab.92.412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 05/20/2023]
Abstract
A major goal of synthetic biology is to control cell behavior. RNA-mediated genetic switches (RNA switches) are devices that serve this purpose, as they can control gene expressions in response to input signals. In general, RNA switches consist of two domains: an aptamer domain, which binds to an input molecule, and an actuator domain, which controls the gene expression. An input binding to the aptamer can cause the actuator to alter the RNA structure, thus changing access to translation machinery. The assembly of multiple RNA switches has led to complex gene circuits for cell therapies, including the selective killing of pathological cells and purification of cell populations. The inclusion of RNA binding proteins, such as L7Ae, increases the repertoire and precision of the circuit. In this short review, we discuss synthetic RNA switches for gene regulation and their potential therapeutic applications.
Collapse
Affiliation(s)
- Peter KARAGIANNIS
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshihiko FUJITA
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hirohide SAITO
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, Japan
- Correspondence should be addressed: H. Saito, Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan (e-mail: )
| |
Collapse
|
14
|
Singh V, Braddick D. Recent advances and versatility of MAGE towards industrial applications. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:1-9. [PMID: 26702302 DOI: 10.1007/s11693-015-9184-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023]
Abstract
The genome engineering toolkit has expanded significantly in recent years, allowing us to study the functions of genes in cellular networks and assist in over-production of proteins, drugs, chemicals and biofuels. Multiplex automated genome engineering (MAGE) has been recently developed and gained more scientific interest towards strain engineering. MAGE is a simple, rapid and efficient tool for manipulating genes simultaneously in multiple loci, assigning genetic codes and integrating non-natural amino acids. MAGE can be further expanded towards the engineering of fast, robust and over-producing strains for chemicals, drugs and biofuels at industrial scales.
Collapse
Affiliation(s)
- Vijai Singh
- Institute of Systems and Synthetic Biology, Université d'Évry Val d'Essonne, Genopole Campus 1, Batiment Genavenir 6, 5 rue Henri Desbruères, 91030 Évry, France
| | - Darren Braddick
- Institute of Systems and Synthetic Biology, Université d'Évry Val d'Essonne, Genopole Campus 1, Batiment Genavenir 6, 5 rue Henri Desbruères, 91030 Évry, France
| |
Collapse
|
15
|
Peters G, Coussement P, Maertens J, Lammertyn J, De Mey M. Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnol Adv 2015; 33:1829-44. [PMID: 26514597 DOI: 10.1016/j.biotechadv.2015.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Synthetic biology, in close concert with systems biology, is revolutionizing the field of metabolic engineering by providing novel tools and technologies to rationally, in a standardized way, reroute metabolism with a view to optimally converting renewable resources into a broad range of bio-products, bio-materials and bio-energy. Increasingly, these novel synthetic biology tools are exploiting the extensive programmable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally design standardized, composable, and orthogonal parts, which can be scaled and tuned promptly and at will. This review gives an extensive overview of the recently developed parts and tools for i) modulating gene expression ii) building genetic circuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA nanostructures. These parts and tools are becoming necessary armamentarium for contemporary metabolic engineering. Furthermore, the design criteria, technological challenges, and recent metabolic engineering success stories of the use of RNA devices are highlighted. Finally, the future trends in transforming metabolism through RNA engineering are critically evaluated and summarized.
Collapse
Affiliation(s)
- Gert Peters
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pieter Coussement
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Louvain, Belgium
| | - Marjan De Mey
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
16
|
Holder IT, Hartig JS. A matter of location: influence of G-quadruplexes on Escherichia coli gene expression. ACTA ACUST UNITED AC 2015; 21:1511-21. [PMID: 25459072 DOI: 10.1016/j.chembiol.2014.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/13/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023]
Abstract
We provide important insights into secondary-structure-mediated regulation of gene expression in Escherichia coli. In a comprehensive survey, we show that the strand orientation and the exact position of a G-quadruplex sequence strongly influence its effect on transcription and translation. We generated a series of reporter gene constructs that contained systematically varied positions of quadruplexes and respective control sequences inserted into several positions within the promoter, 50-UTR, and 30-UTR regions. G-rich sequences at specific locations in the promoter and also in proximity to the ribosome-binding site (RBS) showed pronounced inhibitory effects. Additionally, we rationally designed a system where quadruplex formation showed a gene-activating behavior. Moreover, we characterized quadruplexes in proximity to the RBS that occur naturally in E. coli genes, demonstrating that some of these quadruplexes exert significant modulation of gene expression. Taken together, our data show strong position-dependent effects of quadruplex secondary structures on bacterial gene expression.
Collapse
|
17
|
Strobel B, Klauser B, Hartig JS, Lamla T, Gantner F, Kreuz S. Riboswitch-mediated Attenuation of Transgene Cytotoxicity Increases Adeno-associated Virus Vector Yields in HEK-293 Cells. Mol Ther 2015; 23:1582-91. [PMID: 26137851 DOI: 10.1038/mt.2015.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/21/2015] [Indexed: 01/24/2023] Open
Abstract
Cytotoxicity of transgenes carried by adeno-associated virus (AAV) vectors might be desired, for instance, in oncolytic virotherapy or occur unexpectedly in exploratory research when studying sparsely characterized genes. To date, most AAV-based studies use constitutively active promoters (e.g., the CMV promoter) to drive transgene expression, which often hampers efficient AAV production due to cytotoxic, antiproliferative, or unknown transgene effects interfering with producer cell performance. Therefore, we explored artificial riboswitches as novel tools to control transgene expression during AAV production in mammalian cells. Our results demonstrate that the guanine-responsive GuaM8HDV aptazyme efficiently attenuates transgene expression and associated detrimental effects, thereby boosting AAV vector yields up to 23-fold after a single addition of guanine. Importantly, riboswitch-harboring vectors preserved their ability to express functional transgene at high levels in the absence of ligand, as demonstrated in a mouse model of AAV-TGFβ1-induced pulmonary fibrosis. Thus, our study provides the first application-ready biotechnological system-based on aptazymes, which should enable high viral vector yields largely independent of the transgene used. Moreover, the RNA-intrinsic, small-molecule regulatable mode of action of riboswitches provides key advantages over conventional transcription factor-based regulatory systems. Therefore, such riboswitch vectors might be ultimately applied to temporally control therapeutic transgene expression in vivo.
Collapse
Affiliation(s)
- Benjamin Strobel
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benedikt Klauser
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Thorsten Lamla
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Florian Gantner
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sebastian Kreuz
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
18
|
Shen S, Rodrigo G, Prakash S, Majer E, Landrain TE, Kirov B, Daròs JA, Jaramillo A. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression. Nucleic Acids Res 2015; 43:5158-70. [PMID: 25916845 PMCID: PMC4446421 DOI: 10.1093/nar/gkv287] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 03/24/2015] [Indexed: 11/12/2022] Open
Abstract
Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA–RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits.
Collapse
Affiliation(s)
- Shensi Shen
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France
| | - Guillermo Rodrigo
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France
| | - Satya Prakash
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas, CSIC - Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Thomas E Landrain
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France
| | - Boris Kirov
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, CSIC - Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alfonso Jaramillo
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
19
|
Rostain W, Landrain TE, Rodrigo G, Jaramillo A. Regulatory RNA design through evolutionary computation and strand displacement. Methods Mol Biol 2015; 1244:63-78. [PMID: 25487093 DOI: 10.1007/978-1-4939-1878-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The discovery and study of a vast number of regulatory RNAs in all kingdoms of life over the past decades has allowed the design of new synthetic RNAs that can regulate gene expression in vivo. Riboregulators, in particular, have been used to activate or repress gene expression. However, to accelerate and scale up the design process, synthetic biologists require computer-assisted design tools, without which riboregulator engineering will remain a case-by-case design process requiring expert attention. Recently, the design of RNA circuits by evolutionary computation and adapting strand displacement techniques from nanotechnology has proven to be suited to the automated generation of DNA sequences implementing regulatory RNA systems in bacteria. Herein, we present our method to carry out such evolutionary design and how to use it to create various types of riboregulators, allowing the systematic de novo design of genetic control systems in synthetic biology.
Collapse
Affiliation(s)
- William Rostain
- Institute of Systems and Synthetic Biology (iSSB-CNRS), Université d'Evry val d'Essonne, Genopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030, Evry Cedex, France
| | | | | | | |
Collapse
|
20
|
Engineering of Ribozyme-Based Aminoglycoside Switches of Gene Expression by In Vivo Genetic Selection in Saccharomyces cerevisiae. Methods Enzymol 2015; 550:301-20. [DOI: 10.1016/bs.mie.2014.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Frommer J, Appel B, Müller S. Ribozymes that can be regulated by external stimuli. Curr Opin Biotechnol 2014; 31:35-41. [PMID: 25146171 DOI: 10.1016/j.copbio.2014.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/30/2014] [Indexed: 12/20/2022]
Abstract
Ribozymes have been known for about 30 years, and nowadays are understood well enough to be turned into useful tools for a number of applications in vitro and in vivo. Allosteric ribozymes switch on and off their activity in response to a specific chemical (ligand) or physical (temperature, light) signal. The possibility of controlling ribozyme activity by external stimuli is of particular relevance for applications in different fields, such as environmental and medicinal diagnostics, molecular computing, control of gene expression and others. Herein, we review recent advances and describe selected examples of addressable ribozymes.
Collapse
Affiliation(s)
- Jennifer Frommer
- Ernst Moritz Arndt University Greifswald, Institute for Biochemistry, Felix Hausdorff Str. 4, D-17487 Greifswald, Germany
| | - Bettina Appel
- Ernst Moritz Arndt University Greifswald, Institute for Biochemistry, Felix Hausdorff Str. 4, D-17487 Greifswald, Germany
| | - Sabine Müller
- Ernst Moritz Arndt University Greifswald, Institute for Biochemistry, Felix Hausdorff Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
22
|
Penchovsky R. Computational design of allosteric ribozymes as molecular biosensors. Biotechnol Adv 2014; 32:1015-27. [PMID: 24877999 DOI: 10.1016/j.biotechadv.2014.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 11/24/2022]
Abstract
Nucleic acids have proven to be a very suitable medium for engineering various nanostructures and devices. While synthetic DNAs are commonly used for self-assembly of nanostructures and devices in vitro, functional RNAs, such as ribozymes, are employed both in vitro and in vivo. Allosteric ribozymes have applications in molecular computing, biosensoring, high-throughput screening arrays, exogenous control of gene expression, and others. They switch on and off their catalytic function as a result of a conformational change induced by ligand binding. Designer ribozymes are engineered to respond to different effectors by in vitro selection, rational and computational design methods. Here, I present diverse computational methods for designing allosteric ribozymes with various logic functions that sense oligonucleotides or small molecules. These methods yield the desired ribozyme sequences within minutes in contrast to the in vitro selection methods, which require weeks. Methods for synthesis and biochemical testing of ribozymes are also discussed.
Collapse
Affiliation(s)
- Robert Penchovsky
- Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|
23
|
Generation and selection of ribozyme variants with potential application in protein engineering and synthetic biology. Appl Microbiol Biotechnol 2014; 98:3389-99. [DOI: 10.1007/s00253-014-5528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
|
24
|
Penchovsky R, Kostova GT. Computational selection and experimental validation of allosteric ribozymes that sense a specific sequence of human telomerase reverse transcriptase mRNAs as universal anticancer therapy agents. Nucleic Acid Ther 2013; 23:408-17. [PMID: 24206267 PMCID: PMC3868306 DOI: 10.1089/nat.2013.0446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/07/2013] [Indexed: 12/19/2022] Open
Abstract
High expression levels of telomerase reverse transcriptase messenger RNAs in differentiated cells can be used as a common marker for cancer development. In this paper, we describe a novel computational method for selection of allosteric ribozymes that sense a specific sequence of human telomerase reverse transcriptase mRNAs. The in silico selection employed is based on computing secondary structures of RNA using the partition function in combination with a random search algorithm. We selected one of the ribozymes for experimental validation. The obtained results demonstrate that the tested ribozyme has a high-speed (∼1.8 per minute) of self-cleavage and is very selective. It can distinguish well between perfectly matching effector and the closest expressed RNA sequence in the human cell with 10 mismatches, with a ∼300-fold difference under physiologically relevant conditions. The presented algorithm is universal since the allosteric ribozymes can be designed to sense any specific RNA or DNA sequence of interest. Such designer ribozymes may be used for monitoring the expression of mRNAs in the cell and for developing novel anticancer gene therapies.
Collapse
Affiliation(s)
- Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| | | |
Collapse
|
25
|
Vazquez-Anderson J, Contreras LM. Regulatory RNAs: charming gene management styles for synthetic biology applications. RNA Biol 2013; 10:1778-97. [PMID: 24356572 DOI: 10.4161/rna.27102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNAs have many important functional properties, including that they are independently controllable and highly tunable. As a result of these advantageous properties, their use in a myriad of sophisticated devices has been widely explored. Yet, the exploitation of RNAs for synthetic applications is highly dependent on the ability to characterize the many new molecules that continue to be discovered by large-scale sequencing and high-throughput screening techniques. In this review, we present an exhaustive survey of the most recent synthetic bacterial riboswitches and small RNAs while emphasizing their virtues in gene expression management. We also explore the use of these RNA components as building blocks in the RNA synthetic biology toolbox and discuss examples of synthetic RNA components used to rewire bacterial regulatory circuitry. We anticipate that this field will expand its catalog of smart devices by mimicking and manipulating natural RNA mechanisms and functions.
Collapse
Affiliation(s)
- Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering; University of Texas at Austin; Austin, TX USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering; University of Texas at Austin; Austin, TX USA
| |
Collapse
|
26
|
Chappell J, Takahashi MK, Meyer S, Loughrey D, Watters KE, Lucks J. The centrality of RNA for engineering gene expression. Biotechnol J 2013; 8:1379-95. [PMID: 24124015 PMCID: PMC4033574 DOI: 10.1002/biot.201300018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 12/25/2022]
Abstract
Synthetic biology holds promise as both a framework for rationally engineering biological systems and a way to revolutionize how we fundamentally understand them. Essential to realizing this promise is the development of strategies and tools to reliably and predictably control and characterize sophisticated patterns of gene expression. Here we review the role that RNA can play towards this goal and make a case for why this versatile, designable, and increasingly characterizable molecule is one of the most powerful substrates for engineering gene expression at our disposal. We discuss current natural and synthetic RNA regulators of gene expression acting at key points of control – transcription, mRNA degradation, and translation. We also consider RNA structural probing and computational RNA structure predication tools as a way to study RNA structure and ultimately function. Finally, we discuss how next-generation sequencing methods are being applied to the study of RNA and to the characterization of RNA's many properties throughout the cell.
Collapse
Affiliation(s)
- James Chappell
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|