1
|
Petushkov I, Elkina D, Burenina O, Kubareva E, Kulbachinskiy A. Key interactions of RNA polymerase with 6S RNA and secondary channel factors during pRNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195032. [PMID: 38692564 DOI: 10.1016/j.bbagrm.2024.195032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.
Collapse
Affiliation(s)
- Ivan Petushkov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Elkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga Burenina
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulbachinskiy
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
2
|
Petushkov IV, Kulbachinskiy AV. Role of Interactions of the CRE Region of Escherichia coli RNA Polymerase with Nontemplate DNA during Promoter Escape. BIOCHEMISTRY (MOSCOW) 2021; 85:792-800. [PMID: 33040723 DOI: 10.1134/s000629792007007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA polymerase (RNAP) recognizes promoter DNA through many interactions that determine specificity of transcription initiation. In addition to the dedicated transcription initiation σ factor in bacteria, the core enzyme of RNAP can also participate in promoter recognition. In particular, guanine residue at the +2 position (+2G) of the nontemplate DNA strand is bound in the CRE pocket formed by the RNAP β subunit. Here, we analyzed the role of these contacts in the process of promoter escape by RNAP by studying point mutations in the β subunit of Escherichia coli RNAP that disrupted these interactions. We found that the presence of +2G in the promoter slowed down the rate of promoter escape and increased proportion of inactive complexes. Amino acid substitutions in the CRE pocket decreased the promoter complex stability and changed the pattern of short RNA products synthesized during initiation, but did not significantly affect the rate of transition to elongation, regardless of the presence of +2G. Thus, the contacts of the CRE pocket with +2G do not make a significant contribution to the kinetics of promoter escape by RNAP, while the observed changes in the efficiency of abortive synthesis are not directly related to the rate of promoter escape.
Collapse
Affiliation(s)
- I V Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - A V Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| |
Collapse
|
3
|
Kaushik S, Marques SM, Khirsariya P, Paruch K, Libichova L, Brezovsky J, Prokop Z, Chaloupkova R, Damborsky J. Impact of the access tunnel engineering on catalysis is strictly ligand‐specific. FEBS J 2018; 285:1456-1476. [DOI: 10.1111/febs.14418] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Shubhangi Kaushik
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
| | - Sérgio M. Marques
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Prashant Khirsariya
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
- Department of Chemistry CZ‐OPENSCREEN Faculty of Science Masaryk University Brno Czech Republic
| | - Kamil Paruch
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
- Department of Chemistry CZ‐OPENSCREEN Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Libichova
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| |
Collapse
|
4
|
Marques SM, Dunajova Z, Prokop Z, Chaloupkova R, Brezovsky J, Damborsky J. Catalytic Cycle of Haloalkane Dehalogenases Toward Unnatural Substrates Explored by Computational Modeling. J Chem Inf Model 2017; 57:1970-1989. [PMID: 28696117 DOI: 10.1021/acs.jcim.7b00070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The anthropogenic toxic compound 1,2,3-trichloropropane is poorly degradable by natural enzymes. We have previously constructed the haloalkane dehalogenase DhaA31 by focused directed evolution ( Pavlova, M. et al. Nat. Chem. Biol. 2009 , 5 , 727 - 733 ), which is 32 times more active than the wild-type enzyme and is currently the most active variant known against that substrate. Recent evidence has shown that the structural basis responsible for the higher activity of DhaA31 was poorly understood. Here we have undertaken a comprehensive computational study of the main steps involved in the biocatalytic hydrolysis of 1,2,3-trichloropropane to decipher the structural basis for such enhancements. Using molecular dynamics and quantum mechanics approaches we have surveyed (i) the substrate binding, (ii) the formation of the reactive complex, (iii) the chemical step, and (iv) the release of the products. We showed that the binding of the substrate and its transport through the molecular tunnel to the active site is a relatively fast process. The cleavage of the carbon-halogen bond was previously identified as the rate-limiting step in the wild-type. Here we demonstrate that this step was enhanced in DhaA31 due to a significantly higher number of reactive configurations of the substrate and a decrease of the energy barrier to the SN2 reaction. C176Y and V245F were identified as the key mutations responsible for most of those improvements. The release of the alcohol product was found to be the rate-limiting step in DhaA31 primarily due to the C176Y mutation. Mutational dissection of DhaA31 and kinetic analysis of the intermediate mutants confirmed the theoretical observations. Overall, our comprehensive computational approach has unveiled mechanistic details of the catalytic cycle which will enable a balanced design of more efficient enzymes. This approach is applicable to deepen the biochemical knowledge of a large number of other systems and may contribute to robust strategies in the development of new biocatalysts.
Collapse
Affiliation(s)
- Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| | - Zuzana Dunajova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
5
|
Petushkov I, Pupov D, Bass I, Kulbachinskiy A. Mutations in the CRE pocket of bacterial RNA polymerase affect multiple steps of transcription. Nucleic Acids Res 2015; 43:5798-809. [PMID: 25990734 PMCID: PMC4499132 DOI: 10.1093/nar/gkv504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
Abstract
During transcription, the catalytic core of RNA polymerase (RNAP) must interact with the DNA template with low-sequence specificity to ensure efficient enzyme translocation and RNA extension. Unexpectedly, recent structural studies of bacterial promoter complexes revealed specific interactions between the nontemplate DNA strand at the downstream edge of the transcription bubble (CRE, core recognition element) and a protein pocket formed by core RNAP (CRE pocket). We investigated the roles of these interactions in transcription by analyzing point amino acid substitutions and deletions in Escherichia coli RNAP. The mutations affected multiple steps of transcription, including promoter recognition, RNA elongation and termination. In particular, we showed that interactions of the CRE pocket with a nontemplate guanine immediately downstream of the active center stimulate RNA-hairpin-dependent transcription pausing but not other types of pausing. Thus, conformational changes of the elongation complex induced by nascent RNA can modulate CRE effects on transcription. The results highlight the roles of specific core RNAP–DNA interactions at different steps of RNA synthesis and suggest their importance for transcription regulation in various organisms.
Collapse
Affiliation(s)
- Ivan Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia Molecular Biology Department, Biological Faculty, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Irina Bass
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia Molecular Biology Department, Biological Faculty, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|