1
|
Wang Z, Chen C, Ge X. Large T antigen mediated target gene replication improves site-specific recombination efficiency. Front Bioeng Biotechnol 2024; 12:1377167. [PMID: 38737535 PMCID: PMC11082406 DOI: 10.3389/fbioe.2024.1377167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
With advantages of high-fidelity, monoclonality and large cargo capacity, site-specific recombination (SSR) holds great promises for precise genomic modifications. However, broad applications of SSR have been hurdled by low integration efficiency, and the amount of donor DNA available in nucleus for SSR presents as a limiting factor. Inspired by the DNA replication mechanisms observed in double-stranded DNA virus SV40, we hypothesized that expression of SV40 large T antigen (TAg) can increase the copy number of the donor plasmid bearing an SV40 origin, and in consequence promote recombination events. This hypothesis was tested with dual recombinase-mediated cassette exchange (RMCE) in suspension 293F cells. Results showed that TAg co-transfection significantly enhanced SSR in polyclonal cells. In the monoclonal cell line carrying a single landing pad at an identified genomic locus, 12% RMCE efficiency was achieved, and such improvement was indeed correlated with donor plasmid amplification. The developed TAg facilitated RMCE (T-RMCE) was exploited for the construction of large libraries of >107 diversity, from which GFP variants with enhanced fluorescence were isolated. We expect the underlying principle of target gene amplification can be applicable to other SSR processes and gene editing approaches in general for directed evolution and large-scale genomic screening in mammalian cells.
Collapse
Affiliation(s)
- Zening Wang
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| | - Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
Elias A, Kassis H, Elkader SA, Gritsenko N, Nahmad A, Shir H, Younis L, Shannan A, Aihara H, Prag G, Yagil E, Kolot M. HK022 bacteriophage Integrase mediated RMCE as a potential tool for human gene therapy. Nucleic Acids Res 2020; 48:12804-12816. [PMID: 33270859 PMCID: PMC7736782 DOI: 10.1093/nar/gkaa1140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022] Open
Abstract
HK022 coliphage site-specific recombinase Integrase (Int) can catalyze integrative site-specific recombination and recombinase-mediated cassette exchange (RMCE) reactions in mammalian cell cultures. Owing to the promiscuity of the 7 bp overlap sequence in its att sites, active ‘attB’ sites flanking human deleterious mutations were previously identified that may serve as substrates for RMCE reactions for future potential gene therapy. However, the wild type Int proved inefficient in catalyzing such RMCE reactions. To address this low efficiency, variants of Int were constructed and examined by integrative site-specific recombination and RMCE assays in human cells using native ‘attB’ sites. As a proof of concept, various Int derivatives have demonstrated successful RMCE reactions using a pair of native ‘attB’ sites that were inserted as a substrate into the human genome. Moreover, successful RMCE reactions were demonstrated in native locations of the human CTNS and DMD genes whose mutations are responsible for Cystinosis and Duchene Muscular Dystrophy diseases, respectively. This work provides a steppingstone for potential downstream therapeutic applications.
Collapse
Affiliation(s)
- Amer Elias
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hala Kassis
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Suha Abd Elkader
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Natasha Gritsenko
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Alessio Nahmad
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hodaya Shir
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Liana Younis
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Atheer Shannan
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota TwinCities, Minneapolis, MN, 55455, USA
| | - Gali Prag
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Ezra Yagil
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Mikhail Kolot
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
3
|
Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 2020; 40:833-851. [DOI: 10.1080/07388551.2020.1768043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kajan Srirangan
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Martin Loignon
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Lansing F, Paszkowski-Rogacz M, Schmitt LT, Schneider PM, Rojo Romanos T, Sonntag J, Buchholz F. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Res 2020; 48:472-485. [PMID: 31745551 PMCID: PMC7107906 DOI: 10.1093/nar/gkz1078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Site-specific recombinases (SSRs) such as the Cre/loxP system are useful genome engineering tools that can be repurposed by altering their DNA-binding specificity. However, SSRs that delete a natural sequence from the human genome have not been reported thus far. Here, we describe the generation of an SSR system that precisely excises a 1.4 kb fragment from the human genome. Through a streamlined process of substrate-linked directed evolution we generated two separate recombinases that, when expressed together, act as a heterodimer to delete a human genomic sequence from chromosome 7. Our data indicates that designer-recombinases can be generated in a manageable timeframe for precision genome editing. A large-scale bioinformatics analysis suggests that around 13% of all human protein-coding genes could be targetable by dual designer-recombinase induced genomic deletion (dDRiGD). We propose that heterospecific designer-recombinases, which work independently of the host DNA repair machinery, represent an efficient and safe alternative to nuclease-based genome editing technologies.
Collapse
Affiliation(s)
- Felix Lansing
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Lukas Theo Schmitt
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Paul Martin Schneider
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Teresa Rojo Romanos
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Jan Sonntag
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
5
|
Elias A, Gritsenko N, Gorovits R, Spector I, Prag G, Yagil E, Kolot M. Anti-cancer binary system activated by bacteriophage HK022 integrase. Oncotarget 2018; 9:27487-27501. [PMID: 29938000 PMCID: PMC6007955 DOI: 10.18632/oncotarget.25512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/14/2018] [Indexed: 01/10/2023] Open
Abstract
The binary system presented in this work is based on the bacteriophage HK022 integrase recombinase that activates the expression of a silenced Diphtheria toxin gene, both controlled by the cancer specific hTERT promoter. Using a lung cancer mice model, assays of different apoptotic and anti-apoptotic factors have demonstrated that the Integrase based binary system is highly specific towards cancer cells and more efficient compared to the conventional mono system whose toxin is directly expressed under hTERT. In a mice survival test, this binary system demonstrated longer persistence compared to the untreated and the mono treated ones. The reason underlying the advantage of this binary system over the mono system seems to be an overexpression of various hTERT suppressing factors induced by the mono system.
Collapse
Affiliation(s)
- Amer Elias
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Natasha Gritsenko
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Itay Spector
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gali Prag
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Ezra Yagil
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Mikhail Kolot
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
6
|
Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL. Engineering altered protein-DNA recognition specificity. Nucleic Acids Res 2018; 46:4845-4871. [PMID: 29718463 PMCID: PMC6007267 DOI: 10.1093/nar/gky289] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein engineering is used to generate novel protein folds and assemblages, to impart new properties and functions onto existing proteins, and to enhance our understanding of principles that govern protein structure. While such approaches can be employed to reprogram protein-protein interactions, modifying protein-DNA interactions is more difficult. This may be related to the structural features of protein-DNA interfaces, which display more charged groups, directional hydrogen bonds, ordered solvent molecules and counterions than comparable protein interfaces. Nevertheless, progress has been made in the redesign of protein-DNA specificity, much of it driven by the development of engineered enzymes for genome modification. Here, we summarize the creation of novel DNA specificities for zinc finger proteins, meganucleases, TAL effectors, recombinases and restriction endonucleases. The ease of re-engineering each system is related both to the modularity of the protein and the extent to which the proteins have evolved to be capable of readily modifying their recognition specificities in response to natural selection. The development of engineered DNA binding proteins that display an ideal combination of activity, specificity, deliverability, and outcomes is not a fully solved problem, however each of the current platforms offers unique advantages, offset by behaviors and properties requiring further study and development.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Bohm
- Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Jeffrey C Miller
- Sangamo Therapeutics Inc. 501 Canal Blvd., Richmond, CA 94804, USA
| | - Richard D Morgan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98019, USA
| |
Collapse
|
7
|
Abstract
Recent exponential advances in genome sequencing and engineering technologies have enabled an unprecedented level of interrogation into the impact of DNA variation (genotype) on cellular function (phenotype). Furthermore, these advances have also prompted realistic discussion of writing and radically re-writing complex genomes. In this Perspective, we detail the motivation for large-scale engineering, discuss the progress made from such projects in bacteria and yeast and describe how various genome-engineering technologies will contribute to this effort. Finally, we describe the features of an ideal platform and provide a roadmap to facilitate the efficient writing of large genomes.
Collapse
Affiliation(s)
- Raj Chari
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts, 02115, USA
| |
Collapse
|
8
|
Voziyanova E, Anderson RP, Voziyanov Y. Dual Recombinase-Mediated Cassette Exchange by Tyrosine Site-Specific Recombinases. Methods Mol Biol 2017; 1642:53-67. [PMID: 28815493 DOI: 10.1007/978-1-4939-7169-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recombinase-mediated cassette exchange, or RMCE, is a genome engineering tool that can be used to swap DNA fragments of interest between two DNA molecules. In a variation of RMCE, called dual RMCE, the exchange of DNA fragments is mediated by two recombinases in contrast to one recombinase in the classic RMCE reaction. Under optimal conditions, the efficiency of dual RMCE can be quite high: up to ~45% of the transfected cells depending on the recombinase pair used to mediate the replacement reaction. Here we describe protocols for preparing for, performing, and optimizing the parameters of dual RMCE.
Collapse
Affiliation(s)
- Eugenia Voziyanova
- School of Biosciences, Louisiana Tech University, 1 Adams Blvd, Ruston, LA, 71272, USA
| | - Rachelle P Anderson
- School of Biosciences, Louisiana Tech University, 1 Adams Blvd, Ruston, LA, 71272, USA
| | - Yuri Voziyanov
- School of Biosciences, Louisiana Tech University, 1 Adams Blvd, Ruston, LA, 71272, USA.
| |
Collapse
|
9
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
10
|
Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase. Sci Rep 2016; 6:24971. [PMID: 27117628 PMCID: PMC4846993 DOI: 10.1038/srep24971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 12/01/2022] Open
Abstract
Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a cytotoxic gene. In the present study we developed a new cancer specific binary expression system activated by the Integrase (Int) of the lambdoid phage HK022. We demonstrate the validity of this system by the specific expression of a luciferase (luc) reporter in human embryonic kidney 293T (HEK293T) cells and in a lung cancer mouse model. Due to the absence viral vectors and of cytotoxicity the Int based binary system offers advantages over previously described counterparts and may therefore be developed into a safer cancer cell killing system.
Collapse
|
11
|
Abstract
Tyrosine site-specific recombinases (YRs) are widely distributed among prokaryotes and their viruses, and were thought to be confined to the budding yeast lineage among eukaryotes. However, YR-harboring retrotransposons (the DIRS and PAT families) and DNA transposons (Cryptons) have been identified in a variety of eukaryotes. The YRs utilize a common chemical mechanism, analogous to that of type IB topoisomerases, to bring about a plethora of genetic rearrangements with important physiological consequences in their respective biological contexts. A subset of the tyrosine recombinases has provided model systems for analyzing the chemical mechanisms and conformational features of the recombination reaction using chemical, biochemical, topological, structural, and single molecule-biophysical approaches. YRs with simple reaction requirements have been utilized to bring about programmed DNA rearrangements for addressing fundamental questions in developmental biology. They have also been employed to trace the topological features of DNA within high-order DNA interactions established by protein machines. The directed evolution of altered specificity YRs, combined with their spatially and temporally regulated expression, heralds their emergence as vital tools in genome engineering projects with wide-ranging biotechnological and medical applications.
Collapse
|
12
|
Voziyanova E, Anderson RP, Shah R, Li F, Voziyanov Y. Efficient Genome Manipulation by Variants of Site-Specific Recombinases R and TD. J Mol Biol 2015; 428:990-1003. [PMID: 26555749 DOI: 10.1016/j.jmb.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 10/17/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Genome engineering benefits from the availability of DNA modifying enzymes that have different target specificities and have optimized performance in different cell types. This variety of site-specific enzymes can be used to develop complex genome engineering applications at multiple loci. Although eight yeast site-specific tyrosine recombinases are known, only Flp is actively used in genome engineering. To expand the pool of the yeast site-specific tyrosine recombinases capable of mediating genome manipulations in mammalian cells, we engineered and analyzed variants of two tyrosine recombinases: R and TD. The activity of the evolved variants, unlike the activity of the native R and TD recombinases, is suitable for genome engineering in Escherichia coli and mammalian cells. Unexpectedly, we found that R recombinase benefits from the shortening of its C-terminus. We also found that the activity of wild-type R can be modulated by its non-consensus "head" sequence but this modulation became not apparent in the evolved R variants. The engineered recombinase variants were found to be active in all recombination reactions tested: excision, integration, and dual recombinase-mediated cassette exchange. The analysis of the latter reaction catalyzed by the R/TD recombinase pair shows that the condition supporting the most efficient replacement reaction favors efficient TD-mediated integration reaction while favoring efficient R-mediated integration and deletion reactions.
Collapse
Affiliation(s)
- Eugenia Voziyanova
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Rachelle P Anderson
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Riddhi Shah
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Feng Li
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Yuri Voziyanov
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA.
| |
Collapse
|
13
|
Shah R, Li F, Voziyanova E, Voziyanov Y. Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J 2015; 282:3323-33. [PMID: 26077105 DOI: 10.1111/febs.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/18/2015] [Accepted: 06/12/2015] [Indexed: 12/30/2022]
Abstract
Genome engineering relies on DNA-modifying enzymes that are able to locate a DNA sequence of interest and initiate a desired genome rearrangement. Currently, the field predominantly utilizes site-specific DNA nucleases that depend on the host DNA repair machinery to complete a genome modification task. We show here that genome engineering approaches that employ target-specific variants of the self-sufficient, versatile site-specific DNA recombinase Flp can be developed into promising alternatives. We demonstrate that the Flp variant evolved to recombine an FRT-like sequence, FL-IL10A, which is located upstream of the human interleukin-10 gene, and can target this sequence in the model setting of Chinese hamster ovary and human embryonic kidney 293 cells. This target-specific Flp variant is able to perform the integration reaction and, when paired with another recombinase, the dual recombinase-mediated cassette exchange reaction. The efficiency of the integration reaction in human cells can be enhanced by 'humanizing' the Flp variant gene and by adding the nuclear localization sequence to the recombinase.
Collapse
Affiliation(s)
- Riddhi Shah
- School of Biosciences, Louisiana Tech University, Ruston, LA, USA
| | - Feng Li
- School of Biosciences, Louisiana Tech University, Ruston, LA, USA
| | | | - Yuri Voziyanov
- School of Biosciences, Louisiana Tech University, Ruston, LA, USA
| |
Collapse
|
14
|
Kolot M, Malchin N, Elias A, Gritsenko N, Yagil E. Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther 2015; 22:521-7. [PMID: 25762284 DOI: 10.1038/gt.2015.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022]
Abstract
The integrase (Int) encoded by the lambdoid coliphage HK022 targets in its host chromosome a 21 base pair (bp) recombination site termed attB or BOB'. attB comprises two 7 bp partially inverted (palindromic) Int-binding sites of 7 bp each termed B and B'. B and B' flank a central 7 bp crossover site or 'overlap' (O). We show that replacing O with a random 7 bp sequence supports Int-mediated site-specific recombination as long as the cognate and larger phage recombination site attP features an identical O sequence. This promiscuity allowed us to identify on the human genome several native active secondary attB sites ('attB') with random overlaps that flank human deleterious mutations, raising the prospect of using such sites to cure the 'attB'-flanked mutations by Int-catalyzed RMCE (recombinase-mediated cassette exchange) reactions. An analysis of such active and inactive 'attB's suggested a minimal 14-15 bp attB consensus sequence (instead of the 21 bp) with a reduced 3 bp palindrome.
Collapse
Affiliation(s)
- M Kolot
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - N Malchin
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - A Elias
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - N Gritsenko
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - E Yagil
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Fan HF, Cheng YS, Ma CH, Jayaram M. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination. Nucleic Acids Res 2015; 43:3237-55. [PMID: 25765648 PMCID: PMC4381057 DOI: 10.1093/nar/gkv114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/03/2015] [Indexed: 12/18/2022] Open
Abstract
Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of ‘non-productive’, ‘pre-synaptic’ and ‘synaptic’ complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Yong-Song Cheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|