1
|
Sauty SM, Fisher A, Dolson A, Yankulov K. Mutations in the DNA processivity factor POL30 predisposes the FLO11 locus to epigenetic instability in S. cerevisiae. J Cell Sci 2024; 137:jcs262006. [PMID: 39552290 DOI: 10.1242/jcs.262006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
The FLO genes in Saccharomyces cerevisiae are repressed by heterochromatin formation, involving histone deacetylases, transcription factors and non-coding RNAs. Here, we report that mutations in the processivity factor POL30 (PCNA) that show transient derepression at the subtelomeres and the mating-type loci do not derepress FLO loci. However, deletions of the replisome stability factors RRM3 and TOF1 along with pol30 mutations induced flocculation phenotypes. The phenotypes correlated with increased expression of reporter proteins driven by the FLO11 promoter, the frequency of silent to active conversions of FLO11, and reduced expression of the regulatory long non-coding RNAs ICR1 and PWR1. Alterations in the local replication landscape of FLO11 indicate a link between defects in the fork protection complex and the stability of gene silencing. Analyses of these mutants at the subtelomeres and the HMLα locus showed a similar derepression phenotype and suggest transient instability of both active and silent states of FLO11. We conclude that RRM3 and TOF1 interact differentially with the pol30 mutations to promote transient derepression or complete epigenetic conversions of FLO11. We suggest that the interaction between POL30, RRM3 and TOF1 is essential to maintain epigenetic stability at the studied loci.
Collapse
Affiliation(s)
- Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Ashley Fisher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Andrew Dolson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
2
|
Shaban K, Dolson A, Fisher A, Lessard E, Sauty SM, Yankulov K. TOF1 and RRM3 reveal a link between gene silencing and the pausing of replication forks. Curr Genet 2023; 69:235-249. [PMID: 37347284 DOI: 10.1007/s00294-023-01273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Eukaryotic DNA replication is accompanied by the disassembly and reassembly of nucleosomes and the transmission of epigenetic marks to the newly assembled chromatids. Several histone chaperones, including CAF-1 and Asf1p, are central to these processes. On the other hand, replication forks pause at numerous positions throughout the genome, but it is not known if and how this pausing affects the reassembly and maintenance of chromatin structures. Here, we applied drug-free gene silencing assays to analyze the genetic interactions between CAC1, ASF1, and two genes that regulate the stability of the paused replisome (TOF1) and the resumption of elongation (RRM3). Our results show that TOF1 and RRM3 differentially interact with CAF-1 and ASF1 and that the deletions of TOF1 and RRM3 lead to reduced silencing and increased frequency of epigenetic conversions at three loci in the genome of S. cerevisiae. Our study adds details to the known activities of CAF-1 and Asf1p and suggests that the pausing of the replication fork can lead to epigenetic instability.
Collapse
Affiliation(s)
- Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Andrew Dolson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Ashley Fisher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Emma Lessard
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
3
|
Shaban K, Sauty SM, Fisher A, Cheng A, Yankulov K. Evaluation of drug-free methods for the detection of gene silencing in Saccharomyces cerevisiae. Biochem Cell Biol 2023; 101:125-130. [PMID: 36661263 DOI: 10.1139/bcb-2022-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multiple studies in Saccharomyces cerevisiae have measured the levels of gene silencing by inserting the URA3 gene at various loci and selecting against URA3-expressing cells by 5-flouroorotic acid (5-FOA). However, 5-FOA affects the cellular pools of dNTPs and can produce side effects. To circumvent this issue, we and others have introduced drug-free techniques to detect silent and active gene states. In this study, we compared three drug-free methods based on the expression of fluorescent reporters in the VIIL telomere of S. cerevisiae. Our results point out that only one of these methods is suitable for large-scale drug-free analyses of gene silencing.
Collapse
Affiliation(s)
- Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ashley Fisher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ashley Cheng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Stajic D, Jansen LET. Empirical evidence for epigenetic inheritance driving evolutionary adaptation. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200121. [PMID: 33866813 DOI: 10.1098/rstb.2020.0121] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cellular machinery that regulates gene expression can be self-propagated across cell division cycles and even generations. This renders gene expression states and their associated phenotypes heritable, independently of genetic changes. These phenotypic states, in turn, can be subject to selection and may influence evolutionary adaptation. In this review, we will discuss the molecular basis of epigenetic inheritance, the extent of its transmission and mechanisms of evolutionary adaptation. The current work shows that heritable gene expression can facilitate the process of adaptation through the increase of survival in a novel environment and by enlarging the size of beneficial mutational targets. Moreover, epigenetic control of gene expression enables stochastic switching between different phenotypes in populations that can potentially facilitate adaptation in rapidly fluctuating environments. Ecological studies of the variation of epigenetic markers (e.g. DNA methylation patterns) in wild populations show a potential contribution of this mode of inheritance to local adaptation in nature. However, the extent of the adaptive contribution of the naturally occurring variation in epi-alleles compared to genetic variation remains unclear. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Dragan Stajic
- Department of Zoology, University of Stockholm, 106 91 Stockholm, Sweden
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
5
|
Oki M, Masai H. Regulation of HP1 protein by phosphorylation during transcriptional repression and cell cycle. J Biochem 2021; 169:629-632. [PMID: 33772590 DOI: 10.1093/jb/mvab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 11/12/2022] Open
Abstract
HP1 (Heterochromatin Protein 1), a key factor for the formation of heterochromatin, binds to the methylated lysine 9 of histone H3 (H3K9me), and represses transcription. While the H3K9me mark and HP1 binding are thought to be faithfully propagated to daughter cells, the heterochromatin structure could be dynamically regulated during cell cycle. As evidenced by the well-known phenomenon called Position Effect Variegation (PEV), heterochromatin structure is dynamically and stochastically altered during developmental processes, and thus the expression of genes within or in the vicinity of heterochromatin could be affected by mutations in factors regulating DNA replication as well as by other epigenetic factors. Recent reports show that HP1 also plays an important role in the maintenance and transmission of chromosomes. Like many other factors ensuring faithful chromosome segregation, HP1 family proteins are subjected to posttranslational modifications, most notably phosphorylation, in a cell-cycle dependent manner. Recent studies identified a conserved phosphorylation site that profoundly affects the functions of HP1 during mitotic phase. In this commentary, we discuss dynamic regulation of HP1 protein by phosphorylation during transcriptional repression and cell cycle.
Collapse
Affiliation(s)
- Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, JAPAN
| | - Hisao Masai
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, JAPAN, Tel: 81-3-5316-3220
| |
Collapse
|
6
|
Shaban K, Sauty SM, Yankulov K. Variation, Variegation and Heritable Gene Repression in S. cerevisiae. Front Genet 2021; 12:630506. [PMID: 33747046 PMCID: PMC7970126 DOI: 10.3389/fgene.2021.630506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Phenotypic heterogeneity provides growth advantages for a population upon changes of the environment. In S. cerevisiae, such heterogeneity has been observed as "on/off" states in the expression of individual genes in individual cells. These variations can persist for a limited or extended number of mitotic divisions. Such traits are known to be mediated by heritable chromatin structures, by the mitotic transmission of transcription factors involved in gene regulatory circuits or by the cytoplasmic partition of prions or other unstructured proteins. The significance of such epigenetic diversity is obvious, however, we have limited insight into the mechanisms that generate it. In this review, we summarize the current knowledge of epigenetically maintained heterogeneity of gene expression and point out similarities and converging points between different mechanisms. We discuss how the sharing of limiting repression or activation factors can contribute to cell-to-cell variations in gene expression and to the coordination between short- and long- term epigenetic strategies. Finally, we discuss the implications of such variations and strategies in adaptation and aging.
Collapse
Affiliation(s)
- Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Rowlands H, Shaban K, Cheng A, Foster B, Yankulov K. Dysfunctional CAF-I reveals its role in cell cycle progression and differential regulation of gene silencing. Cell Cycle 2019; 18:3223-3236. [PMID: 31564230 DOI: 10.1080/15384101.2019.1673100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chromatin Assembly Factor I (CAF-I) plays a central role in the reassembly of H3/H4 histones during DNA replication. In S. cerevisiae CAF-I is not essential and its loss is associated with reduced gene silencing at telomeres and increased sensitivity to DNA damage. Two kinases, Cyclin Dependent Kinase (CDK) and Dbf4-Dependent Kinase (DDK), are known to phosphorylate the Cac1p subunit of CAF-I, but their role in the regulation of CAF-I activity is not well understood. In this study we systematically mutated the phosphorylation target sites of these kinases. We show that concomitant mutations of the CDK and DDK target sites of Cac1p lead to growth retardation and significant cell cycle defects, altered cell morphology and increased sensitivity to DNA damage. Surprisingly, some mutations also produced flocculation, a phenotype that is lost in most laboratory strains, and displayed elevated expression of FLO genes. None of these effects is observed upon the destruction of CAF-I. In contrast, the mutations that caused flocculation did not affect gene silencing at the mating type and subtelomeric loci. We conclude that dysfunctional CAF-I produces severe phenotypes, which reveal a possible role of CAF-I in the coordination of DNA replication, chromatin reassembly and cell cycle progression. Our study highlights the role of phosphorylation of Cac1p by CDK and a putative role for DDK in the transmission and re-assembly of chromatin during DNA replication.
Collapse
Affiliation(s)
- Hollie Rowlands
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| | - Ashley Cheng
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| | - Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| |
Collapse
|
8
|
Rowlands H, Shaban K, Foster B, Proteau Y, Yankulov K. Histone chaperones and the Rrm3p helicase regulate flocculation in S. cerevisiae. Epigenetics Chromatin 2019; 12:56. [PMID: 31547833 PMCID: PMC6757361 DOI: 10.1186/s13072-019-0303-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
Background Biofilm formation or flocculation is a major phenotype in wild type budding yeasts but rarely seen in laboratory yeast strains. Here, we analysed flocculation phenotypes and the expression of FLO genes in laboratory strains with various genetic backgrounds. Results We show that mutations in histone chaperones, the helicase RRM3 and the Histone Deacetylase HDA1 de-repress the FLO genes and partially reconstitute flocculation. We demonstrate that the loss of repression correlates to elevated expression of several FLO genes, to increased acetylation of histones at the promoter of FLO1 and to variegated expression of FLO11. We show that these effects are related to the activity of CAF-1 at the replication forks. We also demonstrate that nitrogen starvation or inhibition of histone deacetylases do not produce flocculation in W303 and BY4742 strains but do so in strains compromised for chromatin maintenance. Finally, we correlate the de-repression of FLO genes to the loss of silencing at the subtelomeric and mating type gene loci. Conclusions We conclude that the deregulation of chromatin maintenance and transmission is sufficient to reconstitute flocculation in laboratory yeast strains. Consequently, we propose that a gain in epigenetic silencing is a major contributing factor for the loss of flocculation phenotypes in these strains. We suggest that flocculation in yeasts provides an excellent model for addressing the challenging issue of how epigenetic mechanisms contribute to evolution.
Collapse
Affiliation(s)
- Hollie Rowlands
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Yannic Proteau
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
9
|
Epigenetic gene silencing alters the mechanisms and rate of evolutionary adaptation. Nat Ecol Evol 2019; 3:491-498. [PMID: 30718851 DOI: 10.1038/s41559-018-0781-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Epigenetic, non-DNA sequence-based inheritance can potentially contribute to adaptation but, due to its transient nature and the difficulty involved in uncoupling it from genetic variation, it is unclear whether it has any effect on long-term evolution. However, short-term epigenetic inheritance may interact with genetic change by modifying the rate and type of adaptive mutations. Here, we test this notion in an experimental evolution set-up in yeast. We tune low, intermediate and high levels of heritable silencing of a URA3 reporter under selection by insertion at different positions within silent subtelomeric chromatin in otherwise isogenic Saccharomyces cerevisiae. Heritable silencing does not impact mutation rate but drives population size expansion and rapid epigenetic adaptation. This eventually leads to genetic assimilation of the silent phenotype by mutations that reduce or abolish URA3 expression. Moreover, at intermediate or low levels of heritable silencing we find that populations evolve more rapidly by accumulation of adaptive mutations, in part through acquisition of novel alleles that enhance gene silencing, aiding accelerated adaptation. We provide an experimental proof of concept that defines the impact and mechanisms of how short-term epigenetic inheritance can shape adaptive evolution.
Collapse
|
10
|
Rowlands H, Dhavarasa P, Cheng A, Yankulov K. Forks on the Run: Can the Stalling of DNA Replication Promote Epigenetic Changes? Front Genet 2017; 8:86. [PMID: 28690636 PMCID: PMC5479891 DOI: 10.3389/fgene.2017.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Built of DNA polymerases and multiple associated factors, the replication fork steadily progresses along the DNA template and faithfully replicates DNA. This model can be found in practically every textbook of genetics, with the more complex situation of chromatinized DNA in eukaryotes often viewed as a variation. However, the replication-coupled disassembly/reassembly of chromatin adds significant complexity to the whole replication process. During the course of eukaryotic DNA replication the forks encounter various conditions and numerous impediments. These include nucleosomes with a variety of post-translational modifications, euchromatin and heterochromatin, differentially methylated DNA, tightly bound proteins, active gene promoters and DNA loops. At such positions the forks slow down or even stall. Dedicated factors stabilize the fork and prevent its rotation or collapse, while other factors resolve the replication block and facilitate the resumption of elongation. The fate of histones during replication stalling and resumption is not well understood. In this review we briefly describe recent advances in our understanding of histone turnover during DNA replication and focus on the possible mechanisms of nucleosome disassembly/reassembly at paused replication forks. We propose that replication pausing provides opportunities for an epigenetic change of the associated locus.
Collapse
Affiliation(s)
- Hollie Rowlands
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Piriththiv Dhavarasa
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Ashley Cheng
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| |
Collapse
|
11
|
Wyse B, Oshidari R, Rowlands H, Abbasi S, Yankulov K. RRM3 regulates epigenetic conversions in Saccharomyces cerevisiae in conjunction with Chromatin Assembly Factor I. Nucleus 2017; 7:405-14. [PMID: 27645054 DOI: 10.1080/19491034.2016.1212796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chromatin structures are transmitted to daughter cells through a complex system of nucleosome disassembly and re-assembly at the advancing replication forks. However, the role of replication pausing in the transmission and perturbation of chromatin structures has not been addressed. RRM3 encodes a DNA helicase, which facilitates replication at sites covered with non-histone protein complexes (tRNA genes, active gene promoters, telomeres) in Saccharomyces cerevisiae. In this report we show that the deletion of RRM3 reduces the frequency of epigenetic conversions in the subtelomeric regions of the chromosomes. This phenotype is strongly dependent on 2 histone chaperones, CAF-I and ASF1, which are involved in the reassembly of nucleosomes behind replication forks, but not on the histone chaperone HIR1. We also show that the deletion of RRM3 increases the spontaneous mutation rates in conjunction with CAF-I and ASF1, but not HIR1. Finally, we demonstrate that Rrm3p and CAF-I compete for the binding to the DNA replication clamp PCNA (Proliferating Cell Nuclear Antigen). We propose that the stalling of DNA replication predisposes to epigenetic conversions and that RRM3 and CAF-I play key roles in this process.
Collapse
Affiliation(s)
- Brandon Wyse
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| | - Roxanne Oshidari
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| | - Hollie Rowlands
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| | - Sanna Abbasi
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| | - Krassimir Yankulov
- a Department of Molecular and Cellular Biology , University of Guelph , Ontario , Canada
| |
Collapse
|
12
|
Abstract
Embryonal totipotent cells can produce both embryonic and extraembryonic tissues and can generate whole organisms. In mice this level of genome plasticity is preserved in the 2-cell embryos, but is absent in embryonic cells from later stages of development. Recently it has been demonstrated that totipotent-like cells spontaneously appear in embryonic stem cell cultures and that the depletion of the histone chaperone Chromatin Assembly Factor I (CAF-I) increases the abundance of 2cell-like cells. On the other hand, earlier studies have demonstrated that CAF-I is necessary for epigenetic conversions at the telomeres of S. cerevisiae. This commentary proposes that the absence of CAF-I confers totipotency of embryonic cells and that its activation triggers chromatin changes that reset the epigenome toward cell differentiation.
Collapse
Affiliation(s)
- Krassimir Yankulov
- a Department of Molecular and Cellular Biology ; University of Guelph ; Guelph , Ontario , Canada
| |
Collapse
|
13
|
Jeffery DCB, Kakusho N, You Z, Gharib M, Wyse B, Drury E, Weinreich M, Thibault P, Verreault A, Masai H, Yankulov K. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin. Cell Cycle 2015; 14:74-85. [PMID: 25602519 DOI: 10.4161/15384101.2014.973745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly.
Collapse
Affiliation(s)
- Daniel C B Jeffery
- a Department of Molecular and Cellular Biology ; University of Guelph ; Guelph , Ontario , Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wyse BA, Oshidari R, Jeffery DC, Yankulov KY. Parasite epigenetics and immune evasion: lessons from budding yeast. Epigenetics Chromatin 2013; 6:40. [PMID: 24252437 PMCID: PMC3843538 DOI: 10.1186/1756-8935-6-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/11/2013] [Indexed: 11/23/2022] Open
Abstract
The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The immune evasion is directly linked to the silencing of the members of extended families of genes that encode for major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and have provided significant insights into the molecular basis of these phenomena. This information is becoming increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida, and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast.
Collapse
Affiliation(s)
| | | | | | - Krassimir Y Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada.
| |
Collapse
|