1
|
Peters JP, Maher Iii LJ. Approaches for Determining DNA Persistence Length Using Atomic Force Microscopy. Methods Mol Biol 2024; 2819:297-340. [PMID: 39028513 DOI: 10.1007/978-1-0716-3930-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atomic force microscopy (AFM) is widely used to image and study biological molecules. As an example, we have utilized AFM to investigate how the mechanical properties of DNA polymers depend on electrostatics and the strength of DNA base stacking by studying double-stranded DNA molecules incorporating several different neutral and charged base modifications. Here we describe ten complementary approaches for determining DNA persistence length by AFM imaging. The combination of different approaches provides increased confidence and statistical reliability over existing methods utilizing only a single approach.
Collapse
Affiliation(s)
- Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Fall, IA, USA
| | - L James Maher Iii
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
2
|
Back G, Walther D. Predictions of DNA mechanical properties at a genomic scale reveal potentially new functional roles of DNA flexibility. NAR Genom Bioinform 2023; 5:lqad097. [PMID: 37954573 PMCID: PMC10632188 DOI: 10.1093/nargab/lqad097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Mechanical properties of DNA have been implied to influence many of its biological functions. Recently, a new high-throughput method, called loop-seq, which allows measuring the intrinsic bendability of DNA fragments, has been developed. Using loop-seq data, we created a deep learning model to explore the biological significance of local DNA flexibility in a range of different species from different kingdoms. Consistently, we observed a characteristic and largely dinucleotide-composition-driven change of local flexibility near transcription start sites. In the presence of a TATA-box, a pronounced peak of high flexibility can be observed. Furthermore, depending on the transcription factor investigated, flanking-sequence-dependent DNA flexibility was identified as a potential factor influencing DNA binding. Compared to randomized genomic sequences, depending on species and taxa, actual genomic sequences were observed both with increased and lowered flexibility. Furthermore, in Arabidopsis thaliana, mutation rates, both de novo and fixed, were found to be associated with relatively rigid sequence regions. Our study presents a range of significant correlations between characteristic DNA mechanical properties and genomic features, the significance of which with regard to detailed molecular relevance awaits further theoretical and experimental exploration.
Collapse
Affiliation(s)
- Georg Back
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
3
|
Kuprikova N, Ondruš M, Bednárová L, Riopedre-Fernandez M, Slavětínská L, Sýkorová V, Hocek M. Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases. Nucleic Acids Res 2023; 51:11428-11438. [PMID: 37870471 PMCID: PMC10681718 DOI: 10.1093/nar/gkad893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) derived from 5-substituted pyrimidines and 7-substituted 7-deazapurines bearing anionic substituents (carboxylate, sulfonate, phosphonate, and phosphate). The anion-linked dNTPs were used for enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase containing one, two, three, or four modified nucleotides. The polymerase was able to synthesize even long sequences of >100 modified nucleotides in a row by primer extension (PEX). We also successfully combined two anionic and two hydrophobic dNTPs bearing phenyl and indole moieties. In PCR, the combinations of one or two modified dNTPs gave exponential amplification, while most of the combinations of three or four modified dNTPs gave only linear amplification in asymmetric PCR. The hypermodified ONs were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies including hybridization, denaturation, CD spectroscopy and molecular modelling and dynamics suggest that the presence of anionic modifications in one strand decreases the stability of duplexes while still preserving the B-DNA conformation, whilst the DNA hypermodified in both strands adopts a different secondary structure.
Collapse
Affiliation(s)
- Natalia Kuprikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
4
|
Lima RPA, Malyshev AV. Charge transfer mechanisms in DNA at finite temperatures: From quasiballistic to anomalous subdiffusive charge transfer. Phys Rev E 2022; 106:024414. [PMID: 36109995 DOI: 10.1103/physreve.106.024414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
We address various regimes of charge transfer in DNA within the framework of the Peyrard-Bishop-Holstein model and analyze them from the standpoint of the characteristic size and timescales of the electronic and vibrational subsystems. It is demonstrated that a polaron is an unstable configuration within a broad range of temperatures and therefore polaronic contribution to the charge transport is irrelevant. We put forward an alternative fluctuation-governed charge transfer mechanism and show that the charge transfer can be quasiballistic at low temperatures, diffusive or mixed at intermediate temperatures, and subdiffusive close to the DNA denaturation transition point. Dynamic fluctuations in the vibrational subsystem is the key ingredient of our proposed mechanism which allows for explanation of all charge transfer regimes at finite temperatures. In particular, we demonstrate that in the most relevant regime of high temperatures (above the aqueous environment freezing point), the electron dynamics is completely governed by relatively slow fluctuations of the mechanical subsystem. We argue also that our proposed analysis methods and mechanisms can be relevant for the charge transfer in other organic systems, such as conjugated polymers, molecular aggregates, α-helices, etc.
Collapse
Affiliation(s)
- R P A Lima
- GISC and GFTC, Instituto de Física, Universidade Federal de Alagoas, Maceió AL 57072-970, Brazil
| | - A V Malyshev
- GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid, Spain
- Ioffe Physical-Technical Institute, St-Petersburg, Russia
| |
Collapse
|
5
|
Wang J, Wang DX, Liu B, Jing X, Chen DY, Tang AN, Cui YX, Kong DM. Recent advances in constructing high-order DNA structures. Chem Asian J 2022; 17:e202101315. [PMID: 34989140 DOI: 10.1002/asia.202101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Indexed: 11/07/2022]
Abstract
Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment. By taking advantage of its unique base pairing and inherent biocompatibility to produce structurally-defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct high-order DNA nanostructures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.
Collapse
Affiliation(s)
- Jing Wang
- Nankai University, Department of Chemistry, CHINA
| | | | - Bo Liu
- Nankai University, College of Chemistry, CHINA
| | - Xiao Jing
- Nankai University, College of Chemistry, CHINA
| | - Dan-Ye Chen
- Nankai University, College of Chemistry, CHINA
| | - An-Na Tang
- Nankai University, College of Chemistry, CHINA
| | - Yun-Xi Cui
- Nankai University, College of Chemistry, CHINA
| | - De Ming Kong
- Nankai University, Key Laboratory of Functional Polymer Materials, Weijin road 94, 30071, Tianjin, CHINA
| |
Collapse
|
6
|
Salerno D, Marrano CA, Cassina V, Cristofalo M, Shao Q, Finzi L, Mantegazza F, Dunlap D. Nanomechanics of negatively supercoiled diaminopurine-substituted DNA. Nucleic Acids Res 2021; 49:11778-11786. [PMID: 34718727 PMCID: PMC8599871 DOI: 10.1093/nar/gkab982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Single molecule experiments have demonstrated a progressive transition from a B- to an L-form helix as DNA is gently stretched and progressively unwound. The particular sequence of a DNA segment defines both base stacking and hydrogen bonding that affect the partitioning and conformations of the two phases. Naturally or artificially modified bases alter H-bonds and base stacking and DNA with diaminopurine (DAP) replacing adenine was synthesized to produce linear fragments with triply hydrogen-bonded DAP:T base pairs. Both unmodified and DAP-substituted DNA transitioned from a B- to an L-helix under physiological conditions of mild tension and unwinding. This transition avoids writhing and the ease of this transition may prevent cumbersome topological rearrangements in genomic DNA that would require topoisomerase activity to resolve. L-DNA displayed about tenfold lower persistence length than B-DNA. However, left-handed DAP-substituted DNA was twice as stiff as unmodified L-DNA. Unmodified DNA and DAP-substituted DNA have very distinct mechanical characteristics at physiological levels of negative supercoiling and tension.
Collapse
Affiliation(s)
- Domenico Salerno
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, via R. Follereau 3, Vedano al Lambro (MB), Italy
| | - Claudia Adriana Marrano
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, via R. Follereau 3, Vedano al Lambro (MB), Italy
| | - Valeria Cassina
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, via R. Follereau 3, Vedano al Lambro (MB), Italy
| | - Matteo Cristofalo
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, via R. Follereau 3, Vedano al Lambro (MB), Italy
| | - Qing Shao
- Department of Physics, Emory University, Atlanta, GA USA
| | - Laura Finzi
- Department of Physics, Emory University, Atlanta, GA USA
| | - Francesco Mantegazza
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, via R. Follereau 3, Vedano al Lambro (MB), Italy
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, GA USA
| |
Collapse
|
7
|
Abstract
A statistical method is developed to estimate the maximum amplitude of the base pair fluctuations in a three dimensional mesoscopic model for nucleic acids. The base pair thermal vibrations around the helix diameter are viewed as a Brownian motion for a particle embedded in a stable helical structure. The probability to return to the initial position is computed, as a function of time, by integrating over the particle paths consistent with the physical properties of the model potential. The zero time condition for the first-passage probability defines the constraint to select the integral cutoff for various macroscopic helical conformations, obtained by tuning the twist, bending, and slide motion between adjacent base pairs along the molecule stack. Applying the method to a short homogeneous chain at room temperature, we obtain meaningful estimates for the maximum fluctuations in the twist conformation with ∼10.5 base pairs per helix turn, typical of double stranded DNA helices. Untwisting the double helix, the base pair fluctuations broaden and the integral cutoff increases. The cutoff is found to increase also in the presence of a sliding motion, which shortens the helix contour length, a situation peculiar of dsRNA molecules.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology, University of Camerino, I-62032 Camerino, Italy
| |
Collapse
|
8
|
Dastorani S, Ghasemi RH, Soheilifard R. A Study on the Bending Stiffness of a New DNA Origami Nano-Joint. Mol Biotechnol 2021; 63:1057-1067. [PMID: 34224047 DOI: 10.1007/s12033-021-00367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
The present article aims to investigate the mechanical properties of a new DNA origami nano-joint using the steered molecular dynamics (SMD) simulation. Since the analysis of mechanical properties is of great importance in bending conditions for a nano-joint, the forces are selected to achieve angular changes in the joint by the resultant torque. In this study, the nano-joint is considered as a beam in order to use mechanical equations to extract the mechanical properties of the designed nano-joint. In addition, the bending stiffness of the beam is investigated in different modes of deflection using the Euler-Bernoulli beam theory. The results revealed that the value of bending stiffness increases with increasing deflection, and the changes in the bending stiffness relative to the deflection is linear. The proposed DNA origami nano-joint can be used as a joint in nanorobots and can be effectively applied in nanorobotic systems to move different components.
Collapse
Affiliation(s)
- Sadegh Dastorani
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | | | - Reza Soheilifard
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
9
|
Dutson C, Allen E, Thompson MJ, Hedley JH, Murton HE, Williams DM. Synthesis of Polyanionic C5-Modified 2'-Deoxyuridine and 2'-Deoxycytidine-5'-Triphosphates and Their Properties as Substrates for DNA Polymerases. Molecules 2021; 26:molecules26082250. [PMID: 33924626 PMCID: PMC8069024 DOI: 10.3390/molecules26082250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Modified 2′-deoxyribonucleotide triphosphates (dNTPs) have widespread applications in both existing and emerging biomolecular technologies. For such applications it is an essential requirement that the modified dNTPs be substrates for DNA polymerases. To date very few examples of C5-modified dNTPs bearing negatively charged functionality have been described, despite the fact that such nucleotides might potentially be valuable in diagnostic applications using Si-nanowire-based detection systems. Herein we have synthesised C5-modified dUTP and dCTP nucleotides each of which are labelled with an dianionic reporter group. The reporter group is tethered to the nucleobase via a polyethylene glycol (PEG)-based linkers of varying length. The substrate properties of these modified dNTPs with a variety of DNA polymerases have been investigated to study the effects of varying the length and mode of attachment of the PEG linker to the nucleobase. In general, nucleotides containing the PEG linker tethered to the nucleobase via an amide rather than an ether linkage proved to be the best substrates, whilst nucleotides containing PEG linkers from PEG6 to PEG24 could all be incorporated by one or more DNA polymerase. The polymerases most able to incorporate these modified nucleotides included Klentaq, Vent(exo-) and therminator, with incorporation by Klenow(exo-) generally being very poor.
Collapse
Affiliation(s)
- Claire Dutson
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
| | - Esther Allen
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
| | - Mark J. Thompson
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
| | - Joseph H. Hedley
- QuantuMDx Group, Lugano Building, 57 Melbourne Street, Newcastle upon Tyne NE1 2JQ, UK; (J.H.H.); (H.E.M.)
| | - Heather E. Murton
- QuantuMDx Group, Lugano Building, 57 Melbourne Street, Newcastle upon Tyne NE1 2JQ, UK; (J.H.H.); (H.E.M.)
| | - David M. Williams
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
- Correspondence: ; Tel.: +44-114-222-9502
| |
Collapse
|
10
|
Chen YT, Yang H, Chu JW. Structure-mechanics statistical learning unravels the linkage between local rigidity and global flexibility in nucleic acids. Chem Sci 2020; 11:4969-4979. [PMID: 34122953 PMCID: PMC8159235 DOI: 10.1039/d0sc00480d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mechanical properties of nucleic acids underlie biological processes ranging from genome packaging to gene expression, but tracing their molecular origin has been difficult due to the structural and chemical complexity. We posit that concepts from machine learning can help to tackle this long-standing challenge. Here, we demonstrate the feasibility and advantage of this strategy through developing a structure-mechanics statistical learning scheme to elucidate how local rigidity in double-stranded (ds)DNA and dsRNA may lead to their global flexibility in bend, stretch, and twist. Specifically, the mechanical parameters in a heavy-atom elastic network model are computed from the trajectory data of all-atom molecular dynamics simulation. The results show that the inter-atomic springs for backbone and ribose puckering in dsRNA are stronger than those in dsDNA, but are similar in strengths for base-stacking and base-pairing. Our analysis shows that the experimental observation of dsDNA being easier to bend but harder to stretch than dsRNA comes mostly from the respective B- and A-form topologies. The computationally resolved composition of local rigidity indicates that the flexibility of both nucleic acids is mostly due to base-stacking. But for properties like twist-stretch coupling, backbone springs are shown to play a major role instead. The quantitative connection between local rigidity and global flexibility sets foundation for understanding how local binding and chemical modification of genetic materials effectuate longer-ranged regulatory signals. The mechanical properties of nucleic acids underlie biological processes ranging from genome packaging to gene expression. We devise structural mechanics statistical learning method to reveal their molecular origin in terms of chemical interactions.![]()
Collapse
Affiliation(s)
- Yi-Tsao Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University Hsinchu Taiwan 30068 Republic of China
| | - Haw Yang
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University Hsinchu Taiwan 30068 Republic of China +886 3 5712121 ext. 56996
| |
Collapse
|
11
|
Li M, Wang J. Stretching Wormlike Chains in Narrow Tubes of Arbitrary Cross-Sections. Polymers (Basel) 2019; 11:E2050. [PMID: 31835594 PMCID: PMC6960511 DOI: 10.3390/polym11122050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 12/03/2022] Open
Abstract
We considered the stretching of semiflexible polymer chains confined in narrow tubes with arbitrary cross-sections. Based on the wormlike chain model and technique of normal mode decomposition in statistical physics, we derived a compact analytical expression on the force-confinement-extension relation of the chains. This single formula was generalized to be valid for tube confinements with arbitrary cross-sections. In addition, we extended the generalized bead-rod model for Brownian dynamics simulations of confined polymer chains subjected to force stretching, so that the confinement effects to the chains applied by the tubes with arbitrary cross-sections can be quantitatively taken into account through numerical simulations. Extensive simulation examples on the wormlike chains confined in tubes of various shapes quantitatively justified the theoretically derived generalized formula on the force-confinement-extension relation of the chains.
Collapse
Affiliation(s)
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
12
|
Cristofalo M, Kovari D, Corti R, Salerno D, Cassina V, Dunlap D, Mantegazza F. Nanomechanics of Diaminopurine-Substituted DNA. Biophys J 2019; 116:760-771. [PMID: 30795872 DOI: 10.1016/j.bpj.2019.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022] Open
Abstract
2,6-diaminopurine (DAP) is a nucleobase analog of adenine. When incorporated into double-stranded DNA (dsDNA), it forms three hydrogen bonds with thymine. Rare in nature, DAP substitution alters the physical characteristics of a DNA molecule without sacrificing sequence specificity. Here, we show that in addition to stabilizing double-strand hybridization, DAP substitution also changes the mechanical and conformational properties of dsDNA. Thermal melting experiments reveal that DAP substitution raises melting temperatures without diminishing sequence-dependent effects. Using a combination of atomic force microscopy (AFM), magnetic tweezer (MT) nanomechanical assays, and circular dichroism spectroscopy, we demonstrate that DAP substitution increases the flexural rigidity of dsDNA yet also facilitates conformational shifts, which manifest as changes in molecule length. DAP substitution increases both the static and dynamic persistence length of DNA (measured by AFM and MT, respectively). In the static case (AFM), in which tension is not applied to the molecule, the contour length of DAP-DNA appears shorter than wild-type (WT)-DNA; under tension (MT), they have similar dynamic contour lengths. At tensions above 60 pN, WT-DNA undergoes characteristic overstretching because of strand separation (tension-induced melting) and spontaneous adoption of a conformation termed S-DNA. Cyclic overstretching and relaxation of WT-DNA at near-zero loading rates typically yields hysteresis, indicative of tension-induced melting; conversely, cyclic stretching of DAP-DNA showed little or no hysteresis, consistent with the adoption of the S-form, similar to what has been reported for GC-rich sequences. However, DAP-DNA overstretching is distinct from GC-rich overstretching in that it happens at a significantly lower tension. In physiological salt conditions, evenly mixed AT/GC DNA typically overstretches around 60 pN. GC-rich sequences overstretch at similar if not slightly higher tensions. Here, we show that DAP-DNA overstretches at 52 pN. In summary, DAP substitution decreases the overall stability of the B-form double helix, biasing toward non-B-form DNA helix conformations at zero tension and facilitating the B-to-S transition at high tension.
Collapse
Affiliation(s)
- Matteo Cristofalo
- School of Medicine and Surgery, Università di Milano-Bicocca, Monza (MB), Italy
| | - Daniel Kovari
- Department of Physics, Emory University, Atlanta, Georgia
| | - Roberta Corti
- School of Medicine and Surgery, Università di Milano-Bicocca, Monza (MB), Italy
| | - Domenico Salerno
- School of Medicine and Surgery, Università di Milano-Bicocca, Monza (MB), Italy.
| | - Valeria Cassina
- School of Medicine and Surgery, Università di Milano-Bicocca, Monza (MB), Italy
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, Georgia.
| | | |
Collapse
|
13
|
Peters JP, Kowal EA, Pallan PS, Egli M, Maher LJ. Comparative analysis of inosine-substituted duplex DNA by circular dichroism and X-ray crystallography. J Biomol Struct Dyn 2018; 36:2753-2772. [PMID: 28818035 PMCID: PMC6251417 DOI: 10.1080/07391102.2017.1369164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leveraging structural biology tools, we report the results of experiments seeking to determine if the different mechanical properties of DNA polymers with base analog substitutions can be attributed, at least in part, to induced changes from classical B-form DNA. The underlying hypothesis is that different inherent bending and twisting flexibilities may characterize non-canonical B-DNA, so that it is inappropriate to interpret mechanical changes caused by base analog substitution as resulting simply from 'electrostatic' or 'base stacking' influences without considering the larger context of altered helical geometry. Circular dichroism spectra of inosine-substituted oligonucleotides and longer base-substituted DNAs in solution indicated non-canonical helical conformations, with the degree of deviation from a standard B-form geometry depending on the number of I⋅C pairs. X-ray diffraction of a highly inosine-substituted DNA decamer crystal (eight I⋅C and two A⋅T pairs) revealed an A-tract-like conformation with a uniformly narrow minor groove, reduced helical rise, and the majority of sugars adopting a C1'-exo (southeastern) conformation. This contrasts with the standard B-DNA geometry with C2'-endo sugar puckers (south conformation). In contrast, the crystal structure of a decamer with only four I⋅C pairs has a geometry similar to that of the reference duplex with eight G⋅C and two A⋅T pairs. The unique crystal geometry of the inosine-rich duplex is noteworthy given its unusual CD signature in solution and the altered mechanical properties of some inosine-containing DNAs.
Collapse
Affiliation(s)
- Justin P. Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Ewa A. Kowal
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA
| | - Pradeep S. Pallan
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA,To whom correspondence should be addressed at
| |
Collapse
|
14
|
Peters JP, Maher LJ. Approaches for Determining DNA Persistence Length Using Atomic Force Microscopy. Methods Mol Biol 2018; 1837:211-256. [PMID: 30109614 DOI: 10.1007/978-1-4939-8675-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy (AFM) is widely used to image and study biological molecules. As an example, we have utilized AFM to investigate how the mechanical properties of DNA polymers depend on electrostatics and the strength of DNA base stacking by studying double-stranded DNA molecules incorporating several different neutral and charged base modifications. Here, we describe ten complementary approaches for determining DNA persistence length by AFM imaging. The combination of different approaches provides increased confidence and statistical reliability over existing methods utilizing only a single approach.
Collapse
Affiliation(s)
- Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
15
|
Zoli M. Twist-stretch profiles of DNA chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:225101. [PMID: 28394255 DOI: 10.1088/1361-648x/aa6c50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule's free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology, University of Camerino, I-62032 Camerino, Italy
| |
Collapse
|
16
|
Taylor AI, Beuron F, Peak-Chew SY, Morris EP, Herdewijn P, Holliger P. Nanostructures from Synthetic Genetic Polymers. Chembiochem 2016; 17:1107-10. [PMID: 26992063 PMCID: PMC4973672 DOI: 10.1002/cbic.201600136] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/22/2022]
Abstract
Nanoscale objects of increasing complexity can be constructed from DNA or RNA. However, the scope of potential applications could be enhanced by expanding beyond the moderate chemical diversity of natural nucleic acids. Here, we explore the construction of nano-objects made entirely from alternative building blocks: synthetic genetic polymers not found in nature, also called xeno nucleic acids (XNAs). Specifically, we describe assembly of 70 kDa tetrahedra elaborated in four different XNA chemistries (2'-fluro-2'-deoxy-ribofuranose nucleic acid (2'F-RNA), 2'-fluoroarabino nucleic acids (FANA), hexitol nucleic acids (HNA), and cyclohexene nucleic acids (CeNA)), as well as mixed designs, and a ∼600 kDa all-FANA octahedron, visualised by electron microscopy. Our results extend the chemical scope for programmable nanostructure assembly, with implications for the design of nano-objects and materials with an expanded range of structural and physicochemical properties, including enhanced biostability.
Collapse
Affiliation(s)
- Alexander I Taylor
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Department of Biology/Centre for Applied Synthetic Biology, Concordia University, 7141 Rue Sherbrooke, Montreal, H4B 1R6, Canada.
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories), 237 Fulham Road, London, SW3 6JB, UK
| | - Sew-Yeu Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories), 237 Fulham Road, London, SW3 6JB, UK
| | - Piet Herdewijn
- Rega Institute, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
- Institute of Systems and Synthetic Biology, Université Evry, 5 rue Henri Desbrueres, 91030, Evry Cedex, France
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
17
|
Kim YJ, Kim DN. Structural Basis for Elastic Mechanical Properties of the DNA Double Helix. PLoS One 2016; 11:e0153228. [PMID: 27055239 PMCID: PMC4824394 DOI: 10.1371/journal.pone.0153228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/25/2016] [Indexed: 01/20/2023] Open
Abstract
In this article, we investigate the principal structural features of the DNA double helix and their effects on its elastic mechanical properties. We develop, in the pursuit of this purpose, a helical continuum model consisting of a soft helical core and two stiff ribbons wrapping around it. The proposed model can reproduce the negative twist-stretch coupling of the helix successfully as well as its global stretching, bending, and torsional rigidities measured experimentally. Our parametric study of the model using the finite element method further reveals that the stiffness of phosphate backbones is a crucial factor for the counterintuitive overwinding behavior of the duplex and its extraordinarily high torsional rigidity, the major-minor grooves augment the twist-stretch coupling, and the change of the helicity might be responsible for the transition from a negative to a positive twist-stretching coupling when a tensile force is applied to the duplex.
Collapse
Affiliation(s)
- Young-Joo Kim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Do-Nyun Kim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Institute of Advanced Machines and Design, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
18
|
Wu YY, Bao L, Zhang X, Tan ZJ. Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs. J Chem Phys 2016; 142:125103. [PMID: 25833610 DOI: 10.1063/1.4915539] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5-50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ∼6 bps at each helix end. Correspondingly, the apparent persistence length lp of short DNAs increases gradually from ∼29 nm to ∼45 nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ∼6 bps at each helix end have the similar flexibility with those of kilo bps and can be described by the worm-like chain model with lp ∼ 50 nm.
Collapse
Affiliation(s)
- Yuan-Yan Wu
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Bao
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xi Zhang
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Abstract
We study the elasticity of DNA based on local principal axes of bending identified from over 0.9-μs all-atom molecular dynamics simulations of DNA oligos. The calculated order parameters describe motion of DNA as an elastic rod. In 10 possible dinucleotide steps, bending about the two principal axes is anisotropic yet linearly elastic. Twist about the centroid axis is largely decoupled from bending, but DNA tends to overtwist for unbending beyond the typical range of thermal motion, which is consistent with experimentally observed twist-stretch coupling. The calculated elastic stiffness of dinucleotide steps yield sequence-dependent persistence lengths consistent with previous single-molecule experiments, which is further analyzed by performing coarse-grained simulations of DNA. Flexibility maps of oligos constructed from simulation also match with those from the precalculated stiffness of dinucleotide steps. These support the premise that base pair interaction at the dinucleotide-level is mainly responsible for the elasticity of DNA. Furthermore, we analyze 1381 crystal structures of protein-DNA complexes. In most structures, DNAs are mildly deformed and twist takes the highest portion of the total elastic energy. By contrast, in structures with the elastic energy per dinucleotide step greater than about 4.16 kBT (kBT: thermal energy), the major bending becomes dominant. The extensional energy of dinucleotide steps takes at most 35% of the total elastic energy except for structures containing highly deformed DNAs where linear elasticity breaks down. Such partitioning between different deformational modes provides quantitative insights into the conformational dynamics of DNA as well as its interaction with other molecules and surfaces.
Collapse
Affiliation(s)
- Xiaojing Teng
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
- School of Computational Sciences, Korea Institute for Advanced Study , Seoul, Korea 02455
| |
Collapse
|
20
|
Anosova I, Kowal EA, Dunn MR, Chaput JC, Van Horn WD, Egli M. The structural diversity of artificial genetic polymers. Nucleic Acids Res 2015; 44:1007-21. [PMID: 26673703 PMCID: PMC4756832 DOI: 10.1093/nar/gkv1472] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space.
Collapse
Affiliation(s)
- Irina Anosova
- The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Ewa A Kowal
- Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA
| | - Matthew R Dunn
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - Wade D Van Horn
- The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Martin Egli
- Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
21
|
Kahn JD. DNA, flexibly flexible. Biophys J 2015; 107:282-284. [PMID: 25028868 DOI: 10.1016/j.bpj.2014.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 11/16/2022] Open
Abstract
Investigators have constructed dsDNA molecules with several different base modifications and have characterized their bending and twisting flexibilities using atomic force microscopy, DNA ring closure, and single-molecule force spectroscopy with optical tweezers. The three methods provide persistence length measurements that agree semiquantitatively, and they show that the persistence length is surprisingly similar for all of the modified DNAs. The circular dichroism spectra of modified DNAs differ substantially. Simple explanations based on base stacking strength, polymer charge, or groove occupancy by functional groups cannot explain the results, which will guide further high-resolution theory and experiments.
Collapse
Affiliation(s)
- Jason D Kahn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
22
|
Peters JP, Mogil LS, McCauley MJ, Williams MC, Maher LJ. Mechanical properties of base-modified DNA are not strictly determined by base stacking or electrostatic interactions. Biophys J 2015; 107:448-459. [PMID: 25028886 DOI: 10.1016/j.bpj.2014.04.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 02/08/2023] Open
Abstract
This work probes the mystery of what balance of forces creates the extraordinary mechanical stiffness of DNA to bending and twisting. Here we explore the relationship between base stacking, functional group occupancy of the DNA minor and major grooves, and DNA mechanical properties. We study double-helical DNA molecules substituting either inosine for guanosine or 2,6-diaminopurine for adenine. These DNA variants, respectively, remove or add an amino group from the DNA minor groove, with corresponding changes in hydrogen-bonding and base stacking energy. Using the techniques of ligase-catalyzed cyclization kinetics, atomic force microscopy, and force spectroscopy with optical tweezers, we show that these DNA variants have bending persistence lengths within the range of values reported for sequence-dependent variation of the natural DNA bases. Comparison with seven additional DNA variants that modify the DNA major groove reveals that DNA bending stiffness is not correlated with base stacking energy or groove occupancy. Data from circular dichroism spectroscopy indicate that base analog substitution can alter DNA helical geometry, suggesting a complex relationship among base stacking, groove occupancy, helical structure, and DNA bend stiffness.
Collapse
Affiliation(s)
- Justin P Peters
- Department of Biochemistry and Molecular Biology and Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lauren S Mogil
- Department of Biochemistry and Molecular Biology and Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - L James Maher
- Department of Biochemistry and Molecular Biology and Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota.
| |
Collapse
|
23
|
Abstract
Fluoroquinolones (FQ) are powerful broad-spectrum antibiotics whose side effects include renal damage and, strangely, tendinopathies. The pathological mechanisms underlying these toxicities are poorly understood. Here, we show that the FQ drugs norfloxacin, ciprofloxacin, and enrofloxacin are powerful iron chelators comparable with deferoxamine, a clinically useful iron-chelating agent. We show that iron chelation by FQ leads to epigenetic effects through inhibition of α-ketoglutarate-dependent dioxygenases that require iron as a co-factor. Three dioxygenases were examined in HEK293 cells treated with FQ. At sub-millimolar concentrations, these antibiotics inhibited jumonji domain histone demethylases, TET DNA demethylases, and collagen prolyl 4-hydroxylases, leading to accumulation of methylated histones and DNA and inhibition of proline hydroxylation in collagen, respectively. These effects may explain FQ-induced nephrotoxicity and tendinopathy. By the same reasoning, dioxygenase inhibition by FQ was predicted to stabilize transcription factor HIF-1α by inhibition of the oxygen-dependent hypoxia-inducible transcription factor prolyl hydroxylation. In dramatic contrast to this prediction, HIF-1α protein was eliminated by FQ treatment. We explored possible mechanisms for this unexpected effect and show that FQ inhibit HIF-1α mRNA translation. Thus, FQ antibiotics induce global epigenetic changes, inhibit collagen maturation, and block HIF-1α accumulation. We suggest that these mechanisms explain the classic renal toxicities and peculiar tendinopathies associated with FQ antibiotics.
Collapse
Affiliation(s)
- Sujan Badal
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Yeng F Her
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - L James Maher
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
24
|
Her YF, Nelson-Holte M, Maher LJ. Oxygen concentration controls epigenetic effects in models of familial paraganglioma. PLoS One 2015; 10:e0127471. [PMID: 25985299 PMCID: PMC4436181 DOI: 10.1371/journal.pone.0127471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/15/2015] [Indexed: 01/14/2023] Open
Abstract
Familial paraganglioma (PGL) is a rare neuroendocrine cancer associated with defects in the genes encoding the subunits of succinate dehydrogenase (SDH), a tricarboxylic acid (TCA) cycle enzyme. For unknown reasons, a higher prevalence of PGL has been reported for humans living at higher altitude, with increased disease aggressiveness and morbidity. In this study, we evaluate the effects of oxygen on epigenetic changes due to succinate accumulation in three SDH loss cell culture models. We test the hypothesis that the mechanism of α-ketoglutarate (α-KG)-dependent dioxygenase enzymes explains the inhibitory synergy of hypoxia and succinate accumulation. We confirm that SDH loss leads to profound succinate accumulation. We further show that hypoxia and succinate accumulation synergistically inhibit α-KG-dependent dioxygenases leading to increased stabilization of transcription factor HIF1α, HIF2α, and hypermethylation of histones and DNA. Increasing oxygen suppresses succinate inhibition of α-KG-dependent dioxygenases. This result provides a possible explanation for the association between hypoxia and PGL, and suggests hyperoxia as a potential novel therapy.
Collapse
Affiliation(s)
- Yeng F. Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, United States of America
- Mayo Graduate School, Mayo Medical School and the Mayo Clinic Medical Scientist Training Program, 200 First St. SW, Rochester, MN, 55905, United States of America
| | - Molly Nelson-Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, United States of America
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, United States of America
- * E-mail:
| |
Collapse
|
25
|
Driessen RPC, Sitters G, Laurens N, Moolenaar GF, Wuite GJL, Goosen N, Dame RT. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 2014; 53:6430-8. [PMID: 25291500 PMCID: PMC5451147 DOI: 10.1021/bi500344j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
helical structure of double-stranded DNA is destabilized by
increasing temperature. Above a critical temperature (the melting
temperature), the two strands in duplex DNA become fully separated.
Below this temperature, the structural effects are localized. Using
tethered particle motion in a temperature-controlled sample chamber,
we systematically investigated the effect of increasing temperature
on DNA structure and the interplay between this effect and protein
binding. Our measurements revealed that (1) increasing temperature
enhances DNA flexibility, effectively leading to more compact folding
of the double-stranded DNA chain, and (2) temperature differentially
affects different types of DNA-bending chromatin proteins from mesophilic
and thermophilic organisms. Thus, our findings aid in understanding
genome organization in organisms thriving at moderate as well as extreme
temperatures. Moreover, our results underscore the importance of carefully
controlling and measuring temperature in single-molecule DNA (micromanipulation)
experiments.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Leiden University , 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Cherstvy AG, Teif VB. Electrostatic effect of H1-histone protein binding on nucleosome repeat length. Phys Biol 2014; 11:044001. [PMID: 25078656 DOI: 10.1088/1478-3975/11/4/044001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
27
|
Stellwagen NC, Peters JP, Dong Q, Maher LJ, Stellwagen E. The free solution mobility of DNA and other analytes varies as the logarithm of the fractional negative charge. Electrophoresis 2014; 35:1855-63. [PMID: 24648187 DOI: 10.1002/elps.201400040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 11/09/2022]
Abstract
The free solution mobilities of ssDNA and dsDNA molecules with variable charge densities have been measured by CE. DNA charge density was modified either by appending positively or negatively charged groups to the thymine residues in a 98 bp DNA molecule, or by replacing some of the negatively charged phosphate internucleoside linkers in small ssDNA or dsDNA oligomers with positively charged phosphoramidate linkers. Mobility ratios were calculated for each dataset by dividing the mobility of a charge variant by the mobility of its unmodified parent DNA. Mobility ratios essentially eliminate the effect of the BGE on the observed mobility, making it possible to compare analytes measured under different experimental conditions. Neutral moieties attached to the thymine residues in the 98-bp DNA molecule had little or no effect on the mobility ratios, indicating that bulky substituents in the DNA major groove do not affect the mobility significantly. The mobility ratios observed for the thymine-modified and linker-modified DNA charge variants increased approximately linearly with the logarithm of the fractional negative charge of the DNA. Mobility ratios calculated from previous studies of linker-modified DNA charge variants and small multicharged organic molecules also increased approximately linearly with the logarithm of the fractional negative charge of the analyte. The results do not agree with the Debye-Hückel-Onsager theory of electrophoresis, which predicts that the mobility of an analyte should depend linearly on analyte charge, not the logarithm of the charge, when the frictional coefficient is held constant.
Collapse
|
28
|
Tanpure AA, Srivatsan SG. Synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue based on the Lucifer chromophore. Chembiochem 2014; 15:1309-16. [PMID: 24861713 DOI: 10.1002/cbic.201402052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 11/10/2022]
Abstract
The majority of fluorescent nucleoside analogues used in nucleic acid studies have excitation maxima in the UV region and show very low fluorescence within oligonucleotides (ONs); hence, they cannot be utilised with certain fluorescence methods and for cell-based analysis. Here, we describe the synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue, derived by attaching a Lucifer chromophore (1,8-naphthalimide core) at the 5-position of uracil. The emissive nucleoside displays excitation and emission maxima in the visible region and exhibits high quantum yield. Importantly, when incorporated into ON duplexes it retains appreciable fluorescence efficiency and is sensitive to the neighbouring base environment. Notably, the nucleoside signals the presence of purine repeats in ON duplexes with an enhancement in fluorescence intensity, a property rarely displayed by other nucleoside analogues.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)
| | | |
Collapse
|