1
|
Rico-Díaz A, Barreiro-Alonso A, Rey-Souto C, Becerra M, Lamas-Maceiras M, Cerdán ME, Vizoso-Vázquez Á. The HMGB Protein KlIxr1, a DNA Binding Regulator of Kluyveromyces lactis Gene Expression Involved in Oxidative Metabolism, Growth, and dNTP Synthesis. Biomolecules 2021; 11:biom11091392. [PMID: 34572607 PMCID: PMC8465852 DOI: 10.3390/biom11091392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
In the traditional fermentative model yeast Saccharomyces cerevisiae, ScIxr1 is an HMGB (High Mobility Group box B) protein that has been considered as an important regulator of gene transcription in response to external changes like oxygen, carbon source, or nutrient availability. Kluyveromyces lactis is also a useful eukaryotic model, more similar to many human cells due to its respiratory metabolism. We cloned and functionally characterized by different methodologies KlIXR1, which encodes a protein with only 34.4% amino acid sequence similarity to ScIxr1. Our data indicate that both proteins share common functions, including their involvement in the response to hypoxia or oxidative stress induced by hydrogen peroxide or metal treatments, as well as in the control of key regulators for maintenance of the dNTP (deoxyribonucleotide triphosphate) pool and ribosome synthesis. KlIxr1 is able to bind specific regulatory DNA sequences in the promoter of its target genes, which are well conserved between S. cerevisiae and K. lactis. Oppositely, we found important differences between ScIrx1 and KlIxr1 affecting cellular responses to cisplatin or cycloheximide in these yeasts, which could be dependent on specific and non-conserved domains present in these two proteins.
Collapse
|
2
|
Zhu W, Liu Y, Zhang W, Fan W, Wang S, Gu JH, Sun H, Liu F. Selenomethionine protects hematopoietic stem/progenitor cells against cobalt nanoparticles by stimulating antioxidant actions and DNA repair functions. Aging (Albany NY) 2021; 13:11705-11726. [PMID: 33875618 PMCID: PMC8109066 DOI: 10.18632/aging.202865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) can differentiate into all blood lineages to maintain hematopoiesis, wound healing, and immune functions. Recently, cobalt-chromium alloy casting implants have been used extensively in total hip replacements; however, cobalt nanoparticles (CoNPs) released from the alloy were toxic to HSCs and HPCs. We aimed to investigate the mechanism underlying the toxic effect of CoNPs on HSCs/HPCs and to determine the protective effect of selenomethionine (SeMet) against CoNPs in vitro and in vivo. Human and rat CD34+ HSCs/HPCs were isolated from cord blood and bone marrow, respectively. CoNPs decreased the viability of CD34+ HSCs/HPCs and increased apoptosis. SeMet attenuated the toxicity of CoNPs by enhancing the antioxidant ability of cells. The protective effect of SeMet was not completely abolished after adding H2O2 to abrogate the improvement of the antioxidant capacity by SeMet. SeMet and CoNPs stimulated ATM/ATR DNA damage response signals and inhibited cell proliferation. Unlike CoNPs, SeMet did not damage the DNA, and cell proliferation recovered after removing SeMet. SeMet inhibited the CoNP-induced upregulation of hypoxia inducible factor (HIF)-1α, thereby disrupting the inhibitory effect of HIF-1α on breast cancer type 1 susceptibility protein (BRCA1). Moreover, SeMet promoted BRCA1-mediated ubiquitination of cyclin B by upregulating UBE2K. Thus, SeMet enhanced cell cycle arrest and DNA repair post-CoNP exposure. Overall, SeMet protected CD34+ HSCs/HPCs against CoNPs by stimulating antioxidant activity and DNA repair.
Collapse
Affiliation(s)
- Wenfeng Zhu
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Weinan Zhang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wentao Fan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siqi Wang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Huanjian Sun
- Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Mota MN, Martins LC, Sá-Correia I. The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering. J Fungi (Basel) 2021; 7:90. [PMID: 33513997 PMCID: PMC7911966 DOI: 10.3390/jof7020090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Methanol is a promising feedstock for metabolically competent yeast strains-based biorefineries. However, methanol toxicity can limit the productivity of these bioprocesses. Therefore, the identification of genes whose expression is required for maximum methanol tolerance is important for mechanistic insights and rational genomic manipulation to obtain more robust methylotrophic yeast strains. The present chemogenomic analysis was performed with this objective based on the screening of the Euroscarf Saccharomyces cerevisiae haploid deletion mutant collection to search for susceptibility phenotypes in YPD medium supplemented with 8% (v/v) methanol, at 35 °C, compared with an equivalent ethanol concentration (5.5% (v/v)). Around 400 methanol tolerance determinants were identified, 81 showing a marked phenotype. The clustering of the identified tolerance genes indicates an enrichment of functional categories in the methanol dataset not enriched in the ethanol dataset, such as chromatin remodeling, DNA repair and fatty acid biosynthesis. Several genes involved in DNA repair (eight RAD genes), identified as specific for methanol toxicity, were previously reported as tolerance determinants for formaldehyde, a methanol detoxification pathway intermediate. This study provides new valuable information on genes and potential regulatory networks involved in overcoming methanol toxicity. This knowledge is an important starting point for the improvement of methanol tolerance in yeasts capable of catabolizing and copying with methanol concentrations present in promising bioeconomy feedstocks, including industrial residues.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
4
|
Barreiro-Alonso A, Lamas-Maceiras M, Cerdán EM, Vizoso-Vázquez Á. The HMGB protein Ixr1 interacts with Ssn8 and Tdh3 involved in transcriptional regulation. FEMS Yeast Res 2019; 18:4847888. [PMID: 29438513 DOI: 10.1093/femsyr/foy013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022] Open
Abstract
Ixr1 is a Saccharomyces cerevisiae transcriptional factor that extensively regulates the response to hypoxia and controls other important cellular functions and DNA repair. During aerobic growth, the Ixr1 repressor function is predominant on regulated promoters of hypoxic genes, although activator effects are also observed on other genes. During hypoxia, Ixr1 expression increases and the number of genes activated by Ixr1 also increase. In this work we demonstrate that the NH2-terminal region of Ixr1 is involved in transcriptional activation. We also present the first analysis about Ixr1 interactions with three factors that have been previously identified as important players in the yeast hypoxic response, Cyc8, Tup1 and Ssn8; results demonstrate that only Ssn8 binds to Ixr1. We have also looked for other Ixr1-binding proteins associated with transcriptional regulation, by co-purification and mass spectrometry identification. Tdh3, a protein involved in transcriptional silencing, is among the new identified Ixr1-binding proteins. Differential phosphorylation of Ixr1 is found when comparing aerobic and hypoxic yeast growth. Implication of these results in transcriptional regulation mediated by Ixr1 is discussed.
Collapse
Affiliation(s)
- Aida Barreiro-Alonso
- EXPRELA Group, Departamento de Bioloxía, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña 15001, Spain
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Departamento de Bioloxía, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña 15001, Spain
| | - Esperanza M Cerdán
- EXPRELA Group, Departamento de Bioloxía, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña 15001, Spain
| | - Ángel Vizoso-Vázquez
- EXPRELA Group, Departamento de Bioloxía, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña 15001, Spain
| |
Collapse
|
5
|
Vizoso-Vázquez Á, Lamas-Maceiras M, González-Siso MI, Cerdán ME. Ixr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Sci Rep 2018; 8:3090. [PMID: 29449612 PMCID: PMC5814428 DOI: 10.1038/s41598-018-21439-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work. Ixr1 regulates other transcriptional factors that respond to nutrient availability or extracellular and intracellular stress stimuli, some controlled by the TOR pathway and PKA signaling. Ixr1 controls transcription of ribosomal RNAs and genes encoding ribosomal proteins or involved in ribosome assembly. qPCR, ChIP, and 18S and 25S rRNAs measurement have confirmed this function. Ixr1 binds directly to several promoters of genes related to rRNA transcription and ribosome biogenesis. Cisplatin treatment mimics the effect of IXR1 deletion on rRNA and ribosomal gene transcription, and prevents Ixr1 binding to specific promoters related to these processes.
Collapse
Affiliation(s)
- Ángel Vizoso-Vázquez
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - Mónica Lamas-Maceiras
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Esperanza Cerdán
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain.
| |
Collapse
|
6
|
Alternative Chk1-independent S/M checkpoint in somatic cells that prevents premature mitotic entry. Med Oncol 2017; 34:70. [PMID: 28349497 DOI: 10.1007/s12032-017-0932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
Abstract
Genomic instability is the hallmark of cancer. Checkpoint kinase-1 (Chk1) is required for cell cycle delay after DNA damage or blocked DNA replication. Chk1-depleted tumor cells undergo premature mitosis and apoptosis. Here we analyzed the depletion of Chk1 in normal somatic cells in the absence of DNA damage in order to investigate alternative cell cycle checkpoint mechanism(s). By means of adenoviruses, flow cytometry, immunofluorescence and Western blotting, Chk1-depleted mouse embryonic fibroblasts (MEFs) were investigated. Chk1-/- MEFs arrested at the S/G2 boundary of the cell cycle with decreased protein levels of many cell cycle key players. Cyclin B1 was predominantly cytoplasmic. Interestingly, overexpression of nuclear dominant Cyclin B1 leads to nuclear translocation and premature mitosis. Chk1-/- MEFs exhibited the absence of double-strand breaks, yet cells showed delayed DNA damage recovery with pan-nuclear immunostaining pattern of Histone H2AX. Activation of this checkpoint would elicit a senescent-like phenotype. Taken together, our elaborated data revealed the existence of an additional S/M checkpoint functioning via γH2AX signaling and cytoplasmic retention of Cyclin B1 in somatic cells.
Collapse
|
7
|
Vizoso-Vázquez A, Lamas-Maceiras M, Fernández-Leiro R, Rico-Díaz A, Becerra M, Cerdán ME. Dual function of Ixr1 in transcriptional regulation and recognition of cisplatin-DNA adducts is caused by differential binding through its two HMG-boxes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:256-269. [PMID: 27871851 DOI: 10.1016/j.bbagrm.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/30/2022]
Abstract
Ixr1 is a transcriptional factor involved in the response to hypoxia, which is also related to DNA repair. It binds to DNA through its two in-tandem high mobility group box (HMG-box) domains. Each function depends on recognition of different DNA structures, B-form DNA at specific consensus sequences for transcriptional regulation, or distorted DNA, like cisplatin-DNA adducts, for DNA repair. However, the contribution of the HMG-box domains in the Ixr1 protein to the formation of different protein-DNA complexes is poorly understood. We have biophysically and biochemically characterized these interactions with specific DNA sequences from the promoters regulated by Ixr1, or with cisplatin-DNA adducts. Both HMG-boxes are necessary for transcriptional regulation, and they are not functionally interchangeable. The in-tandem arrangement of their HMG-boxes is necessary for functional folding and causes sequential cooperative binding to specific DNA sequences, with HMG-box A showing a higher contribution to DNA binding and bending than the HMG-box B. Binding of Ixr1 HMG boxes to specific DNA sequences is entropy driven, whereas binding to platinated DNA is enthalpy driven for HMG-box A and entropy driven for HMG-box B. This is the first proof that HMG-box binding to different DNA structures is associated with predictable thermodynamic differences. Based on our study, we present a model to explain the dual function of Ixr1 in the regulation of gene expression and recognition of distorted DNA structures caused by cisplatin treatment.
Collapse
Affiliation(s)
- A Vizoso-Vázquez
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - M Lamas-Maceiras
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - R Fernández-Leiro
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - A Rico-Díaz
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - M Becerra
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - M E Cerdán
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain.
| |
Collapse
|
8
|
Abstract
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer agents antagonize deoxyribonucleotide metabolism. Here, we consider the extent to which aspects of deoxyribonucleotide metabolism contribute to our understanding of both carcinogenesis and to the effective use of anticancer agents.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| |
Collapse
|
9
|
Buldakov MA, Hassan MA, Jawaid P, Cherdyntseva NV, Kondo T. Cellular effects of low-intensity pulsed ultrasound and X-irradiation in combination in two human leukaemia cell lines. ULTRASONICS SONOCHEMISTRY 2015; 23:339-346. [PMID: 25287395 DOI: 10.1016/j.ultsonch.2014.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Previously, we have shown that a combination between X-irradiation and low-intensity pulsed ultrasound (US) could synergistically suppress cell survival post exposure (Buldakov et al., 2014). In this study, the cellular effects underlying the enhanced cell killing are investigated. U937 and Molt-4 cell lines were exposed to 1.0 MHz US with 50% duty factor at 0.3 W/cm(2) and pulsed at 1, 5 and 10 Hz immediately after exposure to X-rays at 0, 0.5, 2.5 and 5 Gy. The cells were assayed at different time points to depict the major cellular events that culminated in cell death. For instance, membrane damage and cell lysis were estimated immediately following exposure and 24 h later. Intracellular reactive oxygen species (ROS) were also determined flow cytometrically after treatment. Moreover, the extent of DNA damage and cell cycle progression were determined at 6 and 24 h, respectively. Despite the general trend for synergism, there was a disproportionation of mediating factors depending on the cell type and its specific biological makeup. Immediately, US could induce appreciable necrotic cell death through extensive membrane damage in U937 but induced cell lysis in Molt-4 cells. ROS might have contributed to cell killing in Molt-4 but not in U937 cells. Although both of the physical modalities are significantly DNA-damaging alone, no additional damage was observed in combination. Moreover, override in some arrested cell cycle phases was also observed following combination. Collectively, the interaction between X-rays and US seems to depend mainly on the acoustic environment determined by the setup and this might explain the contradictory data among reports.
Collapse
Affiliation(s)
- Mikhail A Buldakov
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Cancer Research Institute of Siberian Вranch of the Russian Academy of Medical Sciences, Tomsk, Russia; Tomsk State University, Tomsk, Russia.
| | - Mariame A Hassan
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Str., Cairo 11562, Egypt.
| | - Paras Jawaid
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Nadejda V Cherdyntseva
- Cancer Research Institute of Siberian Вranch of the Russian Academy of Medical Sciences, Tomsk, Russia
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
10
|
Mathews CK. Deoxyribonucleotides as genetic and metabolic regulators. FASEB J 2014; 28:3832-40. [PMID: 24928192 DOI: 10.1096/fj.14-251249] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 01/12/2023]
Abstract
For >35 yr, we have known that the accuracy of DNA replication is controlled in large part by the relative concentrations of the 4 canonical deoxyribonucleoside 5'-triphosphates (dNTPs) at the replisome. Since this field was last reviewed, ∼8 yr ago, there has been increased understanding of the mutagenic pathways as they occur in living cells. At the same time, aspects of deoxyribonucleotide metabolism have been shown to be critically involved in processes as diverse as cell cycle control, protooncogene expression, cellular defense against HIV infection, replication rate control, telomere length control, and mitochondrial function. Evidence supports a relationship between dNTP pools and microsatellite repeat instability. Relationships between dNTP synthesis and breakdown in controlling steady-state pools have become better defined. In addition, new experimental approaches have allowed definitive analysis of mutational pathways induced by dNTP pool abnormalities, both in Escherichia coli and in yeast. Finally, ribonucleoside triphosphate (rNTP) pools have been shown to be critical determinants of DNA replication fidelity. These developments are discussed in this review article.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|