1
|
Luo W, Hickman AB, Genzor P, Ghirlando R, Furman C, Menshikh A, Haase A, Dyda F, Wilson M. Transposase N-terminal phosphorylation and asymmetric transposon ends inhibit piggyBac transposition in mammalian cells. Nucleic Acids Res 2022; 50:13128-13142. [PMID: 36537219 PMCID: PMC9825180 DOI: 10.1093/nar/gkac1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
DNA transposon systems are widely used in mammalian cells for genetic modification experiments, but their regulation remains poorly understood. We used biochemical and cell-based assays together with AlphaFold modeling and rational protein redesign to evaluate aspects of piggyBac transposition including the previously unexplained role of the transposase N-terminus and the need for asymmetric transposon ends for cellular activity. We found that phosphorylation at predicted casein kinase II sites in the transposase N-terminus inhibits transposition, most likely by preventing transposase-DNA interactions. Deletion of the region containing these sites releases inhibition thereby enhancing activity. We also found that the N-terminal domain promotes transposase dimerization in the absence of transposon DNA. When the N-terminus is deleted, the transposase gains the ability to carry out transposition using symmetric transposon left ends. This novel activity is also conferred by appending a second C-terminal domain. When combined, these modifications together result in a transposase that is highly active when symmetric transposon ends are used. Our results demonstrate that transposase N-terminal phosphorylation and the requirement for asymmetric transposon ends both negatively regulate piggyBac transposition in mammalian cells. These novel insights into the mechanism and structure of the piggyBac transposase expand its potential use for genomic applications.
Collapse
Affiliation(s)
- Wentian Luo
- Department of Medicine, Division and Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pavol Genzor
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher M Furman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Menshikh
- Department of Medicine, Division and Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Astrid Haase
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew H Wilson
- Department of Medicine, Division and Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Nashville, TN 37212, USA
- Departments of Pharmacology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Lié O, Renault S, Augé-Gouillou C. SETMAR, a case of primate co-opted genes: towards new perspectives. Mob DNA 2022; 13:9. [PMID: 35395947 PMCID: PMC8994322 DOI: 10.1186/s13100-022-00267-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We carry out a review of the history and biological activities of one domesticated gene in higher primates, SETMAR, by discussing current controversies. Our purpose is to open a new outlook that will serve as a framework for future work about SETMAR, possibly in the field of cognition development. MAIN BODY What is newly important about SETMAR can be summarized as follows: (1) the whole protein sequence is under strong purifying pressure; (2) its role is to strengthen existing biological functions rather than to provide new ones; (3) it displays a tissue-specific pattern of expression, at least for the alternative-splicing it undergoes. Studies reported here demonstrate that SETMAR protein(s) may be involved in essential networks regulating replication, transcription and translation. Moreover, during embryogenesis, SETMAR appears to contribute to brain development. SHORT CONCLUSION Our review underlines for the first time that SETMAR directly interacts with genes involved in brain functions related to vocalization and vocal learning. These findings pave the way for future works regarding SETMAR and the development of cognitive abilities in higher primates.
Collapse
Affiliation(s)
- Oriane Lié
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,iBrain, Team Neurogenomics and Neuronal physiopathology, Faculty of Medicine, 10 Bd Tonnellé, Cedex 1, 37032, Tours, France
| | - Sylvaine Renault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,iBrain, Team Neurogenomics and Neuronal physiopathology, Faculty of Medicine, 10 Bd Tonnellé, Cedex 1, 37032, Tours, France
| | - Corinne Augé-Gouillou
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,iBrain, Team Neurogenomics and Neuronal physiopathology, Faculty of Medicine, 10 Bd Tonnellé, Cedex 1, 37032, Tours, France.
| |
Collapse
|
3
|
Tellier M. Structure, Activity, and Function of SETMAR Protein Lysine Methyltransferase. Life (Basel) 2021; 11:life11121342. [PMID: 34947873 PMCID: PMC8704517 DOI: 10.3390/life11121342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
SETMAR is a protein lysine methyltransferase that is involved in several DNA processes, including DNA repair via the non-homologous end joining (NHEJ) pathway, regulation of gene expression, illegitimate DNA integration, and DNA decatenation. However, SETMAR is an atypical protein lysine methyltransferase since in anthropoid primates, the SET domain is fused to an inactive DNA transposase. The presence of the DNA transposase domain confers to SETMAR a DNA binding activity towards the remnants of its transposable element, which has resulted in the emergence of a gene regulatory function. Both the SET and the DNA transposase domains are involved in the different cellular roles of SETMAR, indicating the presence of novel and specific functions in anthropoid primates. In addition, SETMAR is dysregulated in different types of cancer, indicating a potential pathological role. While some light has been shed on SETMAR functions, more research and new tools are needed to better understand the cellular activities of SETMAR and to investigate the therapeutic potential of SETMAR.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
4
|
GCN2 phosphorylates HIV-1 integrase and decreases HIV-1 replication by limiting viral integration. Sci Rep 2017; 7:2283. [PMID: 28536474 PMCID: PMC5442153 DOI: 10.1038/s41598-017-02276-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
GCN2 is a serine/threonine kinase involved in cellular stress response related to amino acid starvation. Previously, we showed that GCN2 interacts with HIV-1 integrase and is activated during HIV-1 infection. Herein, we identified HIV-1 integrase as a previously unknown substrate of GCN2 in vitro with a major site of phosphorylation at residue S255 located in the C-terminal domain of HIV-1 integrase. The underlying mechanism was investigated and it appeared that the integrase active site was required in order for GCN2 to target the integrase residue S255. Moreover, various integrases from other retroviruses (e.g. MLV, ASV) were also recognized as a substrate by GCN2. In cells, HIV-1 lentiviral particles harboring mutation at integrase position 255 were affected in their replication. Preventing phosphorylation resulted in an increase in infectivity that correlated with an increase in viral DNA integration. Infectivity of MLV was also higher in cells knocked-out for GCN2 suggesting a conserved mechanism to control viral replication. Altogether, our data suggest that GCN2 may constitute a general guardian of genome stability by regulating foreign DNA integration and as such be part of the antiviral armamentarium of the cell.
Collapse
|
5
|
Esnault C, Jaillet J, Delorme N, Bouchet N, Renault S, Douziech-Eyrolles L, Pilard JF, Augé-Gouillou C. Kinetic analysis of the interaction of Mos1 transposase with its inverted terminal repeats reveals new insight into the protein-DNA complex assembly. Chembiochem 2015; 16:140-8. [PMID: 25487538 DOI: 10.1002/cbic.201402466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/08/2022]
Abstract
Transposases are specific DNA-binding proteins that promote the mobility of discrete DNA segments. We used a combination of physicochemical approaches to describe the association of MOS1 (an eukaryotic transposase) with its specific target DNA, an event corresponding to the first steps of the transposition cycle. Because the kinetic constants of the reaction are still unknown, we aimed to determine them by using quartz crystal microbalance on two sources of recombinant MOS1: one produced in insect cells and the other produced in bacteria. The prokaryotic-expressed MOS1 showed no cooperativity and displayed a Kd of about 300 nM. In contrast, the eukaryotic-expressed MOS1 generated a cooperative system, with a lower Kd (∼ 2 nm). The origins of these differences were investigated by IR spectroscopy and AFM imaging. Both support the conclusion that prokaryotic- and eukaryotic-expressed MOS1 are not similarly folded, thereby resulting in differences in the early steps of transposition.
Collapse
Affiliation(s)
- Charles Esnault
- Groupe Instabilité Génétique et Transposases, EA 6306, Fédération GICC, UFR Sciences Pharmaceutiques, Université François Rabelais, 31 Avenue Monge, 37200 Tours (France)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Palazzo A, Moschetti R, Caizzi R, Marsano RM. The Drosophila mojavensis Bari3 transposon: distribution and functional characterization. Mob DNA 2014; 5:21. [PMID: 25093043 PMCID: PMC4120734 DOI: 10.1186/1759-8753-5-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/13/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bari-like transposons belong to the Tc1-mariner superfamily, and they have been identified in several genomes of the Drosophila genus. This transposon's family has been used as paradigm to investigate the complex dynamics underlying the persistence and structural evolution of transposable elements (TEs) within a genome. Three structural Bari variants have been identified so far and can be distinguished based on the organization of their terminal inverted repeats. Bari3 is the last discovered member of this family identified in Drosophila mojavensis, a recently emerged species of the Repleta group of the genus Drosophila. RESULTS We studied the insertion pattern of Bari3 in different D. mojavensis populations and found evidence of recent transposition activity. Analysis of the transposase domains unveiled the presence of a functional nuclear localization signal, as well as a functional binding domain. Using luciferase-based assays, we investigated the promoter activity of Bari3 as well as the interaction of its transposase with its left terminus. The results suggest that Bari3 is transposition-competent. Finally we demonstrated transposase transcript processing when the transposase gene is overexpressed in vivo and in vitro. CONCLUSIONS Bari3 displays very similar structural and functional features with its close relative, Bari1. Our results strongly suggest that Bari3 is an independent element that has generated genomic diversity in D. mojavensis. It can autonomously transcribe its transposase gene, which in turn can localize in the nucleus and bind the terminal inverted repeats of the transposon. Nevertheless, the identification of an unpredicted spliced form of the Bari3 transposase transcript allows us to hypothesize a control mechanism of its mobility based on mRNA processing. These results will aid the studies on the Bari family of transposons, which is intriguing for its widespread diffusion in Drosophilids coupled with a structural diversity generated during the evolution of Bari-like elements in their host genomes.
Collapse
Affiliation(s)
- Antonio Palazzo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
7
|
Pflieger A, Jaillet J, Petit A, Augé-Gouillou C, Renault S. Target capture during Mos1 transposition. J Biol Chem 2013; 289:100-11. [PMID: 24269942 DOI: 10.1074/jbc.m113.523894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide.
Collapse
Affiliation(s)
- Aude Pflieger
- From the EA 6306 Innovation Moléculaire et Thérapeutique, Université François Rabelais, UFR des Sciences et Techniques, UFR de Pharmacie, 37200 Tours, France
| | | | | | | | | |
Collapse
|