1
|
Takahashi H, Fujikawa M, Ogawa A. Rational design of eukaryotic riboswitches that up-regulate IRES-mediated translation initiation with high switching efficiency through a kinetic trapping mechanism in vitro. RNA (NEW YORK, N.Y.) 2023; 29:1950-1959. [PMID: 37704221 PMCID: PMC10653380 DOI: 10.1261/rna.079778.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
In general, riboswitches functioning through a cotranscriptional kinetic trapping mechanism (kt-riboswitches) show higher switching efficiencies in response to practical concentrations of their ligand molecules than eq-riboswitches, which function by an equilibrium mechanism. However, the former have been much more difficult to design due to their more complex mechanism. We here successfully developed a rational strategy for constructing eukaryotic kt-riboswitches that ligand-dependently enhance translation initiation mediated by an internal ribosome entry site (IRES). This was achieved both by utilizing some predicted structural features of a highly efficient bacterial kt-riboswitch identified through screening and by completely decoupling an aptamer domain from the IRES. Three kt-riboswitches optimized through this strategy, each responding to a different ligand, exhibited three- to sevenfold higher induction ratios (up to ∼90) than previously optimized eq-riboswitches regulating the same IRES-mediated translation in wheat germ extract. Because the IRES used functions well in various eukaryotic expression systems, these types of kt-riboswitches are expected to serve as major eukaryotic gene regulators based on RNA. In addition, the present strategy could be applied to the rational construction of other types of kt-riboswitches, including those functioning in bacterial expression systems.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
2
|
Xu J, Hou J, Ding M, Wang Z, Chen T. Riboswitches, from cognition to transformation. Synth Syst Biotechnol 2023; 8:357-370. [PMID: 37325181 PMCID: PMC10265488 DOI: 10.1016/j.synbio.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Riboswitches are functional RNA elements that regulate gene expression by directly detecting metabolites. Twenty years have passed since it was first discovered, researches on riboswitches are becoming increasingly standardized and refined, which could significantly promote people's cognition of RNA function as well. Here, we focus on some representative orphan riboswitches, enumerate the structural and functional transformation and artificial design of riboswitches including the coupling with ribozymes, hoping to attain a comprehensive understanding of riboswitch research.
Collapse
Affiliation(s)
- Jingdong Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Junyuan Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Mengnan Ding
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| |
Collapse
|
3
|
Takahashi H, Okubo R, Ogawa A. Eukaryotic artificial ON-riboswitches that respond efficiently to mid-sized short peptides. Bioorg Med Chem Lett 2022; 71:128839. [PMID: 35654302 DOI: 10.1016/j.bmcl.2022.128839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
We chose two types of mid-sized Arg-rich peptides (Rev-pep and Tat-pep) as ligands and used their aptamers to construct efficient eukaryotic ON-riboswitches (ligand-dependently upregulating riboswitches). Due to the aptamers' high affinities, the best Rev-pep-responsive and Tat-pep-responsive riboswitches obtained showed much higher switching efficiencies at low ligand concentrations than small ligand-responsive ON-riboswitches in the same mechanism. In addition, despite the high sequence similarity of Rev-pep and Tat-pep, the two best riboswitches were almost insensitive to each other's peptide ligand. Considering the high responsiveness and specificity along with the versatility of the expression platform used and the applicability of Arg-rich peptides, this orthogonal pair of riboswitches would be widely useful eukaryotic gene regulators or biosensors.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Ryo Okubo
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
4
|
Tabuchi T, Yokobayashi Y. High-throughput screening of cell-free riboswitches by fluorescence-activated droplet sorting. Nucleic Acids Res 2022; 50:3535-3550. [PMID: 35253887 PMCID: PMC8989549 DOI: 10.1093/nar/gkac152] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Cell-free systems that display complex functions without using living cells are emerging as new platforms to test our understanding of biological systems as well as for practical applications such as biosensors and biomanufacturing. Those that use cell-free protein synthesis (CFPS) systems to enable genetically programmed protein synthesis have relied on genetic regulatory components found or engineered in living cells. However, biological constraints such as cell permeability, metabolic stability, and toxicity of signaling molecules prevent development of cell-free devices using living cells even if cell-free systems are not subject to such constraints. Efforts to engineer regulatory components directly in CFPS systems thus far have been based on low-throughput experimental approaches, limiting the availability of basic components to build cell-free systems with diverse functions. Here, we report a high-throughput screening method to engineer cell-free riboswitches that respond to small molecules. Droplet-sorting of riboswitch variants in a CFPS system rapidly identified cell-free riboswitches that respond to compounds that are not amenable to bacterial screening methods. Finally, we used a histamine riboswitch to demonstrate chemical communication between cell-sized droplets.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Tabuchi T, Yokobayashi Y. Cell-free riboswitches. RSC Chem Biol 2021; 2:1430-1440. [PMID: 34704047 PMCID: PMC8496063 DOI: 10.1039/d1cb00138h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
The emerging community of cell-free synthetic biology aspires to build complex biochemical and genetic systems with functions that mimic or even exceed those in living cells. To achieve such functions, cell-free systems must be able to sense and respond to the complex chemical signals within and outside the system. Cell-free riboswitches can detect chemical signals via RNA-ligand interaction and respond by regulating protein synthesis in cell-free protein synthesis systems. In this article, we review synthetic cell-free riboswitches that function in both prokaryotic and eukaryotic cell-free systems reported to date to provide a current perspective on the state of cell-free riboswitch technologies and their limitations.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| |
Collapse
|
6
|
Chushak Y, Harbaugh S, Zimlich K, Alfred B, Chávez J, Kelley-Loughnane N. Characterization of synthetic riboswitch in cell-free protein expression systems. RNA Biol 2021; 18:1727-1738. [PMID: 33427029 DOI: 10.1080/15476286.2020.1868149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Riboswitches are RNA-based regulatory elements that utilize ligand-induced structural changes in the 5'-untranslated region of mRNA to regulate the expression of associated genes. The majority of synthetic riboswitches have been selected and tested in cell-based systems. Cell-free protein expression systems (CFPS) have several advantages for the development and testing of synthetic riboswitches, including eliminating interactions with complex cellular networks, and the decoupling of transcription and translation processes. To gain a better understanding of the riboswitch regulatory mechanism, to allow for more efficient riboswitch optimization and use for biosensing applications, we studied the performance of a theophylline-responsive synthetic riboswitch coupled with the superfolder green fluorescent protein (sfGFP) reporter gene in E. coli cellular extract and PURE cell-free systems. To monitor the mRNA dynamics, a malachite green aptamer sequence was added to the 3'-untranslated region of sfGFP mRNA. Performance of the theophylline riboswitch was compared with a constitutively expressed sfGFP (control). Transcription dynamics of the riboswitch mRNA was very similar to the transcription of the control mRNA for all theophylline concentrations tested in both E. coli extract and PURE CFPS. However, sfGFP expression in the riboswitch construct was one order of magnitude lower, even at the highest concentration of theophylline. A mathematical model of riboswitch activation governed by the kinetic trapping mechanism was developed. Two factors - a reduced fraction of mRNA in the 'ON' state and a considerably lower translation initiation rate in the riboswitch - contribute to the much lower level of protein expression in the theophylline riboswitch compared to the control construct.
Collapse
Affiliation(s)
- Yaroslav Chushak
- Air Force Research Laboratory, Henry M Jackson Foundation, Dayton, USA.,711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Svetlana Harbaugh
- 711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Kathryn Zimlich
- Air Force Research Laboratory, Henry M Jackson Foundation, Dayton, USA.,711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Bryan Alfred
- 711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Jorge Chávez
- 711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | | |
Collapse
|
7
|
Wrist A, Sun W, Summers RM. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research. ACS Synth Biol 2020; 9:682-697. [PMID: 32142605 DOI: 10.1021/acssynbio.9b00475] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The theophylline aptamer was isolated from an oligonucleotide library in 1994. Since that time, the aptamer has found wide utility, particularly in synthetic biology, cellular engineering, and diagnostic applications. The primary application of the theophylline aptamer is in the construction and characterization of synthetic riboswitches for regulation of gene expression. These riboswitches have been used to control cellular motility, regulate carbon metabolism, construct logic gates, screen for mutant enzymes, and control apoptosis. Other applications of the theophylline aptamer in cellular engineering include regulation of RNA interference and genome editing through CRISPR systems. Here we describe the uses of the theophylline aptamer for cellular engineering over the past 25 years. In so doing, we also highlight important synthetic biology applications to control gene expression in a ligand-dependent manner.
Collapse
Affiliation(s)
- Alexandra Wrist
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Wanqi Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ryan M. Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
8
|
Kent R, Dixon N. Contemporary Tools for Regulating Gene Expression in Bacteria. Trends Biotechnol 2019; 38:316-333. [PMID: 31679824 DOI: 10.1016/j.tibtech.2019.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Insights from novel mechanistic paradigms in gene expression control have led to the development of new gene expression systems for bioproduction, control, and sensing applications. Coupled with a greater understanding of synthetic burden and modern creative biodesign approaches, contemporary bacterial gene expression tools and systems are emerging that permit fine-tuning of expression, enabling greater predictability and maximisation of specific productivity, while minimising deleterious effects upon cell viability. These advances have been achieved by using a plethora of regulatory tools, operating at all levels of the so-called 'central dogma' of molecular biology. In this review, we discuss these gene regulation tools in the context of their design, prototyping, integration into expression systems, and biotechnological application.
Collapse
Affiliation(s)
- Ross Kent
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Shaver ZM, Bent SS, Bilby SR, Brown M, Buser A, Cuellar IG, Davis AJ, Doolan L, Enriquez FC, Estrada A, Herner S, Herron JC, Hunn AM, Hunter M, Johnston H, Koucky O, Mackley CC, Maghini D, Mattoon D, McDonald HT, Sinks H, Sprague AJ, Sullivan D, Tutar A, Umphreys A, Watson C, Zweerink D, Heyer LJ, Poet JL, Eckdahl TT, Campbell AM. Attempted use of PACE for riboswitch discovery generates three new translational theophylline riboswitch side products. BMC Res Notes 2018; 11:861. [PMID: 30518404 PMCID: PMC6280357 DOI: 10.1186/s13104-018-3965-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The purpose of this project was to use an in vivo method to discover riboswitches that are activated by new ligands. We employed phage-assisted continuous evolution (PACE) to evolve new riboswitches in vivo. We started with one translational riboswitch and one transcriptional riboswitch, both of which were activated by theophylline. We used xanthine as the new target ligand during positive selection followed by negative selection using theophylline. The goal was to generate very large M13 phage populations that contained unknown mutations, some of which would result in new aptamer specificity. We discovered side products of three new theophylline translational riboswitches with different levels of protein production. RESULTS We used next generation sequencing to identify M13 phage that carried riboswitch mutations. We cloned and characterized the most abundant riboswitch mutants and discovered three variants that produce different levels of translational output while retaining their theophylline specificity. Although we were unable to demonstrate evolution of new riboswitch ligand specificity using PACE, we recommend careful design of recombinant M13 phage to avoid evolution of "cheaters" that short circuit the intended selection pressure.
Collapse
Affiliation(s)
| | | | - Steven R Bilby
- Department of Biology, Missouri Western State University, Saint Joseph, USA
| | - Michael Brown
- Department of Computer Science, Math, and Physics, Missouri Western State University, Saint Joseph, USA
| | - Anna Buser
- Department of Biology, Davidson College, Davidson, USA
| | | | - Athena J Davis
- Department of Biology, Missouri Western State University, Saint Joseph, USA
| | - Lindsay Doolan
- Department of Biology, Missouri Western State University, Saint Joseph, USA
| | | | - Autumn Estrada
- Department of Computer Science, Math, and Physics, Missouri Western State University, Saint Joseph, USA
| | - Shelby Herner
- Department of Biology, Missouri Western State University, Saint Joseph, USA
| | - J Cody Herron
- Department of Biology, Davidson College, Davidson, USA
| | - Andrew M Hunn
- Department of Biology, Missouri Western State University, Saint Joseph, USA
| | | | | | - Owen Koucky
- Department of Biology, Davidson College, Davidson, USA
| | | | - Dylan Maghini
- Department of Biology, Davidson College, Davidson, USA.,Department of Math and Computer Science, Davidson College, Davidson, USA
| | - Devin Mattoon
- Department of Computer Science, Math, and Physics, Missouri Western State University, Saint Joseph, USA
| | - Haden T McDonald
- Department of Computer Science, Math, and Physics, Missouri Western State University, Saint Joseph, USA
| | - Hannah Sinks
- Department of Biology, Davidson College, Davidson, USA.,Department of Math and Computer Science, Davidson College, Davidson, USA
| | - Austin J Sprague
- Department of Computer Science, Math, and Physics, Missouri Western State University, Saint Joseph, USA
| | - David Sullivan
- Department of Computer Science, Math, and Physics, Missouri Western State University, Saint Joseph, USA
| | - Altan Tutar
- Department of Math and Computer Science, Davidson College, Davidson, USA
| | - Avery Umphreys
- Department of Biology, Missouri Western State University, Saint Joseph, USA
| | - Chris Watson
- Department of Biology, Missouri Western State University, Saint Joseph, USA
| | - Daniel Zweerink
- Department of Computer Science, Math, and Physics, Missouri Western State University, Saint Joseph, USA
| | - Laurie J Heyer
- Department of Math and Computer Science, Davidson College, Davidson, USA
| | - Jeffrey L Poet
- Department of Computer Science, Math, and Physics, Missouri Western State University, Saint Joseph, USA
| | - Todd T Eckdahl
- Department of Biology, Missouri Western State University, Saint Joseph, USA
| | | |
Collapse
|
10
|
Sinumvayo JP, Zhao C, Tuyishime P. Recent advances and future trends of riboswitches: attractive regulatory tools. World J Microbiol Biotechnol 2018; 34:171. [PMID: 30413889 DOI: 10.1007/s11274-018-2554-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Bacterial genomes contain a huge amount of different genes. These genes are spatiotemporally expressed to accomplish some required functions within the organism. Inside the cell, any step of gene expression may be modulated at four possible places such as transcription initiation, translation regulation, mRNA stability and protein stability. To achieve this, there is a necessity of strong regulators either natural or synthetic which can fine-tune gene expression regarding the required function. In recent years, riboswitches as metabolite responsive control elements residing in the untranslated regions of certain messenger RNAs, have been known to control gene expression at transcription or translation level. Importantly, these control elements do not prescribe the involvement of protein factors for metabolite binding. However, they own their particular properties to sense intramolecular metabolites (ligands). Herein, we highlighted current important bacterial riboswitches, their applications to support genetic control, ligand-binding domain mechanisms and current progress in synthetic riboswitches.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Philibert Tuyishime
- University of Chinese Academy of Sciences, Beijing, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
11
|
Abstract
Accumulating evidence indicates noncoding RNAs (ncRNAs) fine-tune gene expression with mysterious machinery. We conducted a combination of mRNA, miRNA, circRNA, LncRNA microarray analyses on 10 adults' lumbar discs. Moreover, we performed additional global exploration on RNA interacting machinery in terms of in silico computational pipeline. Here we show the landscape of RNAs in human lumbar discs. In general, the RNA-abundant landscape comprises 14,635 mRNAs (37.93%), 2,059 miRNAs (5.34%), 18,995 LncRNAs (49.23%) and 2,894 (7.5%) circRNAs. Chromosome 1 contributes for RNA transcription at most (10%). Bi-directional transcription contributes evenly for RNA biogenesis, in terms of 5′ to 3′ and 3′ to 5′. Despite the majority of circRNAs are exonic, antisense (1.49%), intergenic (0.035%), intragenic (1.69%), and intronic (6.29%) circRNAs should not be ignored. A single miRNA could interact with a multitude of circRNAs. Notably, CDR1as or ciRS-7 harbors 66 consecutive binding sites for miR-7-5p (previous miR-7), evidencing our pipeline. The majority of binding sites are perfect-matched (78.95%). Collectively, global landscape of RNAs sheds novel insights on RNA interacting mechanisms in human intervertebral disc degeneration.
Collapse
|
12
|
Findeiß S, Etzel M, Will S, Mörl M, Stadler PF. Design of Artificial Riboswitches as Biosensors. SENSORS 2017; 17:s17091990. [PMID: 28867802 PMCID: PMC5621056 DOI: 10.3390/s17091990] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
RNA aptamers readily recognize small organic molecules, polypeptides, as well as other nucleic acids in a highly specific manner. Many such aptamers have evolved as parts of regulatory systems in nature. Experimental selection techniques such as SELEX have been very successful in finding artificial aptamers for a wide variety of natural and synthetic ligands. Changes in structure and/or stability of aptamers upon ligand binding can propagate through larger RNA constructs and cause specific structural changes at distal positions. In turn, these may affect transcription, translation, splicing, or binding events. The RNA secondary structure model realistically describes both thermodynamic and kinetic aspects of RNA structure formation and refolding at a single, consistent level of modelling. Thus, this framework allows studying the function of natural riboswitches in silico. Moreover, it enables rationally designing artificial switches, combining essentially arbitrary sensors with a broad choice of read-out systems. Eventually, this approach sets the stage for constructing versatile biosensors.
Collapse
Affiliation(s)
- Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, Währingerstraße 29, A-1090 Vienna, Austria.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
| | - Maja Etzel
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Sebastian Will
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany.
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg , Denmark.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| |
Collapse
|
13
|
Characterization of Engineered PreQ1 Riboswitches for Inducible Gene Regulation in Mycobacteria. J Bacteriol 2017; 199:JB.00656-16. [PMID: 28069821 DOI: 10.1128/jb.00656-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/03/2017] [Indexed: 11/20/2022] Open
Abstract
We report here the behavior of naturally occurring and rationally engineered preQ1 riboswitches and their application to inducible gene regulation in mycobacteria. Because mycobacteria lack preQ1 biosynthetic genes, we hypothesized that preQ1 could be used as an exogenous nonmetabolite ligand to control riboswitches in mycobacteria. Selected naturally occurring preQ1 riboswitches were assayed and successfully drove preQ1-dependent repression of a green fluorescent protein reporter in Mycobacterium smegmatis Using structure-based design, we engineered three preQ1 riboswitches from Thermoanaerobacter tencongensis, Bacillus subtilis, and Lactobacillus rhamnosus toward achieving higher response ratios and increased repression. Assuming a steady-state model, variants of the T. tencongensis riboswitch most closely followed the predicted trends. Unexpectedly, the preQ1 dose response was best described by a model with a second, independent preQ1 binding site. This behavior was general to the preQ1 riboswitch family, since the wild type and rationally designed mutants of riboswitches from all three bacteria behaved analogously. Across all variants, the response ratios, which describe expression in the absence versus the presence of preQ1, ranged from <2 to ∼10, but repression in all cases was incomplete up to 1 mM preQ1. By reducing the transcript expression level, we obtained a preQ1 riboswitch variant appropriate for inducible knockdown applications. We further showed that the preQ1 response is reversible, is titratable, and can be used to control protein expression in mycobacteria within infected macrophages. By engineering naturally occurring preQ1 riboswitches, we have not only extended the tools available for inducible gene regulation in mycobacteria but also uncovered new behavior of these riboswitches.IMPORTANCE Riboswitches are elements found in noncoding regions of mRNA that regulate gene expression, typically in response to an endogenous metabolite. Riboswitches have emerged as important tools for inducible gene expression in diverse organisms. We noted that mycobacteria lack the biosynthesis genes for preQ1, a ligand for riboswitches from diverse bacteria. Predicting that preQ1 is not present in mycobacteria, we showed that it controls optimized riboswitches appropriate for gene knockdown applications. Further, the riboswitch response is subject to a second independent preQ1 binding event that has not been previously documented. By engineering naturally occurring riboswitches, we have uncovered a new behavior, with implications for riboswitch function in its native context, and extended the tools available for inducible gene regulation in mycobacteria.
Collapse
|
14
|
Etzel M, Mörl M. Synthetic Riboswitches: From Plug and Pray toward Plug and Play. Biochemistry 2017; 56:1181-1198. [PMID: 28206750 DOI: 10.1021/acs.biochem.6b01218] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In synthetic biology, metabolic engineering, and gene therapy, there is a strong demand for orthogonal or externally controlled regulation of gene expression. Here, RNA-based regulatory devices represent a promising emerging alternative to proteins, allowing a fast and direct control of gene expression, as no synthesis of regulatory proteins is required. Besides programmable ribozyme elements controlling mRNA stability, regulatory RNA structures in untranslated regions are highly interesting for engineering approaches. Riboswitches are especially well suited, as they show a modular composition of sensor and response elements, allowing a free combination of different modules in a plug-and-play-like mode. The sensor or aptamer domain specifically interacts with a trigger molecule as a ligand, modulating the activity of the adjacent response domain that controls the expression of the genes located downstream, in most cases at the level of transcription or translation. In this review, we discuss the recent advances and strategies for designing such synthetic riboswitches based on natural or artificial components and readout systems, from trial-and-error approaches to rational design strategies. As the past several years have shown dramatic development in this fascinating field of research, we can give only a limited overview of the basic riboswitch design principles that is far from complete, and we apologize for not being able to consider every successful and interesting approach described in the literature.
Collapse
Affiliation(s)
- Maja Etzel
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Kushwaha M, Rostain W, Prakash S, Duncan JN, Jaramillo A. Using RNA as Molecular Code for Programming Cellular Function. ACS Synth Biol 2016; 5:795-809. [PMID: 26999422 DOI: 10.1021/acssynbio.5b00297] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology.
Collapse
Affiliation(s)
- Manish Kushwaha
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - William Rostain
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| | - Satya Prakash
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - John N. Duncan
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Alfonso Jaramillo
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| |
Collapse
|
16
|
McKeague M, Wong RS, Smolke CD. Opportunities in the design and application of RNA for gene expression control. Nucleic Acids Res 2016; 44:2987-99. [PMID: 26969733 PMCID: PMC4838379 DOI: 10.1093/nar/gkw151] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022] Open
Abstract
The past decade of synthetic biology research has witnessed numerous advances in the development of tools and frameworks for the design and characterization of biological systems. Researchers have focused on the use of RNA for gene expression control due to its versatility in sensing molecular ligands and the relative ease by which RNA can be modeled and designed compared to proteins. We review the recent progress in the field with respect to RNA-based genetic devices that are controlled through small molecule and protein interactions. We discuss new approaches for generating and characterizing these devices and their underlying components. We also highlight immediate challenges, future directions and recent applications of synthetic RNA devices in engineered biological systems.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Remus S Wong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Guedich S, Puffer-Enders B, Baltzinger M, Hoffmann G, Da Veiga C, Jossinet F, Thore S, Bec G, Ennifar E, Burnouf D, Dumas P. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches. RNA Biol 2016; 13:373-90. [PMID: 26932506 PMCID: PMC4841613 DOI: 10.1080/15476286.2016.1142040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.
Collapse
Affiliation(s)
- Sondés Guedich
- a IBMC-CNRS, Biophysique et Biologie Structurale, Architecture et Réactivité de l'ARN, Université de Strasbourg , Strasbourg , France
| | - Barbara Puffer-Enders
- a IBMC-CNRS, Biophysique et Biologie Structurale, Architecture et Réactivité de l'ARN, Université de Strasbourg , Strasbourg , France
| | - Mireille Baltzinger
- b IBMC-CNRS, Régulations post-transcriptionnelles et nutrition, Architecture et Réactivité de l'ARN, Université de Strasbourg , Strasbourg , France
| | | | - Cyrielle Da Veiga
- a IBMC-CNRS, Biophysique et Biologie Structurale, Architecture et Réactivité de l'ARN, Université de Strasbourg , Strasbourg , France
| | - Fabrice Jossinet
- d IBMC-CNRS, Evolution des ARN non codants chez la levure, Architecture et Réactivité de l'ARN, Université de Strasbourg , Strasbourg , France
| | - Stéphane Thore
- e Université de Bordeaux, Institut Européen de Chimie et Biologie, ARNA laboratory; INSERM-U1212; CNRS-UMR5320 ; Bordeaux , France
| | - Guillaume Bec
- a IBMC-CNRS, Biophysique et Biologie Structurale, Architecture et Réactivité de l'ARN, Université de Strasbourg , Strasbourg , France
| | - Eric Ennifar
- a IBMC-CNRS, Biophysique et Biologie Structurale, Architecture et Réactivité de l'ARN, Université de Strasbourg , Strasbourg , France
| | - Dominique Burnouf
- a IBMC-CNRS, Biophysique et Biologie Structurale, Architecture et Réactivité de l'ARN, Université de Strasbourg , Strasbourg , France
| | - Philippe Dumas
- a IBMC-CNRS, Biophysique et Biologie Structurale, Architecture et Réactivité de l'ARN, Université de Strasbourg , Strasbourg , France
| |
Collapse
|
18
|
Espah Borujeni A, Mishler DM, Wang J, Huso W, Salis HM. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Res 2016; 44:1-13. [PMID: 26621913 PMCID: PMC4705656 DOI: 10.1093/nar/gkv1289] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/31/2023] Open
Abstract
Riboswitches are shape-changing regulatory RNAs that bind chemicals and regulate gene expression, directly coupling sensing to cellular actuation. However, it remains unclear how their sequence controls the physics of riboswitch switching and activation, particularly when changing the ligand-binding aptamer domain. We report the development of a statistical thermodynamic model that predicts the sequence-structure-function relationship for translation-regulating riboswitches that activate gene expression, characterized inside cells and within cell-free transcription-translation assays. Using the model, we carried out automated computational design of 62 synthetic riboswitches that used six different RNA aptamers to sense diverse chemicals (theophylline, tetramethylrosamine, fluoride, dopamine, thyroxine, 2,4-dinitrotoluene) and activated gene expression by up to 383-fold. The model explains how aptamer structure, ligand affinity, switching free energy and macromolecular crowding collectively control riboswitch activation. Our model-based approach for engineering riboswitches quantitatively confirms several physical mechanisms governing ligand-induced RNA shape-change and enables the development of cell-free and bacterial sensors for diverse applications.
Collapse
Affiliation(s)
- Amin Espah Borujeni
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dennis M Mishler
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jingzhi Wang
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Walker Huso
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Howard M Salis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Wachsmuth M, Domin G, Lorenz R, Serfling R, Findeiß S, Stadler PF, Mörl M. Design criteria for synthetic riboswitches acting on transcription. RNA Biol 2015; 12:221-31. [PMID: 25826571 DOI: 10.1080/15476286.2015.1017235] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Riboswitches are RNA-based regulators of gene expression composed of a ligand-sensing aptamer domain followed by an overlapping expression platform. The regulation occurs at either the level of transcription (by formation of terminator or antiterminator structures) or translation (by presentation or sequestering of the ribosomal binding site). Due to a modular composition, these elements can be manipulated by combining different aptamers and expression platforms and therefore represent useful tools to regulate gene expression in synthetic biology. Using computationally designed theophylline-dependent riboswitches we show that 2 parameters, terminator hairpin stability and folding traps, have a major impact on the functionality of the designed constructs. These have to be considered very carefully during design phase. Furthermore, a combination of several copies of individual riboswitches leads to a much improved activation ratio between induced and uninduced gene activity and to a linear dose-dependent increase in reporter gene expression. Such serial arrangements of synthetic riboswitches closely resemble their natural counterparts and may form the basis for simple quantitative read out systems for the detection of specific target molecules in the cell.
Collapse
Affiliation(s)
- Manja Wachsmuth
- a University of Leipzig ; Institute for Biochemistry ; Leipzig , Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Berens C, Groher F, Suess B. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression. Biotechnol J 2015; 10:246-57. [PMID: 25676052 DOI: 10.1002/biot.201300498] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/23/2014] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
Abstract
RNA utilizes many different mechanisms to control gene expression. Among the regulatory elements that respond to external stimuli, riboswitches are a prominent and elegant example. They consist solely of RNA and couple binding of a small molecule ligand to the so-called "aptamer domain" with a conformational change in the downstream "expression platform" which then determines system output. The modular organization of riboswitches and the relative ease with which ligand-binding RNA aptamers can be selected in vitro against almost any molecule have led to the rapid and widespread adoption of engineered riboswitches as artificial genetic control devices in biotechnology and synthetic biology over the past decade. This review highlights proof-of-principle applications to demonstrate the versatility and robustness of engineered riboswitches in regulating gene expression in pro- and eukaryotes. It then focuses on strategies and parameters to identify aptamers that can be integrated into synthetic riboswitches that are functional in vivo, before finishing with a reflection on how to improve the regulatory properties of engineered riboswitches, so that we can not only further expand riboswitch applicability, but also finally fully exploit their potential as control elements in regulating gene expression.
Collapse
Affiliation(s)
- Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | | | | |
Collapse
|
21
|
Peters G, Coussement P, Maertens J, Lammertyn J, De Mey M. Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnol Adv 2015; 33:1829-44. [PMID: 26514597 DOI: 10.1016/j.biotechadv.2015.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Synthetic biology, in close concert with systems biology, is revolutionizing the field of metabolic engineering by providing novel tools and technologies to rationally, in a standardized way, reroute metabolism with a view to optimally converting renewable resources into a broad range of bio-products, bio-materials and bio-energy. Increasingly, these novel synthetic biology tools are exploiting the extensive programmable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally design standardized, composable, and orthogonal parts, which can be scaled and tuned promptly and at will. This review gives an extensive overview of the recently developed parts and tools for i) modulating gene expression ii) building genetic circuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA nanostructures. These parts and tools are becoming necessary armamentarium for contemporary metabolic engineering. Furthermore, the design criteria, technological challenges, and recent metabolic engineering success stories of the use of RNA devices are highlighted. Finally, the future trends in transforming metabolism through RNA engineering are critically evaluated and summarized.
Collapse
Affiliation(s)
- Gert Peters
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pieter Coussement
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Louvain, Belgium
| | - Marjan De Mey
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
22
|
Martini L, Meyer AJ, Ellefson JW, Milligan JN, Forlin M, Ellington AD, Mansy SS. In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity. ACS Synth Biol 2015; 4:1144-50. [PMID: 25978303 DOI: 10.1021/acssynbio.5b00054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An in vitro selection method for ligand-responsive RNA sensors was developed that exploited strand displacement reactions. The RNA library was based on the thiamine pyrophosphate (TPP) riboswitch, and RNA sequences capable of hybridizing to a target duplex DNA in a TPP regulated manner were identified. After three rounds of selection, RNA molecules that mediated a strand exchange reaction upon TPP binding were enriched. The enriched sequences also showed riboswitch activity. Our results demonstrated that small-molecule-responsive nucleic acid sensors can be selected to control the activity of target nucleic acid circuitry.
Collapse
Affiliation(s)
- Laura Martini
- CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Adam J. Meyer
- Department
of Chemistry and Biochemistry, Institute for Cellular and Molecular
Biology, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jared W. Ellefson
- Department
of Chemistry and Biochemistry, Institute for Cellular and Molecular
Biology, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - John N. Milligan
- Department
of Chemistry and Biochemistry, Institute for Cellular and Molecular
Biology, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michele Forlin
- CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Andrew D. Ellington
- Department
of Chemistry and Biochemistry, Institute for Cellular and Molecular
Biology, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sheref S. Mansy
- CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
| |
Collapse
|
23
|
Al-Kaidy H, Duwe A, Huster M, Muffler K, Schlegel C, Sieker T, Stadtmüller R, Tippkötter N, Ulber R. Biotechnology and Bioprocess Engineering - From the First Ullmann's Article to Recent Trends. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201500008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Trausch JJ, Batey RT. Design of Modular “Plug-and-Play” Expression Platforms Derived from Natural Riboswitches for Engineering Novel Genetically Encodable RNA Regulatory Devices. Methods Enzymol 2015; 550:41-71. [DOI: 10.1016/bs.mie.2014.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|