1
|
Gutierrez-Martinez VD, León-Del-Río A, Camacho-Luis A, Ayala-Garcia VM, Lopez-Rodriguez AM, Ruiz-Baca E, Meneses-Morales I. Uncovering a novel mechanism: Butyrate induces estrogen receptor alpha activation independent of estrogen stimulation in MCF-7 breast cancer cells. Genet Mol Biol 2024; 47:e20230110. [PMID: 38488523 PMCID: PMC10941730 DOI: 10.1590/1678-4685-gmb-2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024] Open
Abstract
Butyrate is a promising candidate for an antitumoral drug, as it promotes cancer cell apoptosis and reduces hormone receptor activity, while promoting differentiation and proliferation in normal cells. However, the effects of low-dose butyrate on breast cancer cell cultures are unclear. We explored the impact of sub-therapeutic doses of butyrate on estrogen receptor alpha (ERα) transcriptional activity in MCF-7 cells, using RT-qPCR, Western blot, wound-healing assays, and chromatin immunoprecipitation. Our results showed that sub-therapeutic doses of sodium butyrate (0.1 - 0.2 mM) increased the transcription of ESR1, TFF1, and CSTD genes, but did not affect ERα protein levels. Moreover, we observed an increase in cell migration in wound-healing assays. ChIP assays revealed that treatment with 0.1 mM of sodium butyrate resulted in estrogen-independent recruitment of ERα at the pS2 promoter and loss of NCoR. Appropriate therapeutic dosage of butyrate is essential to avoid potential adverse effects on patients' health, especially in the case of estrogen receptor-positive breast tumors. Sub-therapeutic doses of butyrate may induce undesirable cell processes, such as migration due to low-dose butyrate-mediated ERα activation. These findings shed light on the complex effects of butyrate in breast cancer and provide insights for research in the development of antitumoral drugs.
Collapse
Affiliation(s)
| | - Alfonso León-Del-Río
- Universidad Nacional Autónoma de México, Instituto de
Investigaciones Biomédicas, Ciudad de México, México
| | - Abelardo Camacho-Luis
- Universidad Juárez del Estado de Durango, Facultad de Medicina y
Nutrición, Centro de Investigación en Alimentos y Nutrición, Durango, México
| | | | | | - Estela Ruiz-Baca
- Universidad Juárez del Estado de Durango, Facultad de Ciencias
Químicas, Durango, México
| | - Ivan Meneses-Morales
- Universidad Juárez del Estado de Durango, Facultad de Ciencias
Químicas, Durango, México
| |
Collapse
|
2
|
NHERF4 hijacks Mas-mediated PLC/AKT signaling to suppress the invasive potential of clear cell renal cell carcinoma cells. Cancer Lett 2021; 519:130-140. [PMID: 34216689 DOI: 10.1016/j.canlet.2021.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
The Mas receptor has been reported to promote migration and invasion of clear cell renal cell carcinoma (ccRCC) cells via Ang-(1-7)-dependent AKT signaling. However, the mechanism underlying the regulation of Mas function remains unknown. Here, eight PDZ domain-containing proteins were identified as Mas interactors using surface plasmon resonance (SPR) coupled to mass spectrometry (MS). NHERF4 was the only downregulated gene across multiple independent ccRCC datasets. GST pull-down and co-immunoprecipitation assays confirmed physical interaction between NHERF4 and Mas. Using NHERF4 overexpression and knockdown assays, we found that NHERF4 inhibited Mas-induced migration, invasion and in vivo metastasis of ccRCC cells. Mechanistically, NHERF4 suppressed Mas-stimulated AKT phosphorylation and the PLC/Ca2+ response. We further demonstrated that NHERF4 compromised Mas-mediated migration and invasion of ccRCC cells via regulation of the PLC/AKT signaling axis. Analysis of the ccRCC dataset revealed that low levels of NHERF4 expression were correlated with higher TNM stage, and independently predicted poor prognosis of ccRCC patients. Overall, our study identified NHERF4 as a novel regulator of ccRCC invasiveness, and a prognostic biomarker, which may be beneficial for determining optimal therapeutic strategies for ccRCC patients.
Collapse
|
3
|
Yang H, Wang C, Liao H, Wang Q. Activation of GPER by E2 promotes proliferation, invasion and migration of breast cancer cells by regulating the miR-124/CD151 pathway. Oncol Lett 2021; 21:432. [PMID: 33868470 PMCID: PMC8045164 DOI: 10.3892/ol.2021.12693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is one of the most common malignancies worldwide and is responsible for a high mortality rate. However, the underlying pathological mechanism of breast cancer remains unclear. MicroRNAs (miRNAs/miRs) play critical roles in the progression of breast cancer. Recent studies have reported that miR-124/CD151 participates in the development of breast cancer. However, the exact molecular mechanism of miR-124/CD151 action in 17β-estradiol (E2)-treated breast cancer cells remains unknown. Thus, the present study aimed to investigate miR-124 and CD151 expression levels in MCF-7 cells treated with E2 via reverse transcription-quantitative PCR and western blot analyses. Bioinformatic analysis was performed to predict and identify whether CD151 is a potential target of miR-124. The Cell Counting Kit-8 and colony formation assays were performed to detect proliferation of MCF-7 cells. In addition, the invasive and migratory abilities of MCF-7 cells were assessed via the Transwell and wound healing assays, respectively. The results demonstrated that E2 downregulated miR-124 expression, while upregulating G protein -coupled estrogen receptor (GPER) expression in MCF-7 cells. Following treatment with the GPER antagonist, G15, miR-124 expression was significantly enhanced and E2-induced proliferation, invasion and migration of MCF-7 cells were notably inhibited. In addition, CD151 was confirmed as a direct target of miR-124. CD151 silencing remarkably suppressed the proliferation, invasion and migration of E2-induced MCF-7 cells. Taken together, these results suggest that upregulation of GPER expression induced by E2 promotes proliferation, invasion and migration of breast cancer cells by regulating the miR-124/CD151 pathway. Thus, the results of the present study provide a potential novel method for the treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- Huaicheng Yang
- Department of General Surgery, The Frist Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui 232007, P.R. China
| | - Congyu Wang
- Department of General Surgery, The Frist Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui 232007, P.R. China
| | - Heqiang Liao
- Department of General Surgery, The Frist Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui 232007, P.R. China
| | - Qi Wang
- Department of General Surgery, The Frist Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui 232007, P.R. China
| |
Collapse
|
4
|
Fan X, Li Y, Yi X, Chen G, Jin S, Dai Y, Cui B, Dai B, Lin H, Zhou D. Epigenome-wide DNA methylation profiling of portal vein tumor thrombosis (PVTT) tissues in hepatocellular carcinoma patients. Neoplasia 2020; 22:630-643. [PMID: 33059309 PMCID: PMC7566847 DOI: 10.1016/j.neo.2020.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant methylation is a hallmark of hepatocellular carcinoma and plays an important role in tumor initiation and progression. However, the epigenome-wide methylation patterns of portal vein tumor thrombosis (PVTTs) have not been fully explored. Here, we performed epigenome-wide DNA methylation of adjacent normal tissues (ANTs), paired tumor tissues and paired PVTTs using an Infinium HumanMethylation450 array (n = 11) and conducted the Sequenom EpiTYPER assays to confirm the aberrantly methylated genes. MTS and apoptosis assay were used to assess the synergistic effect of two drugs on the HCC cell lines. We found the mean global methylation levels of HCC tissues and PVTTs were significantly lower than ANTs (P < 0.01). A total of 864 differentially methylated CpG sites annotated in 532 genes were identified between HCC tissues and paired PVTTs (|mean methylation difference|>10%, P < 0.005). The pathway analysis based on hypermethylated genes in PVTT tissues was interestingly enriched in regulation of actin cytoskeleton pathway (P = 4.48E−5). We found 23 genes whose methylation levels were gradually alternated in HCC tissues and PVTTs. Aberrant methylation status of TNFRSF10A, ZC3H3 and SLC9A3R2 were confirmed in a validation cohort (n = 48). The functional experiments demonstrated the combination of decitabine (DAC) and tumor necrosis factor-related apoptosis-inducing ligand (rh-TRAIL) could synergistically suppress the proliferation and induce apoptosis in SK-Hep-1 and Huh7 cell lines. Together, our findings indicated that DNA methylation plays an important role in the PVTT formation through regulating the metastasis-related pathways. The combination of DAC and rh-TRAIL might be a promising treatment strategy for HCC.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Yi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Cui
- College of Life Science and Technology, Nanyang Normal University, Nanyang, China
| | - Binghua Dai
- Department of Special Treatment Ⅰ and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Cervantes-Badillo MG, Paredes-Villa A, Gómez-Romero V, Cervantes-Roldán R, Arias-Romero LE, Villamar-Cruz O, González-Montiel M, Barrios-García T, Cabrera-Quintero AJ, Rodríguez-Gómez G, Cancino-Villeda L, Zentella-Dehesa A, León-Del-Río A. IFI27/ISG12 Downregulates Estrogen Receptor α Transactivation by Facilitating Its Interaction With CRM1/XPO1 in Breast Cancer Cells. Front Endocrinol (Lausanne) 2020; 11:568375. [PMID: 33117284 PMCID: PMC7575815 DOI: 10.3389/fendo.2020.568375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
The estrogen receptor alpha (ERα) is a ligand-activated transcription factor whose activity is modulated by its interaction with multiple protein complexes. In this work, we have identified the protein interferon alpha inducible protein 27 (IFI27/ISG12) as a novel ERα-associated protein. IFI27/ISG12 transcription is regulated by interferon and estradiol and its overexpression is associated to reduced overall survival in ER+ breast cancer patients but its function in mammary gland tissue remains elusive. In this study we showed that overexpression of IFI27/ISG12 in breast cancer cells attenuates ERα transactivation activity and the expression of ERα-dependent genes. Our results demonstrated that IFI27/ISG12 overexpression in MCF-7 cells reduced their proliferation rate in 2-D and 3-D cell culture assays and impaired their ability to migrate in a wound-healing assay. We show that IFI27/ISG12 downregulation of ERα transactivation activity is mediated by its ability to facilitate the interaction between ERα and CRM1/XPO1 that mediates the nuclear export of large macromolecules to the cytoplasm. IFI27/ISG12 overexpression was shown to impair the estradiol-dependent proliferation and tamoxifen-induced apoptosis in breast cancer cells. Our results suggest that IFI27/ISG12 may be an important factor in regulating ERα activity in breast cancer cells by modifying its nuclear versus cytoplasmic protein levels. We propose that IFI27/ISG12 may be a potential target of future strategies to control the growth and proliferation of ERα-positive breast cancer tumors.
Collapse
Affiliation(s)
- Mayte Guadalupe Cervantes-Badillo
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Paredes-Villa
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vania Gómez-Romero
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis E. Arias-Romero
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Miroslava González-Montiel
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tonatiuh Barrios-García
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alberto J. Cabrera-Quintero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Gabriel Rodríguez-Gómez
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Cancino-Villeda
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Zentella-Dehesa
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
6
|
Geng A, Wu T, Cai C, Song W, Wang J, Yu QC, Zeng YA. A novel function of R-spondin1 in regulating estrogen receptor expression independent of Wnt/β-catenin signaling. eLife 2020; 9:56434. [PMID: 32749219 PMCID: PMC7402675 DOI: 10.7554/elife.56434] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
R-spondin1 (Rspo1) has been featured as a Wnt agonist, serving as a potent niche factor for stem cells in many tissues. Here we unveil a novel role of Rspo1 in promoting estrogen receptor alpha (Esr1) expression, hence regulating the output of steroid hormone signaling in the mouse mammary gland. This action of Rspo1 relies on the receptor Lgr4 and intracellular cAMP-PKA signaling, yet is independent of Wnt/β-catenin signaling. These mechanisms were reinforced by genetic evidence. Luminal cells-specific knockout of Rspo1 results in decreased Esr1 expression and reduced mammary side branches. In contrast, luminal cells-specific knockout of Wnt4, while attenuating basal cell Wnt/β-catenin signaling activities, enhances Esr1 expression. Our data reveal a novel Wnt-independent role of Rspo1, in which Rspo1 acts as a bona fide GPCR activator eliciting intracellular cAMP signaling. The identification of Rspo1-ERα signaling axis may have a broad implication in estrogen-associated diseases.
Collapse
Affiliation(s)
- Ajun Geng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Ting Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Cheguo Cai
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Wenqian Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
7
|
Meneses-Morales I, Izquierdo-Torres E, Flores-Peredo L, Rodríguez G, Hernández-Oliveras A, Zarain-Herzberg Á. Epigenetic regulation of the human ATP2A3 gene promoter in gastric and colon cancer cell lines. Mol Carcinog 2019; 58:887-897. [PMID: 30657210 DOI: 10.1002/mc.22978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2023]
Abstract
The knowledge about the role of calcium-regulated pathways in cancer cell growth and differentiation could be useful for the development of new therapeutic approaches to diminish its mortality. The ATP2A genes encode for SERCA pumps, which modulate cytosolic Ca2+ concentration, regulating various cellular processes including cell growth. ATP2A3 gene transcriptional down-regulation has been reported in gastric and colon cancer, but there is still a lack of understanding about the epigenetic processes regulating its transcription. In this work, we report that butyrate, trichostatin A, and 5-azacytidine treatments increase SERCA3 expression, increased apoptosis, and decreased cell viability of the KATO-III gastric carcinoma cell line. We analyzed the methylation profile of the ATP2A3 gene promoter CpG island, finding clones with methylated status through -280 to -135 promoter region, harboring Sp1 and AP-2 binding sites, which could have a role in transcriptional repression. Post-translational modifications of histones show a major role in the ATP2A3 transcriptional regulation, and our results show histones marks linked to transcriptional repression associated with the -262 to -135 region, this repressive context changed to transcriptional permissive through SERCA3 re-expressing conditions. These results suggest that the nucleotide sequence from -280 to -135 position is an ATP2A3 epigenetic regulatory CpG region in KATO-III cells. Analyses of online-databases show a decreased SERCA3 expression in gastric and colon tumors, as well as overall survival results, showed that high SERCA3 expression could serve as a favorable prognostic marker for colon and gastric cancer patients.
Collapse
Affiliation(s)
- Iván Meneses-Morales
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, México
| | - Eduardo Izquierdo-Torres
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, México
| | - Lucía Flores-Peredo
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, México
| | - Gabriela Rodríguez
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, México
| | - Andrés Hernández-Oliveras
- Programa de Doctorado en Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Ángel Zarain-Herzberg
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
8
|
Busayapongchai P, Siri S. Sensitive detection of estradiol based on ligand binding domain of estrogen receptor and gold nanoparticles. Anal Biochem 2017; 518:60-68. [DOI: 10.1016/j.ab.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 12/20/2022]
|
9
|
Yoshida M, Zhao L, Grigoryan G, Shim H, He P, Yun CC. Deletion of Na+/H+ exchanger regulatory factor 2 represses colon cancer progress by suppression of Stat3 and CD24. Am J Physiol Gastrointest Liver Physiol 2016; 310:G586-98. [PMID: 26867566 PMCID: PMC4836134 DOI: 10.1152/ajpgi.00419.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/04/2016] [Indexed: 01/31/2023]
Abstract
The Na(+)/H(+) exchanger regulatory factor (NHERF) family of proteins is scaffolds that orchestrate interaction of receptors and cellular proteins. Previous studies have shown that NHERF1 functions as a tumor suppressor. The goal of this study is to determine whether the loss of NHERF2 alters colorectal cancer (CRC) progress. We found that NHERF2 expression is elevated in advanced-stage CRC. Knockdown of NHERF2 decreased cancer cell proliferation in vitro and in a mouse xenograft tumor model. In addition, deletion of NHERF2 in Apc(Min/+) mice resulted in decreased tumor growth in Apc(Min/+) mice and increased lifespan. Blocking NHERF2 interaction with a small peptide designed to bind the second PDZ domain of NHERF2 attenuated cancer cell proliferation. Although NHERF2 is known to facilitate the effects of lysophosphatidic acid receptor 2 (LPA2), transcriptome analysis of xenograft tumors revealed that NHERF2-dependent genes largely differ from LPA2-regulated genes. Activation of β-catenin and ERK1/2 was mitigated in Apc(Min/+);Nherf2(-/-) adenomas. Moreover, Stat3 phosphorylation and CD24 expression levels were suppressed in Apc(Min/+);Nherf2(-/-) adenomas. Consistently, NHERF2 knockdown attenuated Stat3 activation and CD24 expression in colon cancer cells. Interestingly, CD24 was important in the maintenance of Stat3 phosphorylation, whereas NHERF2-dependent increase in CD24 expression was blocked by inhibition of Stat3, suggesting that NHERF2 regulates Stat3 phosphorylation through a positive feedback mechanism between Stat3 and CD24. In summary, this study identifies NHERF2 as a novel oncogenic protein and a potential target for cancer treatment. NHERF2 potentiates the oncogenic effects in part by regulation of Stat3 and CD24.
Collapse
Affiliation(s)
- Michihiro Yoshida
- 1Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; ,2Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan;
| | - Luqing Zhao
- 1Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; ,3Division of Gastroenterology, Department of Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China;
| | - Gevorg Grigoryan
- 4Department of Computer Science, Dartmouth College, Hanover, New Hampshire;
| | - Hyunsuk Shim
- 5Winship Cancer Institute, Emory University, Atlanta, Georgia; and ,6Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Peijian He
- 1Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia;
| | - C. Chris Yun
- 1Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; ,5Winship Cancer Institute, Emory University, Atlanta, Georgia; and
| |
Collapse
|
10
|
Barrios-García T, Gómez-Romero V, Tecalco-Cruz Á, Valadéz-Graham V, León-Del-Río A. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells. Mol Genet Metab Rep 2016; 7:20-6. [PMID: 27114912 PMCID: PMC4832087 DOI: 10.1016/j.ymgmr.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/20/2016] [Indexed: 11/18/2022] Open
Abstract
Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors.
Collapse
Affiliation(s)
- Tonatiuh Barrios-García
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico D.F. 04510, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico D.F. 04510, Mexico
| | - Vania Gómez-Romero
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico D.F. 04510, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico D.F. 04510, Mexico
| | - Ángeles Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico D.F. 04510, Mexico
| | - Viviana Valadéz-Graham
- Departamento Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico D.F. 04510, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico D.F. 04510, Mexico
- Corresponding author at: Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Av. Universidad 3000, Mexico D.F. 04510, Mexico.Programa de Investigación de Cáncer de MamaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoAv. Universidad 3000Mexico D.F.Mexico04510
| |
Collapse
|
11
|
Electrospun polyurethane-dextran nanofiber mats loaded with Estradiol for post-menopausal wound dressing. Int J Biol Macromol 2015; 77:1-8. [DOI: 10.1016/j.ijbiomac.2015.02.044] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/15/2015] [Accepted: 02/15/2015] [Indexed: 12/13/2022]
|
12
|
Shi L, Xia TS, Wei XL, Zhou W, Xue J, Cheng L, Lou P, Li C, Wang Y, Wei JF, Ding Q. Estrogen receptor (ER) was regulated by RNPC1 stabilizing mRNA in ER positive breast cancer. Oncotarget 2015; 6:12264-78. [PMID: 25881544 PMCID: PMC4494937 DOI: 10.18632/oncotarget.3654] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/26/2015] [Indexed: 02/05/2023] Open
Abstract
Estrogen receptors (ERs), including ERα and ERβ, mainly mediate the genotype effect of estrogen. ERα is highly expressed in most breast cancers. Endocrine therapy is the most effective and safety adjunctive therapy for ER positive breast cancers. RNPC1, an RNA binding protein (RBP), post-transcriptionally regulating gene expression, is emerging as a critical mechanism for gene regulation in mammalian cells. In this study, we revealed RNPC1's capability of regulating ERα expression. There was a significant correlation between RNPC1 and ERα expression in breast cancer tissues. Ectopic expression of RNPC1 could increase ERα transcript and expression in breast cancer cells, and vice versa. Consistent with this, RNPC1 was able to bind to ERα transcript to increase its stability. Furthermore, overexpression of ERα could decrease the level of RNPC1 transcript and protein. It suggested a novel mechanism by which ERα expression was regulated via stabilizing mRNA. A regulatory feedback loop between RNPC1 and ERα was proved. It indicated that RNPC1 played a crucial role in ERα regulation in ER-positive breast cancers via binding to ERα mRNA. These findings might provide new insights into breast cancer endocrine therapy and ERα research.
Collapse
Affiliation(s)
- Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Tian-Song Xia
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wenbin Zhou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jinqiu Xue
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lin Cheng
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Peipei Lou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chunlian Li
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ying Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Estradiol induces HOTAIR levels via GPER-mediated miR-148a inhibition in breast cancer. J Transl Med 2015; 13:131. [PMID: 25928008 PMCID: PMC4421993 DOI: 10.1186/s12967-015-0489-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/14/2015] [Indexed: 12/21/2022] Open
Abstract
HOTAIR plays an important role in the regulation of cancer cell proliferation and cancer invasion in breast cancer. The up-regulation of HOTAIR has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. It has been reported that HOTAIR is regulated by estrogen (E2) via ERs in ER-positive breast cancer. However, it is unknown how HOTAIR is regulated in TN breast cancer. In this study, we found that HOTAIR was increased in the peripheral blood mononuclear cells and cancer tissues from breast cancer patients, and was especially higher in patients with metastatic breast cancer. In addition, we found that estrogen promoted HOTAIR through its receptor GPER and estrogen-induced breast cancer cell migration was reversed by deleting HOTAIR in TN breast cancer cells MDA-MB-231and BT549. Furthermore, we identified that E2-GPER induces the level of HOTAIR through the suppression of miR-148a. miR-148a level was negatively correlated with HOTAIR level in breast cancer patients. After the mutation of the predicted miR-148a binding sites in HOTAIR, miR-148a had no effect on HOTAIR. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to increase the HOTAIR level by inhibiting miR-148a in breast cancer.
Collapse
|
14
|
Contrò V, R. Basile J, Proia P. Sex steroid hormone receptors, their ligands, and nuclear and non-nuclear pathways. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
15
|
Tao S, He H, Chen Q, Yue W. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer. Biochem Biophys Res Commun 2014; 451:74-8. [PMID: 25063027 DOI: 10.1016/j.bbrc.2014.07.073] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development and progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer.
Collapse
Affiliation(s)
- Sifeng Tao
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Haifei He
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Chen
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenjie Yue
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|