1
|
Lin Y, Gong H, Liu J, Hu Z, Gao M, Yu W, Liu J. HECW1 induces NCOA4-regulated ferroptosis in glioma through the ubiquitination and degradation of ZNF350. Cell Death Dis 2023; 14:794. [PMID: 38049396 PMCID: PMC10695927 DOI: 10.1038/s41419-023-06322-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Tumor suppression by inducing NCOA4-mediated ferroptosis has been shown to be feasible in a variety of tumors, including gliomas. However, the regulatory mechanism of ferroptosis induced by NCOA4 in glioma has not been studied deeply. HECW1 and ZNF350 are involved in the biological processes of many tumors, but their specific effects and mechanisms on glioma are still unclear. In this study, we found that HECW1 decreased the survival rate of glioma cells and enhanced iron accumulation, lipid peroxidation, whereas ZNF350 showed the opposite effect. Mechanistically, HECW1 directly regulated the ubiquitination and degradation of ZNF350, eliminated the transcriptional inhibition of NCOA4 by ZNF350, and ultimately activated NCOA4-mediated iron accumulation, lipid peroxidation, and ferroptosis. We demonstrate that HECW1 induces ferroptosis and highlight the value of HECW1 and ZNF350 in the prognostic evaluation of patients with glioma. We also elucidate the mechanisms underlying the HECW1/ZNF350/NCOA4 axis and its regulation of ferroptosis. Our findings enrich the understanding of ferroptosis and provide potential treatment options for glioma patients.
Collapse
Affiliation(s)
- Yuancai Lin
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Hailong Gong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Jinliang Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Zhiwen Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Mingjun Gao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China.
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China.
| |
Collapse
|
2
|
Ma X, Jia S, Wang G, Liang M, Guo T, Du H, Li S, Li X, Huangfu L, Guo J, Xing X, Ji J. TRIM28 promotes the escape of gastric cancer cells from immune surveillance by increasing PD-L1 abundance. Signal Transduct Target Ther 2023; 8:246. [PMID: 37357254 DOI: 10.1038/s41392-023-01450-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 06/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) offers a new opportunity for treatment for gastric cancer (G.C.). Understanding the upstream regulation of immune checkpoints is crucial to further improve the efficacy of ICB therapy. Herein, using the CRISPR-Cas9-based genome-wide screening, we identified TRIM28 as one of the most significant regulators of PD-L1, a checkpoint protein, in G.C. cells. Mechanistically, TRIM28 directly binds to and stabilizes PD-L1 by inhibiting PD-L1 ubiquitination and promoting PD-L1 SUMOylation. Furthermore, TRIM28 facilitates K63 polyubiquitination of TBK1, activating TBK1-IRF1 and TBK1-mTOR pathways, resulting in enhanced PD-L1 transcription. It was found that TRIM28 was positively correlated with PD-L1 in G.C. cells. Moreover, high TRIM28 expression suggests poor survival in a cohort of 466 patients with G.C., and this observation is consistent while analyzing data from publicly available databases. Ectopic TRIM28 expression facilitated tumor growth, increased PD-L1 expression, and suppressed T cell activation in mice. Administration of the PD-L1 or TBK1 inhibitor significantly alleviated the TRIM28-induced tumor progression. Furthermore, combining the TBK1 inhibitor with CTLA4 immune checkpoint blockade has synergistic effects on G.C., and provides a novel strategy for G.C. therapy.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuqin Jia
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Gangjian Wang
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Liang
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Guo
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Du
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Sisi Li
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaomei Li
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Longtao Huangfu
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Xiaofang Xing
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
3
|
Shi L, Liu L, Lv X, Ma Z, Li C, Li Y, Zhao F, Sun D, Han B. Identification of genetic effects and potential causal polymorphisms of CPM gene impacting milk fatty acid traits in Chinese Holstein. Anim Genet 2020; 51:491-501. [PMID: 32301146 DOI: 10.1111/age.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/03/2020] [Accepted: 03/15/2020] [Indexed: 11/27/2022]
Abstract
Our previous GWAS revealed 83 significant SNPs and 20 promising candidate genes associated with milk fatty acid traits in dairy cattle. Out of them, the carboxypeptidase M (CPM) gene contains a genome-wide significant SNP, Hapmap49848-BTA-106779, which is strongly associated with myristic acid (C14:0; P = 0.0064). Herein, we aimed to confirm the genetic effects of CPM on milk fatty acids in Chinese Holstein. Seven SNPs were detected by re-sequencing the sequences of entire exons and 3000 bp of up-/downstream flanking regions of the CPM gene, of which three were in 5' flanking region, one in the 3' UTR and three were in the 3' flanking region. Using the Haploview 4.1, we estimated the LD among the identified SNPs and found two haplotype blocks. With the animal model, we performed the SNP- and haplotype-based association analyses, and observed that these SNPs and haplotype blocks mainly had strong genetic associations with medium-chain saturated fatty acids (caproic acid, C6:0; caprylic acid, C8:0; capric acid, C10:0; and lauric acid, C12:0) (P < 0.0001-0.0257). In addition, using the Genomatix software, we predicted that three SNPs in the 5' flanking region of CPM (g.45079507A>G, g.45080228C>A and g.45080335C>G) changed the transcription factor binding sites for PREF (progesterone receptor biding site), ZBRK1 (transcription factor with eight central zinc fingers and an N-terminal KRAB domain), SOX9 (sex-determining region Y-box 9, dimeric binding sites), SOX6 (sex-determining region Y-box 6) and FOXP1-ES (alternative splicing variant of FOXP1, activated in ESCs). Further, the dual-luciferase reporter assay showed these three SNPs altered the transcriptional activity of CPM gene (P ≤ 0.0006). In summary, using the post-GWAS strategy, we first confirmed the significant genetic effects of CPM with milk fatty acids in dairy cattle, and identified three potential causal mutations.
Collapse
Affiliation(s)
- L Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - X Lv
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Z Ma
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - C Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Y Li
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - F Zhao
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - D Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - B Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Gooding AJ, Parker KA, Valadkhan S, Schiemann WP. The IncRNA BORG: A novel inducer of TNBC metastasis, chemoresistance, and disease recurrence. ACTA ACUST UNITED AC 2019; 5. [PMID: 31435529 DOI: 10.20517/2394-4722.2019.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although greater than 90% of breast cancer-related mortality can be attributed to metastases, the molecular mechanisms underpinning the dissemination of primary breast tumor cells and their ability to establish malignant lesions in distant tissues remain incompletely understood. Genomic and transcriptomic analyses identified a class of transcripts called long noncoding RNA (lncRNA), which interact both directly and indirectly with key components of gene regulatory networks to alter cell proliferation, invasion, and metastasis. We identified a pro-metastatic lncRNA BORG whose aberrant expression promotes metastatic relapse by reactivating proliferative programs in dormant disseminated tumor cells (DTCs). BORG expression is broadly and strongly induced by environmental and chemotherapeutic stresses, a transcriptional response that facilitates the survival of DTCs. Transcriptomic reprogramming in response to BORG resulted in robust signaling via survival and viability pathways, as well as decreased activation of cell death pathways. As such, BORG expression acts as a (i) marker capable of predicting which breast cancer patients are predisposed to develop secondary metastatic lesions, and (ii) unique therapeutic target to maximize chemosensitivity of DTCs. Here we review the molecular and cellular factors that contribute to the pathophysiological activities of BORG during its regulation of breast cancer metastasis, chemoresistance, and disease recurrence.
Collapse
Affiliation(s)
- Alex J Gooding
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kimberly A Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
5
|
Palozola KC, Lerner J, Zaret KS. A changing paradigm of transcriptional memory propagation through mitosis. Nat Rev Mol Cell Biol 2019; 20:55-64. [PMID: 30420736 PMCID: PMC6557398 DOI: 10.1038/s41580-018-0077-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The highly reproducible inheritance of chromosomes during mitosis in mammalian cells involves nuclear envelope breakdown, increased chromatin compaction, loss of long-range intrachromosomal interactions, loss of enhancer-promoter proximity, displacement of many transcription regulators from the chromatin and a marked decrease in RNA synthesis. Despite these dramatic changes in the mother cell, daughter cells are able to faithfully re-establish the parental chromatin and gene expression features characteristic of the cell type. Pioneering studies of mitotic chromatin signatures showed that despite global repression of transcription, the Hsp70 gene promoter retains an open chromatin conformation, which was proposed to allow the reactivation of the Hsp70 gene upon completion of mitosis - a phenomenon termed mitotic bookmarking. It was later shown that various cell-type-specific transcription factors, such as GATA-binding factor 1 (GATA1) in erythroblasts and forkhead box protein A1 (FOXA1) in hepatocytes, remain bound at a subset of their interphase binding sites in mitosis. Such bookmarking transcription factors remain on chromosomes in mitosis and have been shown to enable a subset of genes to be reactivated in a timely fashion upon mitotic exit. In addition, sensitive new methods to measure transcription revealed that mitotic cells retain residual transcription at a large number of genes. Furthermore, genes recover their interphase level of transcription in distinct waves. Thus, gene expression is precisely regulated as cells pass through mitosis to ensure faithful propagation of cell identity and function through cellular generations.
Collapse
Affiliation(s)
- Katherine C Palozola
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Jonathan Lerner
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Tanaka H, Kuwano Y, Nishikawa T, Rokutan K, Nishida K. ZNF350 promoter methylation accelerates colon cancer cell migration. Oncotarget 2018; 9:36750-36769. [PMID: 30613364 PMCID: PMC6298409 DOI: 10.18632/oncotarget.26353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Diversification of transcriptomic and epigenomic states may occur during the expansion of colorectal cancers. Certain cancer cells lose their epithelial characters and gain mesenchymal properties, known as epithelial-mesenchymal transition (EMT), and they aggressively migrate into the non-tumorigenic extracellular matrix. In this study, we isolated a subpopulation with accelerated baseline motility (MG cells) and an immotile one (non-MG cells) from a colon cancer cell line (HCT116). Gene expression signatures of the MG cells indicated that this subpopulation was likely an EMT hybrid. The MG cells substantially lost their migratory properties after treatment with a methyltransferase inhibitor, 5-azacytidine, suggesting a role of DNA methylation in this process. Global transcriptome assays of both types of cells with or without 5-azacytidine treatment identified 640 genes, whose expression might be methylation-dependently down-regulated in the MG cells. Global methylation analysis revealed that 35 out of the 640 genes were hyper-methylated in the MG cells. Among them, we focused on the anti-oncogene ZNF350, which encodes a zinc-finger and BRCA1-interacting protein. Notably, ZNF350 knockdown accelerated migration of the non-MG cells, while overexpression of ZNF350 in the MG cells significantly impaired their migration. Finally, pyrosequence analysis together with dual luciferase assays of serially truncated fragments of the ZNF350 promoter (-268 to +49 bp) indicated that three hyper-methylated sites were possibly responsible for the basal promoter activity of ZNF350. Taken together, our results suggest that hyper-methylation of the ZNF350 proximal promoter may be one of the crucial determinants for acquiring increased migratory capabilities in colon cancer cells.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Fong KW, Zhao JC, Song B, Zheng B, Yu J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun 2018; 9:5007. [PMID: 30479348 PMCID: PMC6258673 DOI: 10.1038/s41467-018-07475-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
TRIM24 is an effector substrate of the E3 ubiquitin ligase adaptor SPOP and becomes stabilized in prostate cancer (PCa) with SPOP mutations. However, how TRIM24 protein is regulated in the vast majority of SPOP-wildtype PCa is unknown. Here we report TRIM28 as a critical upstream regulator of TRIM24. TRIM28 protein interacts with TRIM24 to prevent its ubiquitination and degradation by SPOP. Further, TRIM28 facilitates TRIM24 occupancy on the chromatin and, like TRIM24, augments AR signaling. TRIM28 promotes PCa cell proliferation in vitro and xenograft tumor growth in vivo. Importantly, TRIM28 is upregulated in aggressive PCa and associated with elevated levels of TRIM24 and worse clinical outcome. TRIM24 and AR coactivated gene signature of SPOP-mutant PCa is similarly activated in human PCa with high TRIM28 expression. Taken together, this study provides a novel mechanism to broad TRIM24 protein stabilization and establishes TRIM28 as a promising therapeutic target. TRIM24 is stabilized in SPOP-mutated prostate cancers, but the regulation of TRIM24 in wild-type prostate cancers is unknown. Here, the authors show that TRIM28 interacts with TRIM24 to prevent SPOP-mediated ubiquitination of TRIM24 and enhances TRIM24 and AR signaling to induce prostate cancer tumorigenesis.
Collapse
Affiliation(s)
- Ka-Wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bing Song
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bin Zheng
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
8
|
Zhang N, Lu Y, Liu X, Yu D, Lv Z, Yang M. Functional Evaluation of ZNF350 Missense Genetic Variants Associated with Breast Cancer Susceptibility. DNA Cell Biol 2018; 37:543-550. [PMID: 29653063 DOI: 10.1089/dna.2018.4160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ZNF350, a BRCA1-interacting protein, could mediate BRCA1-induced sequence-specific transcriptional repression of several genes, including GADD45α. As a potential breast cancer susceptibility gene, single nucleotide polymorphisms (SNPs), especially missense SNPs, may influence the transcriptional repression of its target tumor suppressor genes and individuals' breast cancer risk. Using the gene-based haplotype-tagging SNPs strategy, we evaluated the association between six ZNF350 polymorphisms and breast cancer risk in a case-control set from a northern Chinese population. The impact of ZNF350 variations on transcriptional repression of GADD45α was also examined. It was found that ZNF350 rs2278420 (L66P) and rs2278415 (S501R) missense genetic variants are in complete linkage disequilibrium and have a significant impact on inter-individual susceptibility to breast cancer. Additionally, ZNF350 GGCGT or GGCGC haplotype is also associated with a significantly increased breast cancer risk compared with the GGCAC haplotype. ZNF350 L66P variant modifies the risk of breast cancer not only by itself but also in a gene-environment interaction manner with age, age at menarche, menopause status, or estrogen receptor status. Interestingly, we observed that ZNF350 L66P and S501R SNPs could weaken the capability of ZNF350-mediated GADD45α transcription repression and it may be an underlying mechanism of the observed epidemiological associations. Our results highlight ZNF350 as an important gene in human mammary oncogenesis and ZNF350 missense genetic polymorphisms confer susceptibility to breast cancer.
Collapse
Affiliation(s)
- Nasha Zhang
- 1 Cheeloo College of Medicine, Shandong University , Jinan, China .,2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| | - Youhua Lu
- 2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| | - Xijun Liu
- 2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| | - Dianke Yu
- 3 School of Public Health, Qingdao University , Qingdao, China
| | - Zheng Lv
- 4 Cancer Center, The First Affiliated Hospital of Jilin University , Changchun, China
| | - Ming Yang
- 2 Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University , Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
9
|
Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkel FS, Sahana G, Govignon-Gion A, Boitard S, Dolezal M, Pausch H, Brøndum RF, Bowman PJ, Thomsen B, Guldbrandtsen B, Lund MS, Servin B, Garrick DJ, Reecy J, Vilkki J, Bagnato A, Wang M, Hoff JL, Schnabel RD, Taylor JF, Vinkhuyzen AAE, Panitz F, Bendixen C, Holm LE, Gredler B, Hozé C, Boussaha M, Sanchez MP, Rocha D, Capitan A, Tribout T, Barbat A, Croiseau P, Drögemüller C, Jagannathan V, Vander Jagt C, Crowley JJ, Bieber A, Purfield DC, Berry DP, Emmerling R, Götz KU, Frischknecht M, Russ I, Sölkner J, Van Tassell CP, Fries R, Stothard P, Veerkamp RF, Boichard D, Goddard ME, Hayes BJ. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat Genet 2018; 50:362-367. [PMID: 29459679 DOI: 10.1038/s41588-018-0056-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2018] [Indexed: 11/09/2022]
Abstract
Stature is affected by many polymorphisms of small effect in humans 1 . In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10-8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP-seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.
Collapse
Affiliation(s)
- Aniek C Bouwman
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Wageningen, the Netherlands
| | - Hans D Daetwyler
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Amanda J Chamberlain
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | - Carla Hurtado Ponce
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,Faculty of Land and Food Resources, University of Melbourne, Parkville, Victoria, Australia
| | - Mehdi Sargolzaei
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.,The Semex Alliance, Guelph, Ontario, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Simon Boitard
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Marlies Dolezal
- Platform of Bioinformatics and Statistics, University of Veterinary Medicine, Vienna, Austria
| | - Hubert Pausch
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,Chair of Animal Breeding, Technische Universität München, Freising-Weihenstephan, Germany.,Animal Genomics, ETH Zurich, Zurich, Switzerland
| | - Rasmus F Brøndum
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Phil J Bowman
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | - Bo Thomsen
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mogens S Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet-Tolosan, France
| | - Dorian J Garrick
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - James Reecy
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Johanna Vilkki
- Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | | | - Min Wang
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Jesse L Hoff
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Anna A E Vinkhuyzen
- University of Queensland, Institute for Molecular Bioscience, St Lucia, Queensland, Australia.,University of Queensland, Queensland Brain Institute, St Lucia, Queensland, Australia
| | - Frank Panitz
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Christian Bendixen
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Lars-Erik Holm
- Section for Molecular Genetics and Systems Biology. Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | | | - Chris Hozé
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France.,Allice, Paris, France
| | - Mekki Boussaha
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | | | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Aurelien Capitan
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France.,Allice, Paris, France
| | - Thierry Tribout
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Anne Barbat
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Pascal Croiseau
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | | | | | - Christy Vander Jagt
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | | | - Anna Bieber
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Deirdre C Purfield
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Ireland
| | - Reiner Emmerling
- Institute of Animal Breeding, Bavarian State Research Centre for Agriculture, Poing, Germany
| | - Kay-Uwe Götz
- Institute of Animal Breeding, Bavarian State Research Centre for Agriculture, Poing, Germany
| | | | | | - Johann Sölkner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Ruedi Fries
- Chair of Animal Breeding, Technische Universität München, Freising-Weihenstephan, Germany
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science/Livestock Gentec, University of Alberta, Edmonton, Alberta, Canada
| | - Roel F Veerkamp
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Wageningen, the Netherlands
| | - Didier Boichard
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Mike E Goddard
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia.,Faculty of Land and Food Resources, University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Hayes
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia. .,Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
10
|
Triki M, Ben Ayed-Guerfali D, Saguem I, Charfi S, Ayedi L, Sellami-Boudawara T, Cavailles V, Mokdad-Gargouri R. RIP140 and LCoR expression in gastrointestinal cancers. Oncotarget 2017; 8:111161-111175. [PMID: 29340045 PMCID: PMC5762313 DOI: 10.18632/oncotarget.22686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022] Open
Abstract
The transcription coregulators RIP140 and LCoR are part of a same complex which controls the activity of various transcription factors and cancer cell proliferation. In this study, we have investigated the expression of these two genes in human colorectal and gastric cancers by immunohistochemistry. In both types of tumors, the levels of RIP140 and LCoR appeared highly correlated. Their expression tended to decrease in colorectal cancer as compared to adjacent normal tissues but was found higher in gastric cancer as compared to normal stomach. RIP140 and LCoR expression correlated with TNM and tumor differentiation. Significant correlations were observed with expression levels of key proteins involved in tumor progression and invasion namely E-cadherin and Cyclooxygenase-2. Survival analysis showed that patients with LCoRlow/RIP140high colorectal tumors have a significant prolonged overall and disease-free survival. In gastric cancer, high LCoR expression was identified as an independent marker of poor prognosis suggesting a key role in this malignancy. Altogether, these results demonstrate that RIP140 and LCoR have a prognostic relevance in gastrointestinal cancers and could represent new potential biomarkers in these tumors.
Collapse
Affiliation(s)
- Mouna Triki
- IRCM (Institute of Cancer Research of Montpellier), INSERM U1194, Montpellier University, Montpellier, France.,Center of Biotechnology of Sfax, Laboratory of Eukaryotic Molecular Biotechnology, Sfax University, Sfax, Tunisia
| | - Dorra Ben Ayed-Guerfali
- Center of Biotechnology of Sfax, Laboratory of Eukaryotic Molecular Biotechnology, Sfax University, Sfax, Tunisia
| | - Ines Saguem
- Department of Anatomopathology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Slim Charfi
- Department of Anatomopathology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Lobna Ayedi
- Department of Anatomopathology, Habib Bourguiba Hospital, Sfax, Tunisia
| | | | - Vincent Cavailles
- IRCM (Institute of Cancer Research of Montpellier), INSERM U1194, Montpellier University, Montpellier, France
| | - Raja Mokdad-Gargouri
- Center of Biotechnology of Sfax, Laboratory of Eukaryotic Molecular Biotechnology, Sfax University, Sfax, Tunisia
| |
Collapse
|
11
|
Five zinc finger protein 350 single nucleotide polymorphisms and the risks of breast cancer: a meta-analysis. Oncotarget 2017; 8:107273-107282. [PMID: 29291027 PMCID: PMC5739812 DOI: 10.18632/oncotarget.21620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023] Open
Abstract
Some studies have reported an association between the zinc-finger protein 350 (ZNF350), also known as zinc-finger and BRCA1-interacting protein with a Kruppel-associated box (KRAB) domain (ZBRK1), and risks of breast cancer, although the results remain controversial. A systematic search was conducted on PubMed, Web of Science, EMBASE, Ovid, Chinese National Knowledge Databases, and WanFang databases with relevant keywords. Four studies of five distinct populations involving 5824 breast cancer cases were used to conduct a meta-analysis that summarizes the current evidence of 5 genetic polymorphisms: Asp35Asp, Leu66Pro, Pro373Pro, Ser472Pro, and Ser501Arg in the ZNF350 gene. The T allele in Asp35Asp polymorphisms not significantly associated with increased risk of breast cancer (OR: 1.08; 95% CI: 0.96–1.21). The minor C allele of the Asp35Asp polymorphism is protective in the overdominant model (OR = 1.14; 95% CI: 1.02–1.28). The Pro allele in the Leu66Pro polymorphism is protective in all of the models examined (allelic, dominant, recessive, and overdominant). The Pro373Pro is not associated with breast cancer in all of the models tested. The Pro allele of the Ser472Pro polymorphism is protective using the dominant model (OR = 0.10; 95% CI: 0.04–0.23) but deleterious using the overdominant model (OR = 1.14; 95% CI: 1.02–1.28). The Ser501Arg polymorphism is deleterious only when using the recessive model (OR = 1.21; 95% CI: 1.02–1.44). In conclusion, this meta-analysis suggests that genetic polymorphisms in the ZNF350 variant can increase, decrease, or have no effect on the risks of breast cancer depending on the polymorphism and genetic model used. Further studies will be required to validate these findings.
Collapse
|
12
|
Gooding AJ, Zhang B, Jahanbani FK, Gilmore HL, Chang JC, Valadkhan S, Schiemann WP. The lncRNA BORG Drives Breast Cancer Metastasis and Disease Recurrence. Sci Rep 2017; 7:12698. [PMID: 28983112 PMCID: PMC5629202 DOI: 10.1038/s41598-017-12716-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as potent regulators of breast cancer development and progression, including the metastatic spread of disease. Through in silico and biological analyses, we identified a novel lncRNA, BMP/OP-Responsive Gene (BORG), whose expression directly correlates with aggressive breast cancer phenotypes, as well as with metastatic competence and disease recurrence in multiple clinical cohorts. Mechanistically, BORG elicits the metastatic outgrowth of latent breast cancer cells by promoting the localization and transcriptional repressive activity of TRIM28, which binds BORG and induces substantial alterations in carcinoma proliferation and survival. Moreover, inhibiting BORG expression in metastatic breast cancer cells impedes their metastatic colonization of the lungs of mice, implying that BORG acts as a novel driver of the genetic and epigenetic alterations that underlie the acquisition of metastatic and recurrent phenotypes by breast cancer cells.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bing Zhang
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Fereshteh Kenari Jahanbani
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hannah L Gilmore
- Department of Pathology, University Hospitals, Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jenny C Chang
- Houston Methodist Research Center, Houston, TX, 77030, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Jalaguier S, Teyssier C, Nait Achour T, Lucas A, Bonnet S, Rodriguez C, Elarouci N, Lapierre M, Cavaillès V. Complex regulation of LCoR signaling in breast cancer cells. Oncogene 2017; 36:4790-4801. [PMID: 28414308 PMCID: PMC5562849 DOI: 10.1038/onc.2017.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/18/2017] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
Abstract
Ligand-dependent corepressor (LCoR) is a transcriptional repressor of ligand-activated estrogen receptors (ERs) and other transcription factors that acts both by recruiting histone deacetylases and C-terminal binding proteins. Here, we first studied LCOR gene expression in breast cancer cell lines and tissues. We detected two mRNAs variants, LCoR and LCoR2 (which encodes a truncated LCoR protein). Their expression was highly correlated and localized in discrete nuclear foci. LCoR and LCoR2 strongly repressed transcription, inhibited estrogen-induced target gene expression and decreased breast cancer cell proliferation. By mutagenesis analysis, we showed that the helix-turn-helix domain of LCoR is required for these effects. Using in vitro interaction, coimmunoprecipitation, proximity ligation assay and confocal microscopy experiments, we found that receptor-interacting protein of 140 kDa (RIP140) is a LCoR and LCoR2 partner and that this interaction requires the HTH domain of LCoR and RIP140 N- and C-terminal regions. By increasing or silencing LCoR and RIP140 expression in human breast cancer cells, we then showed that RIP140 is necessary for LCoR inhibition of gene expression and cell proliferation. Moreover, LCoR and RIP140 mRNA levels were strongly correlated in breast cancer cell lines and biopsies. In addition, RIP140 positively regulated LCoR expression in human breast cancer cells and in transgenic mouse models. Finally, their expression correlated with overall survival of patients with breast cancer. Taken together, our results provide new insights into the mechanism of action of LCoR and RIP140 and highlight their strong interplay for the control of gene expression and cell proliferation in breast cancer cells.
Collapse
Affiliation(s)
- S Jalaguier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - C Teyssier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - T Nait Achour
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - A Lucas
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - S Bonnet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - C Rodriguez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - N Elarouci
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - M Lapierre
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - V Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Mblk-1 Transcription Factor Family: Its Roles in Various Animals and Regulation by NOL4 Splice Variants in Mammals. Int J Mol Sci 2017; 18:ijms18020246. [PMID: 28125049 PMCID: PMC5343783 DOI: 10.3390/ijms18020246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/15/2017] [Accepted: 01/20/2017] [Indexed: 11/30/2022] Open
Abstract
Transcription factors play critical roles in regulation of neural development and functions. A transcription factor Mblk-1 was previously reported from a screen for factors possibly important for the higher brain functions of the honeybee. This review first summarizes how Mblk-1 was identified, and then provides an overview of the studies of Mblk-1 and their homologs. Mblk-1 family proteins are found broadly in animals and are shown to affect transcription activities. Studies have revealed that the mammalian homologs can interact with several cofactors and together regulate transcription. Interestingly, a recent study using the mouse homologs, Mlr1 and Mlr2, showed that one of their cofactor proteins, NOL4, have several splice variants with different effects on the transactivation activities of Mlr proteins. These findings suggest that there is an additional layer of the regulation of Mblk-1 family proteins by cofactor splice variants and provide novel insights into our current understanding of the roles of the conserved transcription factor family.
Collapse
|
15
|
Chen K, Yu G, Gumireddy K, Li A, Yao W, Gao L, Chen S, Hao J, Wang J, Huang Q, Xu H, Ye Z. ZBRK1, a novel tumor suppressor, activates VHL gene transcription through formation of a complex with VHL and p300 in renal cancer. Oncotarget 2016; 6:6959-76. [PMID: 25749518 PMCID: PMC4466662 DOI: 10.18632/oncotarget.3134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/10/2015] [Indexed: 11/26/2022] Open
Abstract
Inactivation or mutation of the VHL gene causes various tumors, including clear cell renal cell carcinoma (ccRCC). In the present study, we identified ZBRK1 as a novel VHL interacting protein by yeast two-hybrid screening, and found a single ZBRK1-binding site located in the VHL promoter region. Ectopic expression of ZBRK1 increases transcriptional activity of the VHL, whereas the depletion of endogenous ZBRK1 by shRNA leads to reduction of VHL expression. We also demonstrate that the inhibition of VEGF transcription by ZBRK1 overexpression is dependent on VHL/HIF pathway. Moreover, VHL is confirmed to serve as a bridge component for the association of ZBRK1 and p300, which leads to an increase in ZBRK1 transcriptional activity in the VHL promoter. We further provide striking evidences that ZBRK1 acts as a tumor suppressor in renal carcinoma by a variety of in vitro and in vivo assays, and ZBRK1 may represent a molecular marker to distinguish patients with ccRCC at high risk from those with a better survival prognosis. Taken together, these findings suggest that ZBRK1 suppresses renal cancer progression perhaps by regulating VHL expression.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Anping Li
- The Wistar Institute, Philadelphia, PA, USA
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Hao
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Ji Wang
- Department of Cell Death and Cancer Genetics, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | | | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Recognition Code of ZNF191(243-368) and Its Interaction with DNA. Bioinorg Chem Appl 2015; 2015:416751. [PMID: 26457075 PMCID: PMC4592708 DOI: 10.1155/2015/416751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/02/2015] [Indexed: 02/05/2023] Open
Abstract
ZNF191(243-368) is the C-terminal region of ZNF191 which contains a putative DNA-binding domain of four Cys2His2 zinc finger motifs. In this study, an expression vector of a fusion protein of ZNF191(243-368) with glutathione-S-transferase (GST) was constructed and transformed into Escherichia coli BL21. The fusion protein GST-ZNF191(243-368) was expressed using this vector to investigate the protein-DNA binding reaction through an affinity selection strategy on the basis of the binding quality of the zinc finger domain. Results showed that ZNF191(243-368) can selectively bind with sequences and react with genes which contain an AGGG core. However, the recognition mechanism of Cys2His2 zinc finger proteins to DNA warrants further investigation.
Collapse
|