1
|
Hussen AS, Kravitz HL, Freudenthal BD, Whitaker AM. Oxidative DNA damage on the VEGF G-quadruplex forming promoter is repaired via long-patch BER. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:25-39. [PMID: 37606505 PMCID: PMC10984112 DOI: 10.1002/em.22570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 08/23/2023]
Abstract
In response to oxidative damage, base excision repair (BER) enzymes perturb the structural equilibrium of the VEGF promoter between B-form and G4 DNA conformations, resulting in epigenetic-like modifications of gene expression. However, the mechanistic details remain enigmatic, including the activity and coordination of BER enzymes on the damaged G4 promoter. To address this, we investigated the ability of each BER factor to conduct its repair activity on VEGF promoter G4 DNA substrates by employing pre-steady-state kinetics assays and in vitro coupled BER assays. OGG1 was able to initiate BER on double-stranded VEGF promoter G4 DNA substrates. Moreover, pre-steady-state kinetics revealed that compared to B-form DNA, APE1 repair activity on the G4 was decreased ~two-fold and is the result of slower product release as opposed to inefficient strand cleavage. Interestingly, Pol β performs multiple insertions on G4 substrates via strand displacement DNA synthesis in contrast to a single insertion on B-form DNA. The multiple insertions inhibit ligation of the Pol β products, and hence BER is not completed on the VEGF G4 promoter substrates through canonical short-patch BER. Instead, repair requires the long-patch BER flap-endonuclease activity of FEN1 in response to the multiple insertions by Pol β prior to ligation. Because the BER proteins and their repair activities are a key part of the VEGF transcriptional enhancement in response to oxidative DNA damage of the G4 VEGF promoter, the new insights reported here on BER activity in the context of this promoter are relevant toward understanding the mechanism of transcriptional regulation.
Collapse
Affiliation(s)
- Adil S. Hussen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Haley L. Kravitz
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Bret D. Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amy M. Whitaker
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Howpay Manage SA, Zhu J, Fleming AM, Burrows CJ. Promoters vs. telomeres: AP-endonuclease 1 interactions with abasic sites in G-quadruplex folds depend on topology. RSC Chem Biol 2023; 4:261-270. [PMID: 37034403 PMCID: PMC10074553 DOI: 10.1039/d2cb00233g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The DNA repair endonuclease APE1 is responsible for the cleavage of abasic sites (AP) in DNA as well as binding AP in promoter G-quadruplex (G4) folds in some genes to regulate transcription. The present studies focused on the topological properties of AP-bearing G4 folds and how they impact APE1 interaction. The human telomere sequence with a tetrahydrofuran model (F) of an AP was folded in K+- or Na+-containing buffers to adopt hybrid- or basket-folds, respectively. Endonuclease and binding assays were performed with APE1 and the G4 substrates, and the data were compared to prior work with parallel-stranded VEGF and NEIL3 promoter G4s to identify topological differences. The APE1-catalyzed endonuclease assays led to the conclusion that telomere G4 folds were slightly better substrates than the promoter G4s, but the yields were all low compared to duplex DNA. In the binding assays, G4 topological differences were observed in which APE1 bound telomere G4s with dissociation constants similar to single-stranded DNA, and promoter G4s were bound with nearly ten-fold lower values similar to duplex DNA. An in-cellulo assay with the telomere G4 in a model promoter bearing a lesion failed to regulate transcription. These data support a hypothesis that G4 topology in gene promoters is a critical feature that APE1 recognizes for gene regulation.
Collapse
Affiliation(s)
| | - Judy Zhu
- Department of Chemistry, University of Utah 315 S. 1400 E. Salt Lake City UT 84112-0850 USA
| | - Aaron M Fleming
- Department of Chemistry, University of Utah 315 S. 1400 E. Salt Lake City UT 84112-0850 USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah 315 S. 1400 E. Salt Lake City UT 84112-0850 USA
| |
Collapse
|
3
|
Fleming AM, Manage SAH, Burrows CJ. Binding of AP endonuclease-1 to G-quadruplex DNA depends on the N-terminal domain, Mg 2+ and ionic strength. ACS BIO & MED CHEM AU 2021; 1:44-56. [PMID: 35005714 DOI: 10.1021/acsbiomedchemau.1c00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The base excision repair enzyme apurinic/apyrimidinic endonuclease-1 (APE1) is also engaged in transcriptional regulation. APE1 can function in both pathways when the protein binds to a promoter G-quadruplex (G4) bearing an abasic site (modeled with tetrahydrofuran, F) that leads to enzymatic stalling on the non-canonical fold to recruit activating transcription factors. Biochemical and biophysical studies to address APE1's binding and catalytic activity with the vascular endothelial growth factor (VEGF) promoter G4 are lacking, and the present work provides insight on this topic. Herein, the native APE1 was used for cleavage assays, and the catalytically inactive mutant D210A was used for binding assays with double-stranded DNA (dsDNA) versus the native G4 or the G4 with F at various positions, revealing dependencies of the interaction on the cation concentrations K+ and Mg2+ and the N-terminal domain of the protein. Assays in 0, 1, or 10 mM Mg2+ found that dsDNA and G4 substrates required the cation for both binding and catalysis, in which G4 binding increased with [Mg2+]. Studies with 50 versus physiological 140 mM K+ ions showed that F-containing dsDNA was bound and cleaved by APE1; whereas, the G4s with F were poorly cleaved in low salt and not cleaved at all at higher salt while the binding remained robust. Using Δ33 or Δ61 N-terminal truncated APE1 proteins, the binding and cleavage of dsDNA with F was minimally impacted; in contrast, the G4s required the N-terminus for binding and catalysis is nearly abolished without the N-terminus. With this knowledge, we found APE1 could remodel the F-containing VEGF promoter dsDNA→G4 folds in solution. Lastly, the addition of the G4 ligand pyridostatin inhibited APE1 binding and cleavage of F-containing G4s but not dsDNA. The biological and medicinal chemistry implications of the results are discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Shereen A Howpay Manage
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| |
Collapse
|
4
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Linke R, Limmer M, Juranek SA, Heine A, Paeschke K. The Relevance of G-Quadruplexes for DNA Repair. Int J Mol Sci 2021; 22:12599. [PMID: 34830478 PMCID: PMC8620898 DOI: 10.3390/ijms222212599] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.
Collapse
Affiliation(s)
- Rebecca Linke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaela Limmer
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Stefan A. Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| |
Collapse
|
6
|
Direct and Base Excision Repair-Mediated Regulation of a GC-Rich cis-Element in Response to 5-Formylcytosine and 5-Carboxycytosine. Int J Mol Sci 2021; 22:ijms222011025. [PMID: 34681690 PMCID: PMC8539351 DOI: 10.3390/ijms222011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Stepwise oxidation of the epigenetic mark 5-methylcytosine and base excision repair (BER) of the resulting 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) may provide a mechanism for reactivation of epigenetically silenced genes; however, the functions of 5-fC and 5-caC at defined gene elements are scarcely explored. We analyzed the expression of reporter constructs containing either 2′-deoxy-(5-fC/5-caC) or their BER-resistant 2′-fluorinated analogs, asymmetrically incorporated into CG-dinucleotide of the GC box cis-element (5′-TGGGCGGAGC) upstream from the RNA polymerase II core promoter. In the absence of BER, 5-caC caused a strong inhibition of the promoter activity, whereas 5-fC had almost no effect, similar to 5-methylcytosine or 5-hydroxymethylcytosine. BER of 5-caC caused a transient but significant promoter reactivation, succeeded by silencing during the following hours. Both responses strictly required thymine DNA glycosylase (TDG); however, the silencing phase additionally demanded a 5′-endonuclease (likely APE1) activity and was also induced by 5-fC or an apurinic/apyrimidinic site. We propose that 5-caC may act as a repressory mark to prevent premature activation of promoters undergoing the final stages of DNA demethylation, when the symmetric CpG methylation has already been lost. Remarkably, the downstream promoter activation or repression responses are regulated by two separate BER steps, where TDG and APE1 act as potential switches.
Collapse
|
7
|
Fleming AM, Burrows CJ. Oxidative stress-mediated epigenetic regulation by G-quadruplexes. NAR Cancer 2021; 3:zcab038. [PMID: 34541539 PMCID: PMC8445369 DOI: 10.1093/narcan/zcab038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Many cancer-associated genes are regulated by guanine (G)-rich sequences that are capable of refolding from the canonical duplex structure to an intrastrand G-quadruplex. These same sequences are sensitive to oxidative damage that is repaired by the base excision repair glycosylases OGG1 and NEIL1–3. We describe studies indicating that oxidation of a guanosine base in a gene promoter G-quadruplex can lead to up- and downregulation of gene expression that is location dependent and involves the base excision repair pathway in which the first intermediate, an apurinic (AP) site, plays a key role mediated by AP endonuclease 1 (APE1/REF1). The nuclease activity of APE1 is paused at a G-quadruplex, while the REF1 capacity of this protein engages activating transcription factors such as HIF-1α, AP-1 and p53. The mechanism has been probed by in vitro biophysical studies, whole-genome approaches and reporter plasmids in cellulo. Replacement of promoter elements by a G-quadruplex sequence usually led to upregulation, but depending on the strand and precise location, examples of downregulation were also found. The impact of oxidative stress-mediated lesions in the G-rich sequence enhanced the effect, whether it was positive or negative.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
8
|
Robinson J, Raguseo F, Nuccio SP, Liano D, Di Antonio M. DNA G-quadruplex structures: more than simple roadblocks to transcription? Nucleic Acids Res 2021; 49:8419-8431. [PMID: 34255847 PMCID: PMC8421137 DOI: 10.1093/nar/gkab609] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
It has been >20 years since the formation of G-quadruplex (G4) secondary structures in gene promoters was first linked to the regulation of gene expression. Since then, the development of small molecules to selectively target G4s and their cellular application have contributed to an improved understanding of how G4s regulate transcription. One model that arose from this work placed these non-canonical DNA structures as repressors of transcription by preventing polymerase processivity. Although a considerable number of studies have recently provided sufficient evidence to reconsider this simplistic model, there is still a misrepresentation of G4s as transcriptional roadblocks. In this review, we will challenge this model depicting G4s as simple 'off switches' for gene expression by articulating how their formation has the potential to alter gene expression at many different levels, acting as a key regulatory element perturbing the nature of epigenetic marks and chromatin architecture.
Collapse
Affiliation(s)
- Jenna Robinson
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Federica Raguseo
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Sabrina Pia Nuccio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Denise Liano
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
9
|
Pavlova AV, Kubareva EA, Monakhova MV, Zvereva MI, Dolinnaya NG. Impact of G-Quadruplexes on the Regulation of Genome Integrity, DNA Damage and Repair. Biomolecules 2021; 11:1284. [PMID: 34572497 PMCID: PMC8472537 DOI: 10.3390/biom11091284] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
DNA G-quadruplexes (G4s) are known to be an integral part of the complex regulatory systems in both normal and pathological cells. At the same time, the ability of G4s to impede DNA replication plays a critical role in genome integrity. This review summarizes the results of recent studies of G4-mediated genomic and epigenomic instability, together with associated DNA damage and repair processes. Although the underlying mechanisms remain to be elucidated, it is known that, among the proteins that recognize G4 structures, many are linked to DNA repair. We analyzed the possible role of G4s in promoting double-strand DNA breaks, one of the most deleterious DNA lesions, and their repair via error-prone mechanisms. The patterns of G4 damage, with a focus on the introduction of oxidative guanine lesions, as well as their removal from G4 structures by canonical repair pathways, were also discussed together with the effects of G4s on the repair machinery. According to recent findings, there must be a delicate balance between G4-induced genome instability and G4-promoted repair processes. A broad overview of the factors that modulate the stability of G4 structures in vitro and in vivo is also provided here.
Collapse
Affiliation(s)
- Anzhela V. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| |
Collapse
|
10
|
Sengupta P, Bose D, Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-motif in the Human Genome. Chembiochem 2021; 22:1517-1537. [PMID: 33355980 DOI: 10.1002/cbic.202000703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Indexed: 12/22/2022]
Abstract
G-Quadruplex (GQ) and i-motif structures are the paradigmatic examples of nonclassical tetrastranded nucleic acids having multifarious biological functions and widespread applications in therapeutics and material science. Recently, tetraplexes emerged as promising anticancer targets due to their structural robustness, gene-regulatory roles, and predominant distribution at specific loci of oncogenes. However, it is arguable whether the i-motif evolves in the complementary single-stranded region after GQ formation in its opposite strand and vice versa. In this review, we address the prerequisites and significance of the simultaneous and/or mutually exclusive formation of GQ and i-motif structures at complementary and sequential positions in duplexes in the cellular milieu. We discussed how their dynamic interplay Sets up cellular homeostasis and exacerbates carcinogenesis. The review gives insights into the spatiotemporal formation of GQ and i-motifs that could be harnessed to design different types of reporter systems and diagnostic platforms for potential bioanalytical and therapeutic intervention.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
11
|
Fleming AM, Burrows CJ. On the irrelevancy of hydroxyl radical to DNA damage from oxidative stress and implications for epigenetics. Chem Soc Rev 2020; 49:6524-6528. [PMID: 32785348 PMCID: PMC7522918 DOI: 10.1039/d0cs00579g] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Contrary to frequent reports in the literature, hydroxyl radical is not a key species participating in endogenous oxidative DNA damage. Instead, carbonate radical anion is formed from the Fenton reaction under cellular conditions and from decomposition of nitrosoperoxycarbonate generated during inflammation. Carbonate radical anion is a potent one-electron oxidant capable of generating base radical cations that can migrate over long distances in duplex DNA, ultimately generating 8-oxo-7,8-dihydroguanine at a redox-sensitive sequence such as GGG. Such a mechanism enables G-quadruplex-forming sequences to act as long-range sensors of oxidative stress, impacting gene expression via the DNA repair mechanism that reads and ultimately erases the oxidized base. With a writing, reading and erasing mechanism in place, oxidative 'damage' to DNA might be relabeled as 'epigenetic' modifications.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA.
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA.
| |
Collapse
|
12
|
Fleming AM, Zhu J, Jara-Espejo M, Burrows CJ. Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2'-Deoxyguanosine. Biochemistry 2020; 59:2616-2626. [PMID: 32567845 DOI: 10.1021/acs.biochem.0c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequences of DNA typically adopt B-form duplexes in genomes, although noncanonical structures such as G-quadruplexes, i-motifs, Z-DNA, and cruciform structures can occur. A challenge is to determine the functions of these various structures in cellular processes. We and others have hypothesized that G-rich G-quadruplex-forming sequences in human genome promoters serve to sense oxidative damage generated during oxidative stress impacting gene regulation. Herein, chemical tools and a cell-based assay were used to study the oxidation of guanine to 8-oxo-7,8-dihydroguanine (OG) in the context of a cruciform-forming sequence in a gene promoter to determine the impact on transcription. We found that OG in the nontemplate strand in the loop of a cruciform-forming sequence could induce gene expression; conversely when OG was in the same sequence on the template strand, gene expression was inhibited. A model for the transcriptional changes observed is proposed in which OG focuses the DNA repair process on the promoter to impact expression. Our cellular and biophysical studies and literature sources support the idea that removal of OG from duplex DNA by OGG1 yields an abasic site (AP) that triggers a structural shift to the cruciform fold. The AP-bearing cruciform structure is presented to APE1, which functions as a conduit between DNA repair and gene regulation. The significance is enhanced by a bioinformatic study of all human gene promoters and transcription termination sites for inverted repeats (IRs). Comparison of the two regions showed that promoters have stable and G-rich IRs at a low frequency and termination sites have many AT-rich IRs with low stability.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Manuel Jara-Espejo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.,Department of Morphology, Piracicaba Dental School, University of Campinas-UNICAMP, Av. Limeira 901, Piracicaba, CEP 13414-018 Sao Paulo, Brazil
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
13
|
Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc Natl Acad Sci U S A 2020; 117:11409-11420. [PMID: 32404420 PMCID: PMC7260947 DOI: 10.1073/pnas.1912355117] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
G-quadruplex (G4) structures in functionally important genomic regions regulate multiple biological processes in cells. This study demonstrates a genome-wide correlation between the occurrence of endogenous oxidative base damage, activation of BER, and formation of G4 structures. Unbiased mapping of AP sites, APE1 binding, and G4 structures across the genome reveal a distinct distribution of AP sites and APE1 binding, predominantly in G4 sequences. Furthermore, APE1 plays an essential role in regulating the formation of G4 structures and G4-mediated gene expression. Our findings unravel a paradigm-shifting concept that endogenous oxidized DNA base damage and binding of APE1 in key regulatory regions in the genome have acquired a novel function in regulating the formation of G4 structures that controls multiple biological processes. Formation of G-quadruplex (G4) DNA structures in key regulatory regions in the genome has emerged as a secondary structure-based epigenetic mechanism for regulating multiple biological processes including transcription, replication, and telomere maintenance. G4 formation (folding), stabilization, and unfolding must be regulated to coordinate G4-mediated biological functions; however, how cells regulate the spatiotemporal formation of G4 structures in the genome is largely unknown. Here, we demonstrate that endogenous oxidized guanine bases in G4 sequences and the subsequent activation of the base excision repair (BER) pathway drive the spatiotemporal formation of G4 structures in the genome. Genome-wide mapping of occurrence of Apurinic/apyrimidinic (AP) site damage, binding of BER proteins, and G4 structures revealed that oxidized base-derived AP site damage and binding of OGG1 and APE1 are predominant in G4 sequences. Loss of APE1 abrogated G4 structure formation in cells, which suggests an essential role of APE1 in regulating the formation of G4 structures in the genome. Binding of APE1 to G4 sequences promotes G4 folding, and acetylation of APE1, which enhances its residence time, stabilizes G4 structures in cells. APE1 subsequently facilitates transcription factor loading to the promoter, providing mechanistic insight into the role of APE1 in G4-mediated gene expression. Our study unravels a role of endogenous oxidized DNA bases and APE1 in controlling the formation of higher-order DNA secondary structures to regulate transcription beyond its well-established role in safeguarding the genomic integrity.
Collapse
|
14
|
Fleming AM, Burrows CJ. Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters. J Am Chem Soc 2020; 142:1115-1136. [PMID: 31880930 PMCID: PMC6988379 DOI: 10.1021/jacs.9b11050] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Living in an oxygen atmosphere demands an ability to thrive in the presence of reactive oxygen species (ROS). Aerobic organisms have successfully found solutions to the oxidative threats imposed by ROS by evolving an elaborate detoxification system, upregulating ROS during inflammation, and utilizing ROS as messenger molecules. In this Perspective, recent studies are discussed that demonstrate ROS as signaling molecules for gene regulation by combining two emergent properties of the guanine (G) heterocycle in DNA, namely, oxidation sensitivity and a propensity for G-quadruplex (G4) folding, both of which depend upon sequence context. In human gene promoters, this results from an elevated 5'-GG-3' dinucleotide frequency and GC enrichment near transcription start sites. Oxidation of DNA by ROS drives conversion of G to 8-oxo-7,8-dihydroguanine (OG) to mark target promoters for base excision repair initiated by OG-glycosylase I (OGG1). Sequence-dependent mechanisms for gene activation are available to OGG1 to induce transcription. Either OGG1 releases OG to yield an abasic site driving formation of a non-canonical fold, such as a G4, to be displayed to apurinic/apyrimidinic 1 (APE1) and stalling on the fold to recruit activating factors, or OGG1 binds OG and facilitates activator protein recruitment. The mechanisms described drive induction of stress response, DNA repair, or estrogen-induced genes, and these pathways are novel potential anticancer targets for therapeutic intervention. Chemical concepts provide a framework to discuss the regulatory or possible epigenetic potential of the OG modification in DNA, in which DNA "damage" and non-canonical folds collaborate to turn on or off gene expression. The next steps for scientific discovery in this growing field are discussed.
Collapse
Affiliation(s)
- Aaron M. Fleming
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J. Burrows
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
15
|
Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 2020; 18:207-219. [PMID: 31993111 PMCID: PMC6974700 DOI: 10.1016/j.csbj.2019.12.013] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species are a constant threat to DNA as they modify bases with the risk of disrupting genome function, inducing genome instability and mutation. Such risks are due to primary oxidative DNA damage and also mediated by the repair process. This leads to a delicate decision process for the cell as to whether to repair a damaged base at a specific genomic location or better leave it unrepaired. Persistent DNA damage can disrupt genome function, but on the other hand it can also contribute to gene regulation by serving as an epigenetic mark. When such processes are out of balance, pathophysiological conditions could get accelerated, because oxidative DNA damage and resulting mutagenic processes are tightly linked to ageing, inflammation, and the development of multiple age-related diseases, such as cancer and neurodegenerative disorders. Recent technological advancements and novel data analysis strategies have revealed that oxidative DNA damage, its repair, and related mutations distribute heterogeneously over the genome at multiple levels of resolution. The involved mechanisms act in the context of genome sequence, in interaction with genome function and chromatin. This review addresses what we currently know about the genome distribution of oxidative DNA damage, repair intermediates, and mutations. It will specifically focus on the various methodologies to measure oxidative DNA damage distribution and discuss the mechanistic conclusions derived from the different approaches. It will also address the consequences of oxidative DNA damage, specifically how it gives rise to mutations, genome instability, and how it can act as an epigenetic mark.
Collapse
|
16
|
Fleming AM, Zhu J, Ding Y, Burrows CJ. Location dependence of the transcriptional response of a potential G-quadruplex in gene promoters under oxidative stress. Nucleic Acids Res 2019; 47:5049-5060. [PMID: 30916339 PMCID: PMC6547423 DOI: 10.1093/nar/gkz207] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/09/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022] Open
Abstract
Oxidation of the guanine (G) heterocycle to 8-oxo-7,8-dihydroguanine (OG) in mammalian gene promoters was demonstrated to induce transcription. Potential G-quadruplex forming sequences (PQSs) in promoters have a high density of G nucleotides rendering them highly susceptible to oxidation and possible gene activation. The VEGF PQS with OG or an abasic site were synthesized at key locations in the SV40 or HSV-TK model promoters to determine the location dependency in the gene expression profile in human cells. The PQS location with respect to the transcription start site (TSS) and strand of occupancy (coding versus non-coding strand) are key parameters that determine the magnitude and direction in which gene expression changes with the chemically modified VEGF PQS. The greatest impact observed for OG or F in the PQS context in these promoters was within ∼200 bp of the TSS. Established PQSs found to occur naturally in a similar location relative to the TSS for possible oxidation-induced gene activation include c-MYC, KRAS, c-KIT, HIF-1α, PDGF-A and hTERT. The studies provide experimental constraints that were used to probe bioinformatic data regarding PQSs in the human genome for those that have the possibility to be redox switches for gene regulation.
Collapse
Affiliation(s)
- Aaron M Fleming
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Judy Zhu
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Yun Ding
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J Burrows
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
17
|
Cogoi S, Ferino A, Miglietta G, Pedersen EB, Xodo LE. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res 2019; 46:661-676. [PMID: 29165690 PMCID: PMC5778462 DOI: 10.1093/nar/gkx1142] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. We designed oligonucleotides mimicking the KRAS G4-motif and found that 8-oxoG impacts folding and stability of the G-quadruplex. Dimethylsulphate-footprinting showed that the G-run carrying 8-oxoG is excluded from the G-tetrads and replaced by a redundant G-run in the KRAS G4-motif. Chromatin immunoprecipitation revealed that the base-excision repair protein OGG1 is recruited to the KRAS promoter when the level of 8-oxoG in the G4 region is raised by H2O2. Polyacrylamide gel electrophoresis evidenced that OGG1 removes 8-oxoG from the G4-motif in duplex, but when folded it binds to the G-quadruplex in a non-productive way. We also found that 8-oxoG enhances the recruitment to the KRAS promoter of MAZ and hnRNP A1, two nuclear factors essential for transcription. All this suggests that 8-oxoG in the promoter G4 region could have an epigenetic potential for the control of gene expression.
Collapse
Affiliation(s)
- Susanna Cogoi
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Annalisa Ferino
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | | | - Erik B Pedersen
- Nucleic Acid Center, Institute of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Luigi E Xodo
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
18
|
Fleming AM, Zhu J, Howpay Manage SA, Burrows CJ. Human NEIL3 Gene Expression Regulated by Epigenetic-Like Oxidative DNA Modification. J Am Chem Soc 2019; 141:11036-11049. [PMID: 31241930 PMCID: PMC6640110 DOI: 10.1021/jacs.9b01847] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The NEIL3 DNA repair gene is induced in cells
or animal models experiencing oxidative or inflammatory stress along
with oxidation of guanine (G) to 8-oxo-7,8-dihydroguanine (OG) in
the genome. We hypothesize that a G-rich promoter element that is
a potential G-quadruplex-forming sequence (PQS) in NEIL3 is a site for introduction of OG with epigenetic-like potential
for gene regulation. Activation occurs when OG is formed in the NEIL3 PQS located near the transcription start site. Oxidative
stress either introduced by TNFα or synthetically incorporated
into precise locations focuses the base excision repair process to
read and catalyze removal of OG via OG-glycosylase I (OGG1), yielding
an abasic site (AP). Thermodynamic studies showed that AP destabilizes
the duplex, enabling a structural transition of the sequence to a
G-quadruplex (G4) fold that positions the AP in a loop facilitated
by the NEIL3 PQS having five G runs in which the
four unmodified runs adopt a stable G4. This presents AP to apurinic/apyrimidinic
endonuclease 1 (APE1) that poorly cleaves the AP backbone in this
context according to in vitro studies, allowing the protein to function
as a trans activator of transcription. The proposal is supported by
chemical studies in cellulo and in vitro. Activation of NEIL3 expression via the proposed mechanism allows cells to respond to
mutagenic DNA damage removed by NEIL3 associated with oxidative or
inflammatory stress. Lastly, inspection of many mammalian genomes
identified conservation of the NEIL3 PQS, suggesting
this sequence was favorably selected to function as a redox switch
with OG as the epigenetic-like regulatory modification.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Judy Zhu
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Shereen A Howpay Manage
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
19
|
Fleming AM, Zhu J, Ding Y, Esders S, Burrows CJ. Oxidative Modification of Guanine in a Potential Z-DNA-Forming Sequence of a Gene Promoter Impacts Gene Expression. Chem Res Toxicol 2019; 32:899-909. [PMID: 30821442 DOI: 10.1021/acs.chemrestox.9b00041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One response to oxidation of guanine (G) to 8-oxo-7,8-dihydroguanine (OG) in a gene promoter is regulation of mRNA expression suggesting an epigenetic-like role for OG. A proposed mechanism involves G oxidation within a potential G-quadruplex-forming sequence (PQS) in the promoter, enabling a structural shift from B-DNA to a G-quadruplex fold (G4). When OG was located in the coding vs template strand, base excision repair led to an on/off transcriptional switch. Herein, a G-rich, potential Z-DNA-forming sequence (PZS) comprised of a d(GC) n repeat was explored to determine whether oxidation in this motif was also a transcriptional switch. Bioinformatic analysis found 1650 PZSs of length >10 nts in the human genome that were overrepresented in promoters and 5'-UTRs. Studies in human cells transfected with a luciferase reporter plasmid in which OG was synthesized in a PZS context in the promoter found that a coding strand OG increased expression and a template strand OG decreased expression. The initial base excision repair product of OG, an abasic site (AP), was also found to yield similar expression changes as OG. Biophysical studies on model Z-DNA strands found OG favored a shift in the equilibrium to Z-DNA from B-DNA, while an AP disrupted Z-DNA to favor a hairpin, placing AP in the loop where it is a poor substrate for the endonuclease APE1. Overall, the impact of OG and AP in a PZS on gene expression was similar to that in a PQS but reduced in magnitude.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Judy Zhu
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Yun Ding
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Selma Esders
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , 315S 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
20
|
Redstone SCJ, Fleming AM, Burrows CJ. Oxidative Modification of the Potential G-Quadruplex Sequence in the PCNA Gene Promoter Can Turn on Transcription. Chem Res Toxicol 2019; 32:437-446. [PMID: 30604962 DOI: 10.1021/acs.chemrestox.8b00332] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because of its low redox potential, guanine (G) is the most frequent site of oxidation in the genome. Metabolic processes generate reactive oxygen species (ROS) that can oxidize G to yield 8-oxo-7,8-dihydroguanine (OG) as a key two-electron oxidation product. In a genome, G-rich sites including many gene promoters are sensitive to oxidative modification, and some of these regions have the propensity to form G-quadruplexes (G4s). Recently, OG formation in G-rich gene promoters was demonstrated to regulate mRNA expression via the base excision repair (BER) pathway. The proliferating cell nuclear antigen ( PCNA) gene was previously found to be activated by metabolic ROS, and the gene has a five G-track potential G4 in the coding strand of its promoter. Herein, we demonstrated the ability for four G runs of the PCNA promoter sequence to adopt a parallel-stranded G4. Next, we identified G nucleotides in the PCNA G4 sequence sensitive to oxidative modification. The G oxidation product OG and its initial BER product, an abasic site, were synthetically incorporated into the four- and five-track PCNA sequences at the sensitive sites followed by interrogation of G4 folding by five methods. We found the modifications impacted the G4 folds with positional dependency. Additionally, the fifth G track maintained the stability of the modified G4s by extrusion of the oxidatively modified G run. Finally, we synthetically inserted a portion of the promoter into a reporter plasmid with OG at select oxidation-prone positions to monitor expression in human glioblastoma cells. Our results demonstrate that OG formation in the context of the PCNA G4 can lead to increased gene expression consistent with the previous studies identifying that metabolic ROS activates transcription of the gene. This study provides another example of a G4 with the potential to serve as a regulatory agent for gene expression upon G oxidation.
Collapse
Affiliation(s)
- Samuel C J Redstone
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
21
|
Burra S, Marasco D, Malfatti MC, Antoniali G, Virgilio A, Esposito V, Demple B, Galeone A, Tell G. Human AP-endonuclease (Ape1) activity on telomeric G4 structures is modulated by acetylatable lysine residues in the N-terminal sequence. DNA Repair (Amst) 2018; 73:129-143. [PMID: 30509560 DOI: 10.1016/j.dnarep.2018.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/08/2023]
Abstract
Loss of telomeres stability is a hallmark of cancer cells. Exposed telomeres are prone to aberrant end-joining reactions leading to chromosomal fusions and translocations. Human telomeres contain repeated TTAGGG elements, in which the 3' exposed strand may adopt a G-quadruplex (G4) structure. The guanine-rich regions of telomeres are hotspots for oxidation forming 8-oxoguanine, a lesion that is handled by the base excision repair (BER) pathway. One key player of this pathway is Ape1, the main human endonuclease processing abasic sites. Recent evidences showed an important role for Ape1 in telomeric physiology, but the molecular details regulating Ape1 enzymatic activities on G4-telomeric sequences are lacking. Through a combination of in vitro assays, we demonstrate that Ape1 can bind and process different G4 structures and that this interaction involves specific acetylatable lysine residues (i.e. K27/31/32/35) present in the unstructured N-terminal sequence of the protein. The cleavage of an abasic site located in a G4 structure by Ape1 depends on the DNA conformation or the position of the lesion and on electrostatic interactions between the protein and the nucleic acids. Moreover, Ape1 mutants mimicking the acetylated protein display increased cleavage activity for abasic sites. We found that nucleophosmin (NPM1), which binds the N-terminal sequence of Ape1, plays a role in modulating telomere length and Ape1 activity at abasic G4 structures. Thus, the Ape1 N-terminal sequence is an important relay site for regulating the enzyme's activity on G4-telomeric sequences, and specific acetylatable lysine residues constitute key regulatory sites of Ape1 enzymatic activity dynamics at telomeres.
Collapse
Affiliation(s)
- Silvia Burra
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Veronica Esposito
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University, School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Aldo Galeone
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy.
| |
Collapse
|
22
|
Li Q, Fei Y, Gao L, Yu Y, Zhou Y, Ye T, Zhou XS, Shao Y, Yin ZZ. G-Quadruplex DNA with an Apurinic Site as a Soft Molecularly Imprinted Sensing Platform. Anal Chem 2018; 90:5552-5556. [PMID: 29642702 DOI: 10.1021/acs.analchem.8b01097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecularly imprinted polymers (MIPs) provide versatile sensor platforms to recognize targets by shape complementarity. However, the rigid structure of the classic MIPs compromises the signal transduction with necessary polymer and target modifications. Herein, we tried to use a flexible DNA that has a perfectly structured folding as the soft molecularly imprinted polymer (SMIP) for a straightforward sensor. As a proof of concept, the guanosine SMIP recognition was achieved by removal of a guanosine from a G-quadruplex-forming sequence (G4). The G4 folding structure with such an apurinic site (AP site) provides a well-defined MIP binding accommodation for guanosine according to the shape complementarity. The guanosine binding at the AP site subsequently leads to a conformation change suitable for remote readout using a G4-specific fluorescent ligand. The G4 sequence and AP site position were optimized for this SMIP behavior. Due to the G4 compact structure and the remaining hydrogen bonding pattern, nucleosides other than guanosine and negatively charged nucleotides exhibit no binding with the AP site, suggesting a high selectivity in the SMIP recognition. The proposed rationale was then convinced by the alkaline phosphatase-catalyzed GMP hydrolysis. Our work will inspire more interest in exploring nucleic acids as the SMIP frameworks due to their variant conformations and well-established molecular engineering.
Collapse
Affiliation(s)
- Qiusha Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Yufeng Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , Zhejiang , China
| |
Collapse
|
23
|
Fleming AM, Zhu J, Ding Y, Burrows CJ. 8-Oxo-7,8-dihydroguanine in the Context of a Gene Promoter G-Quadruplex Is an On-Off Switch for Transcription. ACS Chem Biol 2017; 12:2417-2426. [PMID: 28829124 PMCID: PMC5604463 DOI: 10.1021/acschembio.7b00636] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Interplay
between DNA repair of the oxidatively modified base 8-oxo-7,8-dihydroguanine
(OG) and transcriptional activation has been documented in mammalian
genes. Previously, we synthesized OG into the VEGF potential G-quadruplex sequence (PQS) in the coding strand of a
luciferase promoter to identify that base excision repair (BER) unmasked
the G-quadruplex (G4) fold for gene activation. In the present work,
OG was site-specifically synthesized into a luciferase reporter plasmid
to follow the time-dependent expression in mammalian cells when OG
in the VEGF PQS context was located in the coding
vs template strands of the luciferase promoter. Removal of OG from
the coding strand by OG glycosylase-1 (OGG1)-mediated BER upregulated
transcription. When OG was in the template strand in the VEGF PQS context, transcription was downregulated by a BER-independent
process. The time course changes in transcription show that repair
in the template strand was more efficient than repair in the coding
strand. Promoters were synthesized with an OG:A base pair that requires
repair on both strands to yield a canonical G:C base pair. By monitoring
the up/down luciferase expression, we followed the timing of repair
of an OG:A base pair occurring on both strands in mammalian cells
in which one lesion resides in a G-quadruplex loop and one in a potential
i-motif. Depending on the strand in which OG resides, coding vs template,
this modification is an up/downregulator of transcription that couples
DNA repair with transcriptional regulation.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Yun Ding
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
24
|
Fleming AM, Burrows CJ. 8-Oxo-7,8-dihydroguanine, friend and foe: Epigenetic-like regulator versus initiator of mutagenesis. DNA Repair (Amst) 2017. [PMID: 28629775 DOI: 10.1016/j.dnarep.2017.06.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A high flux of reactive oxygen species during oxidative stress results in oxidative modification of cellular components including DNA. Oxidative DNA "damage" to the heterocyclic bases is considered deleterious because polymerases may incorrectly read the modifications causing mutations. A prominent member in this class is the oxidized guanine base 8-oxo-7,8-dihydroguanine (OG) that is moderately mutagenic effecting G→T transversion mutations. Recent reports have identified that formation of OG in G-rich regulatory elements in the promoters of the VEGF, TNFα, and SIRT1 genes can increase transcription via activation of the base excision repair (BER) pathway. Work in our laboratory with the G-rich sequence in the promoter of VEGF concluded that BER drives a shift in structure to a G-quadruplex conformation leading to gene activation in mammalian cells. More specifically, removal of OG from the duplex context by 8-oxoguanine glycosylase 1 (OGG1) produces an abasic site (AP) that destabilizes the duplex, shifting the equilibrium toward the G-quadruplex fold because of preferential extrusion of the AP into a loop. The AP is bound but inefficiently cleaved by apurinic/apyrimidinic endoDNase I (APE1) that likely allows recruitment of activating transcription factors for gene induction. The ability of OG to induce transcription ascribes a regulatory or epigenetic-like role for this oxidatively modified base. We compare OG to the 5-methylcytosine (5mC) epigenetic pathway including its oxidized derivatives, some of which poise genes for transcription while also being substrates for BER. The mutagenic potential of OG to induce only ∼one-third the number of mutations (G→T) compared to deamination of 5mC producing C→T mutations is described. These comparisons blur the line between friendly epigenetic base modifications and those that are foes, i.e. DNA "damage," causing genetic mutations.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, USA.
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, USA.
| |
Collapse
|
25
|
Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci U S A 2017; 114:2604-2609. [PMID: 28143930 DOI: 10.1073/pnas.1619809114] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) have emerged as important cellular-signaling agents for cellular survival. Herein, we demonstrate that ROS-mediated oxidation of DNA to yield 8-oxo-7,8-dihydroguanine (OG) in gene promoters is a signaling agent for gene activation. Enhanced gene expression occurs when OG is formed in guanine-rich, potential G-quadruplex-forming sequences (PQS) in promoter-coding strands, initiating base excision repair (BER) by 8-oxoguanine DNA glycosylase (OGG1), yielding an abasic site (AP). The AP enables melting of the duplex to unmask the PQS, adopting a G-quadruplex fold in which apurinic/apyrimidinic endonuclease 1 (APE1) binds, but inefficiently cleaves, the AP for activation of vascular endothelial growth factor (VEGF) or endonuclease III-like protein 1 (NTHL1) genes. These details were mapped via synthesis of OG and AP analogs at single-nucleotide precision within the promoter of a luciferase reporter system. The reporters were analyzed in human and mouse cells while selectively knocking out or down critical BER proteins to identify the impact on luciferase expression. Identification of the oxidatively modified DNA base OG to guide BER activity in a gene promoter and impact cellular phenotype ascribes an epigenetic role to OG.
Collapse
|
26
|
Holton NW, Larson ED. G-quadruplex DNA structures can interfere with uracil glycosylase activity in vitro. Mutagenesis 2015; 31:385-92. [PMID: 26671821 DOI: 10.1093/mutage/gev083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome sequences that contain tandem repeats of guanine can form stable four-stranded structures known as G-quadruplex, or G4 DNA. While the molecular mechanisms are not fully defined, such guanine-rich loci are prone to mutagenesis and recombination. Various repair pathways function to reduce the potential for genome instability by correcting base damage and replication errors; however, it is not yet fully defined how well these processes function at G4 DNA. One frequent form of base damage occurs from cytidine deamination, resulting in deoxyuracil and UG mismatches. In duplex and single-stranded DNA, uracil bases are recognised and excised by uracil glycosylases. Here, we tested the efficiency of uracil glycosylase activity in vitro on uracil bases located directly adjacent to guanine repeats and G4 DNA. We show that uracil excision by bacterial UDG and human hUNG2 is reduced at uracils positioned directly 5' or 3' of a guanine tetrad. Control reactions using oligonucleotides disrupted for G4 formation or reaction conditions that do not favour G4 formation resulted in full uracil excision activity. Based on these in vitro results, we suggest that folding of guanine-rich DNA into G4 DNA results in a DNA conformation that is resistant to uracil glycosylase-initiated repair and this has the potential to increase the risk of instability at guanine repeats in the genome.
Collapse
Affiliation(s)
- Nate W Holton
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790-4120, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790-4120, USA
| |
Collapse
|