1
|
He B, Yao H, Yi C. Advances in the joint profiling technologies of 5mC and 5hmC. RSC Chem Biol 2024; 5:500-507. [PMID: 38846078 PMCID: PMC11151843 DOI: 10.1039/d4cb00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 06/09/2024] Open
Abstract
DNA cytosine methylation, a crucial epigenetic modification, involves the dynamic interplay of 5-methylcytosine (5mC) and its oxidized form, 5-hydroxymethylcytosine (5hmC), generated by ten-eleven translocation (TET) DNA dioxygenases. This process is central to regulating gene expression, influencing critical biological processes such as development, disease progression, and aging. Recognizing the distinct functions of 5mC and 5hmC, researchers often employ restriction enzyme-based or chemical treatment methods for their simultaneous measurement from the same genomic sample. This enables a detailed understanding of the relationship between these modifications and their collective impact on cellular function. This review focuses on summarizing the technologies for detecting 5mC and 5hmC together but also discusses the limitations and potential future directions in this evolving field.
Collapse
Affiliation(s)
- Bo He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies Chengdu China
| | - Haojun Yao
- College of Chemistry and Chemical Engineering, Hunan University Changsha China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University Beijing China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University Beijing China
| |
Collapse
|
2
|
Smetanina M, Korolenya V, Sipin F, Oscorbin I, Sevostyanova K, Gavrilov K, Shevela A, Filipenko M. Loci cg06256735 and cg15815843 in the MFAP5 gene regulatory regions are hypomethylated in varicose veins apparently due to active demethylation. Biosci Rep 2024; 44:BSR20231938. [PMID: 38743016 PMCID: PMC11139664 DOI: 10.1042/bsr20231938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024] Open
Abstract
Varicose vein disease (VVD) is a common health problem worldwide. Microfibril-associated protein 5 (MFAP5) is one of the potential key players in its pathogenesis. Our previous microarray analysis revealed the cg06256735 and cg15815843 loci in the regulatory regions of the MFAP5 gene as hypomethylated in varicose veins which correlated with its up-regulation. The aim of this work was to validate preliminary microarray data, estimate the level of 5-hydroxymethylcytosine (5hmC) at these loci, and determine the methylation status of one of them in different layers of the venous wall. For this, methyl- and hydroxymethyl-sensitive restriction techniques were used followed by real-time PCR and droplet digital PCR, correspondingly, as well as bisulfite pyrosequencing of +/- oxidized DNA. Our microarray data on hypomethylation at the cg06256735 and cg15815843 loci in whole varicose vein segments were confirmed and it was also demonstrated that the level of 5hmC at these loci is increased in VVD. Specifically, among other layers of the venous wall, tunica (t.) intima is the main contributor to hypomethylation at the cg06256735 locus in varicose veins. Thus, it was shown that hypomethylation at the cg06256735 and cg15815843 loci takes place in VVD, with evidence to suggest that it happens through their active demethylation leading to up-regulation of the MFAP5 gene, and t. intima is most involved in this biochemical process.
Collapse
Affiliation(s)
- Mariya A. Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Department of Fundamental Medicine, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Valeria A. Korolenya
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Fedor A. Sipin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Igor P. Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Kseniya S. Sevostyanova
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Department of Surgical Diseases, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Konstantin A. Gavrilov
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Department of Surgical Diseases, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Andrey I. Shevela
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Department of Surgical Diseases, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Maxim L. Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:295-315. [DOI: 10.1007/978-3-031-11454-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Liu WJ, Zhang X, Hu J, Zhang CY. A label-free and self-circulated fluorescent biosensor for sensitive detection of ten-eleven translocation 1 in cancer cells. Chem Commun (Camb) 2022; 58:7996-7999. [DOI: 10.1039/d2cc03019e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a label-free and self-circulated fluorescent biosensor to sensitively detect ten-eleven translocation 1 (TET1) activity in cancer cells.
Collapse
Affiliation(s)
- Wen-jing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
5
|
Picton DM, Luyten YA, Morgan RD, Nelson A, Smith DL, Dryden DTF, Hinton JCD, Blower TR. The phage defence island of a multidrug resistant plasmid uses both BREX and type IV restriction for complementary protection from viruses. Nucleic Acids Res 2021; 49:11257-11273. [PMID: 34657954 PMCID: PMC8565348 DOI: 10.1093/nar/gkab906] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteria have evolved a multitude of systems to prevent invasion by bacteriophages and other mobile genetic elements. Comparative genomics suggests that genes encoding bacterial defence mechanisms are often clustered in 'defence islands', providing a concerted level of protection against a wider range of attackers. However, there is a comparative paucity of information on functional interplay between multiple defence systems. Here, we have functionally characterised a defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a suite of thirty environmentally-isolated coliphages, we demonstrate multi-layered and robust phage protection provided by a plasmid-encoded defence island that expresses both a type I BREX system and the novel GmrSD-family type IV DNA modification-dependent restriction enzyme, BrxU. We present the structure of BrxU to 2.12 Å, the first structure of the GmrSD family of enzymes, and show that BrxU can utilise all common nucleotides and a wide selection of metals to cleave a range of modified DNAs. Additionally, BrxU undergoes a multi-step reaction cycle instigated by an unexpected ATP-dependent shift from an intertwined dimer to monomers. This direct evidence that bacterial defence islands can mediate complementary layers of phage protection enhances our understanding of the ever-expanding nature of phage-bacterial interactions.
Collapse
Affiliation(s)
- David M Picton
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Andrew Nelson
- Department of Applied Sciences, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| | - Darren L Smith
- Department of Applied Sciences, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| | - David T F Dryden
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| |
Collapse
|
6
|
Structure-Based Deep Mining Reveals First-Time Annotations for 46 Percent of the Dark Annotation Space of the 9,671-Member Superproteome of the Nucleocytoplasmic Large DNA Viruses. J Virol 2020; 94:JVI.00854-20. [PMID: 32999026 DOI: 10.1128/jvi.00854-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
We conducted an exhaustive search for three-dimensional structural homologs to the proteins of 20 key phylogenetically distinct nucleocytoplasmic DNA viruses (NCLDV). Structural matches covered 429 known protein domain superfamilies, with the most highly represented being ankyrin repeat, P-loop NTPase, F-box, protein kinase, and membrane occupation and recognition nexus (MORN) repeat. Domain superfamily diversity correlated with genome size, but a diversity of around 200 superfamilies appeared to correlate with an abrupt switch to paralogization. Extensive structural homology was found across the range of eukaryotic RNA polymerase II subunits and their associated basal transcription factors, with the coordinated gain and loss of clusters of subunits on a virus-by-virus basis. The total number of predicted endonucleases across the 20 NCLDV was nearly quadrupled from 36 to 132, covering much of the structural and functional diversity of endonucleases throughout the biosphere in DNA restriction, repair, and homing. Unexpected findings included capsid protein-transcription factor chimeras; endonuclease chimeras; enzymes for detoxification; antimicrobial peptides and toxin-antitoxin systems associated with symbiosis, immunity, and addiction; and novel proteins for membrane abscission and protein turnover.IMPORTANCE We extended the known annotation space for the NCLDV by 46%, revealing high-probability structural matches for fully 45% of the 9,671 query proteins and confirming up to 98% of existing annotations per virus. The most prevalent protein families included ankyrin repeat- and MORN repeat-containing proteins, many of which included an F-box, suggesting extensive host cell modulation among the NCLDV. Regression suggested a minimum requirement for around 36 protein structural superfamilies for a viable NCLDV, and beyond around 200 superfamilies, genome expansion by the acquisition of new functions was abruptly replaced by paralogization. We found homologs to herpesvirus surface glycoprotein gB in cytoplasmic viruses. This study provided the first prediction of an endonuclease in 10 of the 20 viruses examined; the first report in a virus of a phenolic acid decarboxylase, proteasomal subunit, or cysteine knot (defensin) protein; and the first report of a prokaryotic-type ribosomal protein in a eukaryotic virus.
Collapse
|
7
|
Lutz T, Czapinska H, Fomenkov A, Potapov V, Heiter DF, Cao B, Dedon P, Bochtler M, Xu SY. Protein Domain Guided Screen for Sequence Specific and Phosphorothioate-Dependent Restriction Endonucleases. Front Microbiol 2020; 11:1960. [PMID: 33013736 PMCID: PMC7461809 DOI: 10.3389/fmicb.2020.01960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 11/25/2022] Open
Abstract
Modification dependent restriction endonucleases (MDREs) restrict modified DNA, typically with limited sequence specificity (∼2-4 bp). Here, we focus on MDREs that have an SRA and/or SBD (sulfur binding domain) fused to an HNH endonuclease domain, cleaving cytosine modified or phosphorothioated (PT) DNA. We independently characterized the SBD-SRA-HNH endonuclease ScoMcrA, which preferentially cleaves 5hmC modified DNA. We report five SBD-HNH endonucleases, all recognizing GpsAAC/GpsTTC sequence and cleaving outside with a single nucleotide 3' stagger: EcoWI (N7/N6), Ksp11411I (N5/N4), Bsp305I (N6/N4-5), Mae9806I [N(8-10)/N(8-9)], and Sau43800I [N(8-9)/N(7-8)]. EcoWI and Bsp305I are more specific for PT modified DNA in Mg2+ buffer, and promiscuous with Mn2+. Ksp11411I is more PT specific with Ni2+. EcoWI and Ksp11411I cleave fully- and hemi-PT modified oligos, while Bsp305I cleaves only fully modified ones. EcoWI forms a dimer in solution and cleaves more efficiently in the presence of two modified sites. In addition, we demonstrate that EcoWI PT-dependent activity has biological function: EcoWI expressing cells restrict dnd+ GpsAAC modified plasmid strongly, and GpsGCC DNA weakly. This work establishes a framework for biotechnology applications of PT-dependent restriction endonucleases (PTDRs).
Collapse
Affiliation(s)
- Thomas Lutz
- New England Biolabs, Inc., Ipswich, MA, United States
| | | | | | | | | | - Bo Cao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- College of Life Science, Qufu Normal University, Qufu, China
| | - Peter Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | | |
Collapse
|
8
|
Hosford CJ, Adams MC, Niu Y, Chappie JS. The N-terminal domain of Staphylothermus marinus McrB shares structural homology with PUA-like RNA binding proteins. J Struct Biol 2020; 211:107572. [PMID: 32652237 DOI: 10.1016/j.jsb.2020.107572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022]
Abstract
McrBC is a conserved modification-dependent restriction system that in Escherichia coli specifically targets foreign DNA containing methylated cytosines. Crystallographic data show that the N-terminal domain of Escherichia coli McrB binds substrates via a base flipping mechanism. This region is poorly conserved among the plethora of McrB homologs, suggesting that other species may use alternative binding strategies and/or recognize different targets. Here we present the crystal structure of the N-terminal domain from Stayphlothermus marinus McrB (Sm3-180) at 1.92 Å, which adopts a PUA-like EVE fold that is closely related to the YTH and ASCH RNA binding domains. Unlike most PUA-like domains, Sm3-180 binds DNA and can associate with different modified substrates. We find the canonical 'aromatic cage' binding pocket that confers specificity for methylated bases in other EVE/YTH domains is degenerate and occluded in Sm3-180, which may contribute to its promiscuity in target recognition. Further structural comparison between different PUA-like domains identifies motifs and conformational variations that correlate with the preference for binding either DNA or RNA. Together these data have important implications for PUA-like domain specificity and suggest a broader biological versatility for the McrBC family than previously described.
Collapse
Affiliation(s)
| | - Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yiming Niu
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Slyvka A, Zagorskaitė E, Czapinska H, Sasnauskas G, Bochtler M. Crystal structure of the EcoKMcrA N-terminal domain (NEco): recognition of modified cytosine bases without flipping. Nucleic Acids Res 2020; 47:11943-11955. [PMID: 31724709 PMCID: PMC7145662 DOI: 10.1093/nar/gkz1017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
EcoKMcrA from Escherichia coli restricts CpG methylated or hydroxymethylated DNA, and may act as a barrier against host DNA. The enzyme consists of a novel N-terminal specificity domain that we term NEco, and a C-terminal catalytic HNH domain. Here, we report that NEco and full-length EcoKMcrA specificities are consistent. NEco affinity to DNA increases more from hemi- to full-methylation than from non- to hemi-methylation, indicating cooperative binding of the methyl groups. We determined the crystal structures of NEco in complex with fully modified DNA containing three variants of the Y5mCGR EcoKMcrA target sequence: C5mCGG, T5mCGA and T5hmCGA. The structures explain the specificity for the two central base pairs and one of the flanking pairs. As predicted based on earlier biochemical experiments, NEco does not flip any DNA bases. The proximal and distal methyl groups are accommodated in separate pockets. Changes to either pocket reduce DNA binding by NEco and restriction by EcoKMcrA, confirming the relevance of the crystallographically observed binding mode in solution.
Collapse
Affiliation(s)
- Anton Slyvka
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Evelina Zagorskaitė
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Kisiala M, Copelas A, Czapinska H, Xu SY, Bochtler M. Crystal structure of the modification-dependent SRA-HNH endonuclease TagI. Nucleic Acids Res 2019; 46:10489-10503. [PMID: 30202937 PMCID: PMC6212794 DOI: 10.1093/nar/gky781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
TagI belongs to the recently characterized SRA-HNH family of modification-dependent restriction endonucleases (REases) that also includes ScoA3IV (Sco5333) and TbiR51I (Tbis1). Here, we present a crystal structure of dimeric TagI, which exhibits a DNA binding site formed jointly by the nuclease domains, and separate binding sites for modified DNA bases in the two protomers. The nuclease domains have characteristic features of HNH/ββα-Me REases, and catalyze nicks or double strand breaks, with preference for /RY and RYN/RY sites, respectively. The SRA domains have the canonical fold. Their pockets for the flipped bases are spacious enough to accommodate 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC), but not glucosyl-5-hydroxymethylcytosine (g5hmC). Such preference is in agreement with the biochemical determination of the TagI modification dependence and the results of phage restriction assays. The ability of TagI to digest plasmids methylated by Dcm (C5mCWGG), M.Fnu4HI (G5mCNGC) or M.HpyCH4IV (A5mCGT) suggests that the SRA domains of the enzyme are tolerant to different sequence contexts of the modified base.
Collapse
Affiliation(s)
- Marlena Kisiala
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland.,Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Alyssa Copelas
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Structural basis for the recognition of sulfur in phosphorothioated DNA. Nat Commun 2018; 9:4689. [PMID: 30409991 PMCID: PMC6224610 DOI: 10.1038/s41467-018-07093-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
There have been very few reports on protein domains that specifically recognize sulfur. Here we present the crystal structure of the sulfur-binding domain (SBD) from the DNA phosphorothioation (PT)-dependent restriction endonuclease ScoMcrA. SBD contains a hydrophobic surface cavity that is formed by the aromatic ring of Y164, the pyrolidine ring of P165, and the non-polar side chains of four other residues that serve as lid, base, and wall of the cavity. The SBD and PT-DNA undergo conformational changes upon binding. The S187RGRR191 loop inserts into the DNA major groove to make contacts with the bases of the GPSGCC core sequence. Mutating key residues of SBD impairs PT-DNA association. More than 1000 sequenced microbial species from fourteen phyla contain SBD homologs. We show that three of these homologs bind PT-DNA in vitro and restrict PT-DNA gene transfer in vivo. These results show that SBD-like PT-DNA readers exist widely in prokaryotes.
Collapse
|
12
|
Zagorskaitė E, Manakova E, Sasnauskas G. Recognition of modified cytosine variants by the DNA-binding domain of methyl-directed endonuclease McrBC. FEBS Lett 2018; 592:3335-3345. [PMID: 30194838 DOI: 10.1002/1873-3468.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/10/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
Abstract
Cytosine modifications expand the information content of genomic DNA in both eukaryotes and prokaryotes, providing means for epigenetic regulation and self versus nonself discrimination. For example, the methyl-directed restriction endonuclease, McrBC, recognizes and cuts invading bacteriophage DNA containing 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), and N4-methylcytosine (4mC), leaving the unmodified host DNA intact. Here, we present cocrystal structures of McrB-N bound to DNA oligoduplexes containing 5hmC, 5-formylcytosine (5fC), and 4mC, and characterize the relative affinity of McrB-N to various cytosine variants. We find that McrB-N flips out modified bases into a protein pocket and binds cytosine derivatives in the order of descending affinity: 4mC > 5mC > 5hmC ≫ 5fC. We also show that pocket mutations alter the relative preference of McrB-N to 5mC, 5hmC, and 4mC.
Collapse
Affiliation(s)
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | |
Collapse
|
13
|
Hosford CJ, Chappie JS. The crystal structure of the Helicobacter pylori LlaJI.R1 N-terminal domain provides a model for site-specific DNA binding. J Biol Chem 2018; 293:11758-11771. [PMID: 29895618 PMCID: PMC6066307 DOI: 10.1074/jbc.ra118.001888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Restriction modification systems consist of an endonuclease that cleaves foreign DNA site-specifically and an associated methyltransferase that protects the corresponding target site in the host genome. Modification-dependent restriction systems, in contrast, specifically recognize and cleave methylated and/or glucosylated DNA. The LlaJI restriction system contains two 5-methylcytosine (5mC) methyltransferases (LlaJI.M1 and LlaJI.M2) and two restriction proteins (LlaJI.R1 and LlaJI.R2). LlaJI.R1 and LlaJI.R2 are homologs of McrB and McrC, respectively, which in Escherichia coli function together as a modification-dependent restriction complex specific for 5mC-containing DNA. Lactococcus lactis LlaJI.R1 binds DNA site-specifically, suggesting that the LlaJI system uses a different mode of substrate recognition. Here we present the structure of the N-terminal DNA-binding domain of Helicobacter pylori LlaJI.R1 at 1.97-Å resolution, which adopts a B3 domain fold. Structural comparison to B3 domains in plant transcription factors and other restriction enzymes identifies key recognition motifs responsible for site-specific DNA binding. Moreover, biochemistry and structural modeling provide a rationale for how H. pylori LlaJI.R1 may bind a target site that differs from the 5-bp sequence recognized by other LlaJI homologs and identify residues critical for this recognition activity. These findings underscore the inherent structural plasticity of B3 domains, allowing recognition of a variety of substrates using the same structural core.
Collapse
Affiliation(s)
- Christopher J Hosford
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
14
|
Raiber EA, Hardisty R, van Delft P, Balasubramanian S. Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0069] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nat Biotechnol 2016; 34:852-6. [PMID: 27347753 DOI: 10.1038/nbt.3598] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 05/11/2016] [Indexed: 12/17/2022]
Abstract
The epigenetic DNA modification 5-hydroxymethylcytosine (5hmC) has crucial roles in development and gene regulation. Quantifying the abundance of this epigenetic mark at the single-cell level could enable us to understand its roles. We present a single-cell, genome-wide and strand-specific 5hmC sequencing technology, based on 5hmC glucosylation and glucosylation-dependent digestion of DNA, that reveals pronounced cell-to-cell variability in the abundance of 5hmC on the two DNA strands of a given chromosome. We develop a mathematical model that reproduces the strand bias and use this model to make two predictions. First, the variation in strand bias should decrease when 5hmC turnover increases. Second, the strand bias of two sister cells should be strongly anti-correlated. We validate these predictions experimentally, and use our model to reconstruct lineages of two- and four-cell mouse embryos, showing that single-cell 5hmC sequencing can be used as a lineage reconstruction tool.
Collapse
|
16
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
17
|
Kirschner SA, Hunewald O, Mériaux SB, Brunnhoefer R, Muller CP, Turner JD. Focussing reduced representation CpG sequencing through judicious restriction enzyme choice. Genomics 2016; 107:109-19. [PMID: 26945642 DOI: 10.1016/j.ygeno.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
Abstract
Current restriction enzyme based reduced representation methylation analyses aim for limited, but unbiased, methylome coverage. As the current best estimate suggests that only ~20% of CpGs are dynamically regulated, we characterised the CpG and genomic context surrounding all suitable restriction enzyme sites to identify those that were located in regions rich in dynamically methylated CpGs. The restriction-site distributions for MspI, BstUI, and HhaI were non-random. CpGs in CGI and shelf+shore could be enriched, particularly in gene bodies for all genomic regions, promoters (TSS1500, TSS200), intra- (1st exon, gene body, 3'UTR, 5'UTR) and inter-genic regions. HpyCH4IV enriched CpG elements in the open sea for all genomic elements. Judicious restriction enzyme choice improves the focus of reduced representation approaches by avoiding the monopolization of read coverage by genomic regions that are irrelevant, unwanted or difficult to map, and only sequencing the most informative fraction of CpGs.
Collapse
Affiliation(s)
- Sophie A Kirschner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of Bio-Health 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Grand Duchy of Luxembourg; Department of Immunology, Research Institute of Psychobiology, University of Trier, D-54290, Germany
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of Bio-Health 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Grand Duchy of Luxembourg
| | - Sophie B Mériaux
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of Bio-Health 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Grand Duchy of Luxembourg
| | - Regina Brunnhoefer
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of Bio-Health 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Grand Duchy of Luxembourg
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of Bio-Health 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Grand Duchy of Luxembourg; Department of Immunology, Research Institute of Psychobiology, University of Trier, D-54290, Germany
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of Bio-Health 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Grand Duchy of Luxembourg.
| |
Collapse
|
18
|
Mechanistic insights into the recognition of 5-methylcytosine oxidation derivatives by the SUVH5 SRA domain. Sci Rep 2016; 6:20161. [PMID: 26841909 PMCID: PMC4740795 DOI: 10.1038/srep20161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
5-Methylcytosine (5 mC) is associated with epigenetic gene silencing in mammals and plants. 5 mC is consecutively oxidized to 5-hydroxymethylcytosine (5 hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by ten-eleven translocation enzymes. We performed binding and structural studies to investigate the molecular basis of the recognition of the 5 mC oxidation derivatives in the context of a CG sequence by the SET- and RING-associated domain (SRA) of the SUVH5 protein (SUVH5 SRA). Using calorimetric measurements, we demonstrate that the SRA domain binds to the hydroxymethylated CG (5hmCG) DNA duplex in a similar manner to methylated CG (5mCG). Interestingly, the SUVH5 SRA domain exhibits weaker affinity towards carboxylated CG (5caCG) and formylated CG (5fCG). We report the 2.6 Å resolution crystal structure of the SUVH5 SRA domain in a complex with fully hydroxymethyl-CG and demonstrate a dual flip-out mechanism, whereby the symmetrical 5hmCs are simultaneously extruded from the partner strands of the DNA duplex and are positioned within the binding pockets of individual SRA domains. The hydroxyl group of 5hmC establishes both intra- and intermolecular interactions in the binding pocket. Collectively, we show that SUVH5 SRA recognizes 5hmC in a similar manner to 5 mC, but exhibits weaker affinity towards 5 hmC oxidation derivatives.
Collapse
|
19
|
Hong S, Cheng X. DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:321-341. [PMID: 27826845 DOI: 10.1007/978-3-319-43624-1_14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modification of DNA bases is a classic hallmark of epigenetics. Four forms of modified cytosine-5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine-have been discovered in eukaryotic DNA. In addition to cytosine carbon-5 modifications, cytosine and adenine methylated in the exocyclic amine-N4-methylcytosine and N6-methyladenine-are other modified DNA bases discovered even earlier. Each modified base can be considered a distinct epigenetic signal with broader biological implications beyond simple chemical changes. Since 1994, crystal structures of proteins and enzymes involved in writing, reading, and erasing modified bases have become available. Here, we present a structural synopsis of writers, readers, and erasers of the modified bases from prokaryotes and eukaryotes. Despite significant differences in structures and functions, they are remarkably similar regarding their engagement in flipping a target base/nucleotide within DNA for specific recognitions and/or reactions. We thus highlight base flipping as a common structural framework broadly applied by distinct classes of proteins and enzymes across phyla for epigenetic regulations of DNA.
Collapse
Affiliation(s)
- Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA. .,Molecular and Systems Pharmacology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
20
|
Wang R, Ranganathan SV, Valsangkar VA, Magliocco SM, Shen F, Chen A, Sheng J. Water-bridged hydrogen bond formation between 5-hydroxylmethylcytosine (5-hmC) and its 3'-neighbouring bases in A- and B-form DNA duplexes. Chem Commun (Camb) 2015; 51:16389-92. [PMID: 26411524 DOI: 10.1039/c5cc06563a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Hydroxylmethylcytosine (5hmC) has been recognized as the sixth base with important biological functions in many tissues and cell types. We present here the high-resolution crystal structures and molecular simulation studies of both A-form and B-form DNA duplexes containing 5hmC. We observed that 5hmC interacts with its 3'-neighboring bases through water-bridged hydrogen bonds and these interactions may affect the further oxidation of 5hmC.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Srivathsan V Ranganathan
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Vibhav A Valsangkar
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Stephanie M Magliocco
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Fusheng Shen
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Alan Chen
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| |
Collapse
|
21
|
Machnicka MA, Kaminska KH, Dunin-Horkawicz S, Bujnicki JM. Phylogenomics and sequence-structure-function relationships in the GmrSD family of Type IV restriction enzymes. BMC Bioinformatics 2015; 16:336. [PMID: 26493560 PMCID: PMC4619093 DOI: 10.1186/s12859-015-0773-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/13/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND GmrSD is a modification-dependent restriction endonuclease that specifically targets and cleaves glucosylated hydroxymethylcytosine (glc-HMC) modified DNA. It is encoded either as two separate single-domain GmrS and GmrD proteins or as a single protein carrying both domains. Previous studies suggested that GmrS acts as endonuclease and NTPase whereas GmrD binds DNA. METHODS In this work we applied homology detection, sequence conservation analysis, fold recognition and homology modeling methods to study sequence-structure-function relationships in the GmrSD restriction endonucleases family. We also analyzed the phylogeny and genomic context of the family members. RESULTS Results of our comparative genomics study show that GmrS exhibits similarity to proteins from the ParB/Srx fold which can have both NTPase and nuclease activity. In contrast to the previous studies though, we attribute the nuclease activity also to GmrD as we found it to contain the HNH endonuclease motif. We revealed residues potentially important for structure and function in both domains. Moreover, we found that GmrSD systems exist predominantly as a fused, double-domain form rather than as a heterodimer and that their homologs are often encoded in regions enriched in defense and gene mobility-related elements. Finally, phylogenetic reconstructions of GmrS and GmrD domains revealed that they coevolved and only few GmrSD systems appear to be assembled from distantly related GmrS and GmrD components. CONCLUSIONS Our study provides insight into sequence-structure-function relationships in the yet poorly characterized family of Type IV restriction enzymes. Comparative genomics allowed to propose possible role of GmrD domain in the function of the GmrSD enzyme and possible active sites of both GmrS and GmrD domains. Presented results can guide further experimental characterization of these enzymes.
Collapse
Affiliation(s)
- Magdalena A Machnicka
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109, Warsaw, Poland
| | - Katarzyna H Kaminska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109, Warsaw, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109, Warsaw, Poland. .,Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, PL-61-614, Poznan, Poland.
| |
Collapse
|
22
|
Gross JA, Pacis A, Chen GG, Barreiro LB, Ernst C, Turecki G. Characterizing 5-hydroxymethylcytosine in human prefrontal cortex at single base resolution. BMC Genomics 2015; 16:672. [PMID: 26334641 PMCID: PMC4559220 DOI: 10.1186/s12864-015-1875-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
Background The recent discovery that methylated cytosines are converted to 5-hydroxymethylated cytosines (5hmC) by the family of ten-eleven translocation enzymes has sparked significant interest on the genomic location, the abundance in different tissues, the putative functions, and the stability of this epigenetic mark. 5hmC plays a key role in the brain, where it is particularly abundant and dynamic during development. Results Here, we comprehensively characterize 5hmC in the prefrontal cortices of 24 subjects. We show that, although there is inter-individual variability in 5hmC content among unrelated individuals, approximately 8 % of all CpGs on autosomal chromosomes contain 5hmC, while sex chromosomes contain far less. Our data also provide evidence suggesting that 5hmC has transcriptional regulatory properties, as the density of 5hmC was highest in enhancer regions and within exons. Furthermore, we link increased 5hmC density to histone modification binding sites, to the gene bodies of actively transcribed genes, and to exon-intron boundaries. Finally, we provide several genomic regions of interest that contain gender-specific 5hmC. Conclusions Collectively, these results present an important reference for the growing number of studies that are interested in the investigation of the role of 5hmC in brain and mental disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1875-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffrey A Gross
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 boul. Lasalle, Montreal, Quebec, Canada.
| | - Alain Pacis
- Department of Genetics, CHU Sainte-Justine Research Centre, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, Quebec, Canada. .,Departments of Biochemistry and Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| | - Gary G Chen
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 boul. Lasalle, Montreal, Quebec, Canada.
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Centre, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, Quebec, Canada. .,Departments of Biochemistry and Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| | - Carl Ernst
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 boul. Lasalle, Montreal, Quebec, Canada.
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 boul. Lasalle, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Sasnauskas G, Zagorskaitė E, Kauneckaitė K, Tamulaitiene G, Siksnys V. Structure-guided sequence specificity engineering of the modification-dependent restriction endonuclease LpnPI. Nucleic Acids Res 2015; 43:6144-55. [PMID: 26001968 PMCID: PMC4499157 DOI: 10.1093/nar/gkv548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022] Open
Abstract
The eukaryotic Set and Ring Associated (SRA) domains and structurally similar DNA recognition domains of prokaryotic cytosine modification-dependent restriction endonucleases recognize methylated, hydroxymethylated or glucosylated cytosine in various sequence contexts. Here, we report the apo-structure of the N-terminal SRA-like domain of the cytosine modification-dependent restriction enzyme LpnPI that recognizes modified cytosine in the 5'-C(mC)DG-3' target sequence (where mC is 5-methylcytosine or 5-hydroxymethylcytosine and D = A/T/G). Structure-guided mutational analysis revealed LpnPI residues involved in base-specific interactions and demonstrated binding site plasticity that allowed limited target sequence degeneracy. Furthermore, modular exchange of the LpnPI specificity loops by structural equivalents of related enzymes AspBHI and SgrTI altered sequence specificity of LpnPI. Taken together, our results pave the way for specificity engineering of the cytosine modification-dependent restriction enzymes.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Evelina Zagorskaitė
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Kotryna Kauneckaitė
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| |
Collapse
|
24
|
He X, Hull V, Thomas JA, Fu X, Gidwani S, Gupta YK, Black LW, Xu SY. Expression and purification of a single-chain Type IV restriction enzyme Eco94GmrSD and determination of its substrate preference. Sci Rep 2015; 5:9747. [PMID: 25988532 PMCID: PMC4437046 DOI: 10.1038/srep09747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/06/2015] [Indexed: 01/30/2023] Open
Abstract
The first reported Type IV restriction endonuclease (REase) GmrSD consists of GmrS
and GmrD subunits. In most bacteria, however, the gmrS and gmrD genes
are fused together to encode a single-chain protein. The fused coding sequence for
ECSTEC94C_1402 from E. coli strain STEC_94C was expressed in T7 Express. The
protein designated as Eco94GmrSD displays modification-dependent ATP-stimulated
REase activity on T4 DNA with glucosyl-5-hydroxymethyl-cytosines (glc-5hmC) and T4gt
DNA with 5-hydroxymethyl-cytosines (5hmC). A C-terminal 6xHis-tagged protein was
purified by two-column chromatography. The enzyme is active in Mg2+
and Mn2+ buffer. It prefers to cleave large glc-5hmC- or
5hmC-modified DNA. In phage restriction assays, Eco94GmrSD weakly restricted T4 and
T4gt, whereas T4 IPI*-deficient phage (Δip1) were restricted more
than 106-fold, consistent with IPI* protection of E. coli
DH10B from lethal expression of the closely homologous E. coli CT596 GmrSD.
Eco94GmrSD is proposed to belong to the His-Asn-His (HNH)-nuclease family by the
identification of a putative C-terminal REase catalytic site D507-H508-N522.
Supporting this, GmrSD variants D507A, H508A, and N522A displayed no endonuclease
activity. The presence of a large number of fused GmrSD homologs suggests that GmrSD
is an effective phage exclusion protein that provides a mechanism to thwart T-even
phage infection.
Collapse
Affiliation(s)
- Xinyi He
- 1] New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA [2] State Key Laboratory of Microbial Metabolism, and School of Life Sciences &Biotechnology Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Victoria Hull
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Julie A Thomas
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Green St, Baltimore, MD 21201-1503, USA
| | - Xiaoqing Fu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Sonal Gidwani
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Yogesh K Gupta
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Lindsay W Black
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Green St, Baltimore, MD 21201-1503, USA
| | - Shuang-yong Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
25
|
Han T, Yamada-Mabuchi M, Zhao G, Li L, Liu G, Ou HY, Deng Z, Zheng Y, He X. Recognition and cleavage of 5-methylcytosine DNA by bacterial SRA-HNH proteins. Nucleic Acids Res 2015; 43:1147-59. [PMID: 25564526 PMCID: PMC4333417 DOI: 10.1093/nar/gku1376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SET and RING-finger-associated (SRA) domain is involved in establishment and maintenance of DNA methylation in eukaryotes. Proteins containing SRA domains exist in mammals, plants, even microorganisms. It has been established that mammalian SRA domain recognizes 5-methylcytosine (5mC) through a base-flipping mechanism. Here, we identified and characterized two SRA domain-containing proteins with the common domain architecture of N-terminal SRA domain and C-terminal HNH nuclease domain, Sco5333 from Streptomyces coelicolor and Tbis1 from Thermobispora bispora. Both sco5333 and tbis1 cannot establish in methylated Escherichia coli hosts (dcm+), and this in vivo toxicity requires both SRA and HNH domain. Purified Sco5333 and Tbis1 displayed weak DNA cleavage activity in the presence of Mg2+, Mn2+ and Co2+ and the cleavage activity was suppressed by Zn2+. Both Sco5333 and Tbis1 bind to 5mC-containing DNA in all sequence contexts and have at least a preference of 100 folds in binding affinity for methylated DNA over non-methylated one. We suggest that linkage of methyl-specific SRA domain and weakly active HNH domain may represent a universal mechanism in competing alien methylated DNA but to maximum extent minimizing damage to its own chromosome.
Collapse
Affiliation(s)
- Tiesheng Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | | | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Li Li
- Engineering Research Center of Industrial Microbiology (Ministry of Education), College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yu Zheng
- New England BioLabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
26
|
Zagorskaitė E, Sasnauskas G. Chemical display of pyrimidine bases flipped out by modification-dependent restriction endonucleases of MspJI and PvuRts1I families. PLoS One 2014; 9:e114580. [PMID: 25486533 PMCID: PMC4259335 DOI: 10.1371/journal.pone.0114580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
The epigenetic DNA modifications 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in eukaryotes are recognized either in the context of double-stranded DNA (e.g., by the methyl-CpG binding domain of MeCP2), or in the flipped-out state (e.g., by the SRA domain of UHRF1). The SRA-like domains and the base-flipping mechanism for 5(h)mC recognition are also shared by the recently discovered prokaryotic modification-dependent endonucleases of the MspJI and PvuRts1I families. Since the mechanism of modified cytosine recognition by many potential eukaryotic and prokaryotic 5(h)mC “readers” is still unknown, a fast solution based method for the detection of extrahelical 5(h)mC would be very useful. In the present study we tested base-flipping by MspJI- and PvuRts1I-like restriction enzymes using several solution-based methods, including fluorescence measurements of the cytosine analog pyrrolocytosine and chemical modification of extrahelical pyrimidines with chloroacetaldehyde and KMnO4. We find that only KMnO4 proved an efficient probe for the positive display of flipped out pyrimidines, albeit the method required either non-physiological pH (4.3) or a substitution of the target cytosine with thymine. Our results imply that DNA recognition mechanism of 5(h)mC binding proteins should be tested using a combination of all available methods, as the lack of a positive signal in some assays does not exclude the base flipping mechanism.
Collapse
Affiliation(s)
- Evelina Zagorskaitė
- Department of Protein–DNA Interactions, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Department of Protein–DNA Interactions, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- * E-mail:
| |
Collapse
|
27
|
Horton JR, Wang H, Mabuchi MY, Zhang X, Roberts RJ, Zheng Y, Wilson GG, Cheng X. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix. Nucleic Acids Res 2014; 42:12092-101. [PMID: 25262349 PMCID: PMC4231741 DOI: 10.1093/nar/gku871] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNA molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Hua Wang
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | - Yu Zheng
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|