1
|
Galperin MY, Vera Alvarez R, Karamycheva S, Makarova KS, Wolf YI, Landsman D, Koonin EV. COG database update 2024. Nucleic Acids Res 2024:gkae983. [PMID: 39494517 DOI: 10.1093/nar/gkae983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
The Clusters of Orthologous Genes (COG) database, originally created in 1997, has been updated to reflect the constantly growing collection of completely sequenced prokaryotic genomes. This update increased the genome coverage from 1309 to 2296 species, including 2103 bacteria and 193 archaea, in most cases, with a single representative genome per genus. This set covers all genera of bacteria and archaea that included organisms with 'complete genomes' as per NCBI databases in November 2023. The number of COGs has been expanded from 4877 to 4981, primarily by including protein families involved in bacterial protein secretion. Accordingly, COG pathways and functional groups now include secretion systems of types II through X, as well as Flp/Tad and type IV pili. These groupings allow straightforward identification and examination of the prokaryotic lineages that encompass-or lack-a particular secretion system. Other developments include improved annotations for the rRNA and tRNA modification proteins, multi-domain signal transduction proteins, and some previously uncharacterized protein families. The new version of COGs is available at https://www.ncbi.nlm.nih.gov/research/COG, as well as on the NCBI FTP site https://ftp.ncbi.nlm.nih.gov/pub/COG/, which also provides archived data from previous COG releases.
Collapse
Affiliation(s)
- Michael Y Galperin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Roberto Vera Alvarez
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Svetlana Karamycheva
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - David Landsman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
2
|
Gervason S, Sen S, Fontecave M, Golinelli-Pimpaneau B. [4Fe-4S]-dependent enzymes in non-redox tRNA thiolation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119807. [PMID: 39106920 DOI: 10.1016/j.bbamcr.2024.119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
Post-transcriptional modification of nucleosides in transfer RNAs (tRNAs) is an important process for accurate and efficient translation of the genetic information during protein synthesis in all domains of life. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A), within tRNAs. Whereas the mechanism that has prevailed for decades involved persulfide chemistry, more and more tRNA thiolation enzymes have now been shown to contain a [4Fe-4S] cluster. This review summarizes the information over the last ten years concerning the biochemical, spectroscopic and structural characterization of [4Fe-4S]-dependent non-redox tRNA thiolation enzymes.
Collapse
Affiliation(s)
- Sylvain Gervason
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Sambuddha Sen
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France.
| |
Collapse
|
3
|
Jamontas R, Laurynėnas A, Povilaitytė D, Meškys R, Aučynaitė A. RudS: bacterial desulfidase responsible for tRNA 4-thiouridine de-modification. Nucleic Acids Res 2024; 52:10543-10562. [PMID: 39166491 PMCID: PMC11417400 DOI: 10.1093/nar/gkae716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
In this study, we present an extensive analysis of a widespread group of bacterial tRNA de-modifying enzymes, dubbed RudS, which consist of a TudS desulfidase fused to a Domain of Unknown Function 1722 (DUF1722). RudS enzymes exhibit specific de-modification activity towards the 4-thiouridine modification (s4U) in tRNA molecules, as indicated by our experimental findings. The heterologous overexpression of RudS genes in Escherichia coli significantly reduces the tRNA 4-thiouridine content and diminishes UVA-induced growth delay, indicating the enzyme's role in regulating photosensitive tRNA s4U modification. Through a combination of protein modeling, docking studies, and molecular dynamics simulations, we have identified amino acid residues involved in catalysis and tRNA binding. Experimental validation through targeted mutagenesis confirms the TudS domain as the catalytic core of RudS, with the DUF1722 domain facilitating tRNA binding in the anticodon region. Our results suggest that RudS tRNA modification eraser proteins may play a role in regulating tRNA during prokaryotic stress responses.
Collapse
Affiliation(s)
- Rapolas Jamontas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Audrius Laurynėnas
- Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Deimantė Povilaitytė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Sun J, Wu J, Yuan Y, Fan L, Chua WLP, Ling YHS, Balamkundu S, priya D, Suen HCS, de Crécy-Lagard V, Dziergowska A, Dedon PC. tRNA modification profiling reveals epitranscriptome regulatory networks in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601603. [PMID: 39005467 PMCID: PMC11245014 DOI: 10.1101/2024.07.01.601603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transfer RNA (tRNA) modifications have emerged as critical posttranscriptional regulators of gene expression affecting diverse biological and disease processes. While there is extensive knowledge about the enzymes installing the dozens of post-transcriptional tRNA modifications - the tRNA epitranscriptome - very little is known about how metabolic, signaling, and other networks integrate to regulate tRNA modification levels. Here we took a comprehensive first step at understanding epitranscriptome regulatory networks by developing a high-throughput tRNA isolation and mass spectrometry-based modification profiling platform and applying it to a Pseudomonas aeruginosa transposon insertion mutant library comprising 5,746 strains. Analysis of >200,000 tRNA modification data points validated the annotations of predicted tRNA modification genes, uncovered novel tRNA-modifying enzymes, and revealed tRNA modification regulatory networks in P. aeruginosa. Platform adaptation for RNA-seq library preparation would complement epitranscriptome studies, while application to human cell and mouse tissue demonstrates its utility for biomarker and drug discovery and development.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Junzhou Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| | - Leon Fan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Wei Lin Patrina Chua
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yan Han Sharon Ling
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | | | - Dwija priya
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Hazel Chay Suen Suen
- Department of Food, Chemical & Biotechnology, Singapore of Institute of Technology, 138683 Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Genetic Institute, University of Florida, Gainesville, FL 32611 USA
| | | | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| |
Collapse
|
5
|
Yuan Y, DeMott MS, Byrne SR, Flores K, Poyet M, Groussin M, Microbiome Conservancy G, Berdy B, Comstock L, Alm EJ, Dedon PC. Phosphorothioate DNA modification by BREX Type 4 systems in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597175. [PMID: 38895356 PMCID: PMC11185695 DOI: 10.1101/2024.06.03.597175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Among dozens of microbial DNA modifications regulating gene expression and host defense, phosphorothioation (PT) is the only known backbone modification, with sulfur inserted at a non-bridging oxygen by dnd and ssp gene families. Here we explored the distribution of PT genes in 13,663 human gut microbiome genomes, finding that 6.3% possessed dnd or ssp genes predominantly in Bacillota, Bacteroidota, and Pseudomonadota. This analysis uncovered several putative new PT synthesis systems, including Type 4 Bacteriophage Exclusion (BREX) brx genes, which were genetically validated in Bacteroides salyersiae. Mass spectrometric analysis of DNA from 226 gut microbiome isolates possessing dnd, ssp, and brx genes revealed 8 PT dinucleotide settings confirmed in 6 consensus sequences by PT-specific DNA sequencing. Genomic analysis showed PT enrichment in rRNA genes and depletion at gene boundaries. These results illustrate the power of the microbiome for discovering prokaryotic epigenetics and the widespread distribution of oxidation-sensitive PTs in gut microbes.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shane R. Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Katia Flores
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Experimental Medicine, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Clinical and Molecular Biology, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Global Microbiome Conservancy
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
| | - Brittany Berdy
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Laurie Comstock
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Eric J. Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
6
|
Zecchin P, Pecqueur L, Oltmanns J, Velours C, Schünemann V, Fontecave M, Golinelli‐Pimpaneau B. Structure-based insights into the mechanism of [4Fe-4S]-dependent sulfur insertase LarE. Protein Sci 2024; 33:e4874. [PMID: 38100250 PMCID: PMC10806937 DOI: 10.1002/pro.4874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Several essential cellular metabolites, such as enzyme cofactors, contain sulfur atoms and their biosynthesis requires specific thiolation enzymes. LarE is an ATP-dependent sulfur insertase, which catalyzes the sequential conversion of the two carboxylate groups of the precursor of the lactate racemase cofactor into thiocarboxylates. Two types of LarE enzymes are known, one that uses a catalytic cysteine as a sacrificial sulfur donor, and the other one that uses a [4Fe-4S] cluster as a cofactor. Only the crystal structure of LarE from Lactobacillus plantarum (LpLarE) from the first class has been solved. We report here the crystal structure of LarE from Methanococcus maripaludis (MmLarE), belonging to the second class, in the cluster-free (apo-) and cluster-bound (holo-) forms. The structure of holo-MmLarE shows that the [4Fe-4S] cluster is chelated by three cysteines only, leaving an open coordination site on one Fe atom. Moreover, the fourth nonprotein-bonded iron atom was able to bind an anionic ligand such as a phosphate group or a chloride ion. Together with the spectroscopic analysis of holo-MmLarE and the previously reported biochemical investigations of holo-LarE from Thermotoga maritima, these crystal structures support the hypothesis of a reaction mechanism, in which the [4Fe-4S] cluster binds a hydrogenosulfide ligand in place of the chloride anion, thus generating a [4Fe-5S] intermediate, and transfers it to the substrate, as in the case of [4Fe-4S]-dependent tRNA thiolation enzymes.
Collapse
Affiliation(s)
- Paolo Zecchin
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8829Sorbonne UniversitéParis cedex 05France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8829Sorbonne UniversitéParis cedex 05France
| | - Jonathan Oltmanns
- Universität of Kaiserslautern‐LandauDepartment of PhysicsKaiserslauternGermany
| | - Christophe Velours
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris‐SaclayGif‐sur‐Yvette cedexFrance
- Present address:
Fundamental Microbiology and Pathogenicity LaboratoryUMR 5234 CNRS‐University of Bordeaux, SFR TransBioMedBordeauxFrance
| | - Volker Schünemann
- Universität of Kaiserslautern‐LandauDepartment of PhysicsKaiserslauternGermany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8829Sorbonne UniversitéParis cedex 05France
| | - Béatrice Golinelli‐Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8829Sorbonne UniversitéParis cedex 05France
| |
Collapse
|
7
|
Bimai O, Legrand P, Ravanat JL, Touati N, Zhou J, He N, Lénon M, Barras F, Fontecave M, Golinelli-Pimpaneau B. The thiolation of uridine 34 in tRNA, which controls protein translation, depends on a [4Fe-4S] cluster in the archaeum Methanococcus maripaludis. Sci Rep 2023; 13:5351. [PMID: 37005440 PMCID: PMC10067955 DOI: 10.1038/s41598-023-32423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.
Collapse
Affiliation(s)
- Ornella Bimai
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, 38000, Grenoble, France
| | - Nadia Touati
- IR CNRS Renard, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Nisha He
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Marine Lénon
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France.
| |
Collapse
|
8
|
Leiva LE, Zegarra V, Bange G, Ibba M. At the Crossroad of Nucleotide Dynamics and Protein Synthesis in Bacteria. Microbiol Mol Biol Rev 2023; 87:e0004422. [PMID: 36853029 PMCID: PMC10029340 DOI: 10.1128/mmbr.00044-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Nucleotides are at the heart of the most essential biological processes in the cell, be it as key protagonists in the dogma of molecular biology or by regulating multiple metabolic pathways. The dynamic nature of nucleotides, the cross talk between them, and their constant feedback to and from the cell's metabolic state position them as a hallmark of adaption toward environmental and growth challenges. It has become increasingly clear how the activity of RNA polymerase, the synthesis and maintenance of tRNAs, mRNA translation at all stages, and the biogenesis and assembly of ribosomes are fine-tuned by the pools of intracellular nucleotides. With all aspects composing protein synthesis involved, the ribosome emerges as the molecular hub in which many of these nucleotides encounter each other and regulate the state of the cell. In this review, we aim to highlight intracellular nucleotides in bacteria as dynamic characters permanently cross talking with each other and ultimately regulating protein synthesis at various stages in which the ribosome is mainly the principal character.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Victor Zegarra
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael Ibba
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
9
|
Quick and Spontaneous Transformation between [3Fe-4S] and [4Fe-4S] Iron-Sulfur Clusters in the tRNA-Thiolation Enzyme TtuA. Int J Mol Sci 2023; 24:ijms24010833. [PMID: 36614280 PMCID: PMC9821441 DOI: 10.3390/ijms24010833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential cofactors for enzyme activity. These Fe-S clusters are present in structurally diverse forms, including [4Fe-4S] and [3Fe-4S]. Type-identification of the Fe-S cluster is indispensable in understanding the catalytic mechanism of enzymes. However, identifying [4Fe-4S] and [3Fe-4S] clusters in particular is challenging because of their rapid transformation in response to oxidation-reduction events. In this study, we focused on the relationship between the Fe-S cluster type and the catalytic activity of a tRNA-thiolation enzyme (TtuA). We reconstituted [4Fe-4S]-TtuA, prepared [3Fe-4S]-TtuA by oxidizing [4Fe-4S]-TtuA under strictly anaerobic conditions, and then observed changes in the Fe-S clusters in the samples and the enzymatic activity in the time-course experiments. Electron paramagnetic resonance analysis revealed that [3Fe-4S]-TtuA spontaneously transforms into [4Fe-4S]-TtuA in minutes to one hour without an additional free Fe source in the solution. Although the TtuA immediately after oxidation of [4Fe-4S]-TtuA was inactive [3Fe-4S]-TtuA, its activity recovered to a significant level compared to [4Fe-4S]-TtuA after one hour, corresponding to an increase of [4Fe-4S]-TtuA in the solution. Our findings reveal that [3Fe-4S]-TtuA is highly inactive and unstable. Moreover, time-course analysis of structural changes and activity under strictly anaerobic conditions further unraveled the Fe-S cluster type used by the tRNA-thiolation enzyme.
Collapse
|
10
|
Chatterjee S, Hausinger RP. Sulfur incorporation into biomolecules: recent advances. Crit Rev Biochem Mol Biol 2022; 57:461-476. [PMID: 36403141 PMCID: PMC10192010 DOI: 10.1080/10409238.2022.2141678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022]
Abstract
Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Robert P. Hausinger
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Katanski CD, Watkins CP, Zhang W, Reyer M, Miller S, Pan T. Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing. Nucleic Acids Res 2022; 50:e99. [PMID: 35713550 PMCID: PMC9508811 DOI: 10.1093/nar/gkac517] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Queuosine (Q) is a conserved tRNA modification at the wobble anticodon position of tRNAs that read the codons of amino acids Tyr, His, Asn, and Asp. Q-modification in tRNA plays important roles in the regulation of translation efficiency and fidelity. Queuosine tRNA modification is synthesized de novo in bacteria, whereas in mammals the substrate for Q-modification in tRNA is queuine, the catabolic product of the Q-base of gut bacteria. This gut microbiome dependent tRNA modification may play pivotal roles in translational regulation in different cellular contexts, but extensive studies of Q-modification biology are hindered by the lack of high throughput sequencing methods for its detection and quantitation. Here, we describe a periodate-treatment method that enables single base resolution profiling of Q-modification in tRNAs by Nextgen sequencing from biological RNA samples. Periodate oxidizes the Q-base, which results in specific deletion signatures in the RNA-seq data. Unexpectedly, we found that periodate-treatment also enables the detection of several 2-thio-modifications including τm5s2U, mcm5s2U, cmnm5s2U, and s2C by sequencing in human and E. coli tRNA. We term this method periodate-dependent analysis of queuosine and sulfur modification sequencing (PAQS-seq). We assess Q- and 2-thio-modifications at the tRNA isodecoder level, and 2-thio modification changes in stress response. PAQS-seq should be widely applicable in the biological studies of Q- and 2-thio-modifications in mammalian and microbial tRNAs.
Collapse
Affiliation(s)
- Christopher D Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Christopher P Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Reyer
- Program of Biophysics, University of Chicago, Chicago, IL 60637, USA
| | - Samuel Miller
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Chatterjee S, Parson KF, Ruotolo BT, McCracken J, Hu J, Hausinger RP. Characterization of a [4Fe-4S]-dependent LarE sulfur insertase that facilitates nickel-pincer nucleotide cofactor biosynthesis in Thermotoga maritima. J Biol Chem 2022; 298:102131. [PMID: 35700827 PMCID: PMC9283937 DOI: 10.1016/j.jbc.2022.102131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid-derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Kristine F Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - John McCracken
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Jian Hu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
13
|
Structural and Functional Analysis of DndE Involved in DNA Phosphorothioation in the Haloalkaliphilic Archaea Natronorubrum bangense JCM10635. mBio 2022; 13:e0071622. [PMID: 35420474 PMCID: PMC9239217 DOI: 10.1128/mbio.00716-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorothioate (PT) modification, a sequence-specific modification that replaces the nonbridging oxygen atom with sulfur in a DNA phosphodiester through the gene products of dndABCDE or sspABCD, is widely distributed in prokaryotes. DNA PT modification functions together with gene products encoded by dndFGH, pbeABCD, or sspE to form defense systems that can protect against invasion by exogenous DNA particles. While the functions of the multiple enzymes in the PT system have been elucidated, the exact role of DndE in the PT process is still obscure. Here, we solved the crystal structure of DndE from the haloalkaliphilic archaeal strain Natronorubrum bangense JCM10635 at a resolution of 2.31 Å. Unlike the tetrameric conformation of DndE in Escherichia coli B7A, DndE from N. bangense JCM10635 exists in a monomeric conformation and can catalyze the conversion of supercoiled DNA to nicked or linearized products. Moreover, DndE exhibits preferential binding affinity to nicked DNA by virtue of the R19- and K23-containing positively charged surface. This work provides insight into how DndE functions in PT modification and the potential sulfur incorporation mechanism of DNA PT modification.
Collapse
|
14
|
Prediction of the Iron–Sulfur Binding Sites in Proteins Using the Highly Accurate Three-Dimensional Models Calculated by AlphaFold and RoseTTAFold. INORGANICS 2021. [DOI: 10.3390/inorganics10010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AlphaFold and RoseTTAFold are deep learning-based approaches that predict the structure of proteins from their amino acid sequences. Remarkable success has recently been achieved in the prediction accuracy of not only the fold of the target protein but also the position of its amino acid side chains. In this article, I question the accuracy of these methods to predict iron–sulfur binding sites. I analyze three-dimensional models calculated by AlphaFold and RoseTTAFold of Fe–S–dependent enzymes, for which no structure of a homologous protein has been solved experimentally. In all cases, the amino acids that presumably coordinate the cluster were gathered together and facing each other, which led to a quite accurate model of the Fe–S cluster binding site. Yet, cysteine candidates were often involved in intramolecular disulfide bonds, and the number and identity of the protein amino acids that should ligate the cluster were not always clear. The experimental structure determination of the protein with its Fe–S cluster and in complex with substrate/inhibitor/product is still needed to unambiguously visualize the coordination state of the cluster and understand the conformational changes occurring during catalysis.
Collapse
|
15
|
Metal utilization in genome-reduced bacteria: Do human mycoplasmas rely on iron? Comput Struct Biotechnol J 2021; 19:5752-5761. [PMID: 34765092 PMCID: PMC8566771 DOI: 10.1016/j.csbj.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Mycoplasmas are parasitic bacteria with streamlined genomes and complex nutritional requirements. Although iron is vital for almost all organisms, its utilization by mycoplasmas is controversial. Despite its minimalist nature, mycoplasmas can survive and persist within the host, where iron availability is rigorously restricted through nutritional immunity. In this review, we describe the putative iron-enzymes, transporters, and metalloregulators of four relevant human mycoplasmas. This work brings in light critical differences in the mycoplasma-iron interplay. Mycoplasma penetrans, the species with the largest genome (1.36 Mb), shows a more classic repertoire of iron-related proteins, including different enzymes using iron-sulfur clusters as well as iron storage and transport systems. In contrast, the iron requirement is less apparent in the three species with markedly reduced genomes, Mycoplasma genitalium (0.58 Mb), Mycoplasma hominis (0.67 Mb) and Mycoplasma pneumoniae (0.82 Mb), as they exhibit only a few proteins possibly involved in iron homeostasis. The multiple facets of iron metabolism in mycoplasmas illustrate the remarkable evolutive potential of these minimal organisms when facing nutritional immunity and question the dependence of several human-infecting species for iron. Collectively, our data contribute to better understand the unique biology and infective strategies of these successful pathogens.
Collapse
Key Words
- ABC, ATP-binding cassette
- ECF transporter
- ECF, energy-coupling factor
- Fur, ferric uptake regulator
- Hrl, histidine-rich lipoprotein
- Iron homeostasis
- Metal acquisition
- Metalloenzyme
- Mge, Mycoplasma genitalium
- Mho, Mycoplasma hominis
- Mollicutes
- Mpe, Mycoplasma penetrans
- Mpn, Mycoplasma pneumonia
- Mycoplasmas
- PDB, protein data bank
- RNR, ribonucleotide reductase
- XRF, X-ray fluorescence
- ZIP, zinc-iron permease
Collapse
|
16
|
Biosynthesis and Degradation of Sulfur Modifications in tRNAs. Int J Mol Sci 2021; 22:ijms222111937. [PMID: 34769366 PMCID: PMC8584467 DOI: 10.3390/ijms222111937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Various sulfur-containing biomolecules include iron–sulfur clusters that act as cofactors for enzymes, sulfur-containing vitamins such as thiamin, and sulfur-modified nucleosides in RNA, in addition to methionine and cysteine in proteins. Sulfur-containing nucleosides are post-transcriptionally introduced into tRNA molecules, where they ensure precise codon recognition or stabilization of tRNA structure, thereby maintaining cellular proteome integrity. Modulating sulfur modification controls the translation efficiency of specific groups of genes, allowing organisms to adapt to specific environments. The biosynthesis of tRNA sulfur nucleosides involves elaborate ‘sulfur trafficking systems’ within cellular sulfur metabolism and ‘modification enzymes’ that incorporate sulfur atoms into tRNA. This review provides an up-to-date overview of advances in our knowledge of the mechanisms involved. It covers the functions, biosynthesis, and biodegradation of sulfur-containing nucleosides as well as the reaction mechanisms of biosynthetic enzymes catalyzed by the iron–sulfur clusters, and identification of enzymes involved in the de-modification of sulfur atoms of RNA. The mechanistic similarity of these opposite reactions is discussed. Mutations in genes related to these pathways can cause human diseases (e.g., cancer, diabetes, and mitochondrial diseases), emphasizing the importance of these pathways.
Collapse
|
17
|
Das M, Dewan A, Shee S, Singh A. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Antioxidants (Basel) 2021; 10:997. [PMID: 34201508 PMCID: PMC8300815 DOI: 10.3390/antiox10070997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/02/2022] Open
Abstract
Living cells have developed a relay system to efficiently transfer sulfur (S) from cysteine to various thio-cofactors (iron-sulfur (Fe-S) clusters, thiamine, molybdopterin, lipoic acid, and biotin) and thiolated tRNA. The presence of such a transit route involves multiple protein components that allow the flux of S to be precisely regulated as a function of environmental cues to avoid the unnecessary accumulation of toxic concentrations of soluble sulfide (S2-). The first enzyme in this relay system is cysteine desulfurase (CSD). CSD catalyzes the release of sulfane S from L-cysteine by converting it to L-alanine by forming an enzyme-linked persulfide intermediate on its conserved cysteine residue. The persulfide S is then transferred to diverse acceptor proteins for its incorporation into the thio-cofactors. The thio-cofactor binding-proteins participate in essential and diverse cellular processes, including DNA repair, respiration, intermediary metabolism, gene regulation, and redox sensing. Additionally, CSD modulates pathogenesis, antibiotic susceptibility, metabolism, and survival of several pathogenic microbes within their hosts. In this review, we aim to comprehensively illustrate the impact of CSD on bacterial core metabolic processes and its requirement to combat redox stresses and antibiotics. Targeting CSD in human pathogens can be a potential therapy for better treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Amit Singh
- Centre for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; (M.D.); (A.D.); (S.S.)
| |
Collapse
|
18
|
Aydin M, Weisser C, Rué O, Mariadassou M, Maaß S, Behrendt AK, Jaszczyszyn Y, Heilker T, Spaeth M, Vogel S, Lutz S, Ahmad-Nejad P, Graf V, Bellm A, Weisser C, Naumova EA, Arnold WH, Ehrhardt A, Meyer-Bahlburg A, Becher D, Postberg J, Ghebremedhin B, Wirth S. The Rhinobiome of Exacerbated Wheezers and Asthmatics: Insights From a German Pediatric Exacerbation Network. FRONTIERS IN ALLERGY 2021; 2:667562. [PMID: 35386977 PMCID: PMC8974812 DOI: 10.3389/falgy.2021.667562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although the nose, as a gateway for organism–environment interactions, may have a key role in asthmatic exacerbation, the rhinobiome of exacerbated children with asthma was widely neglected to date. The aim of this study is to understand the microbiome, the microbial immunology, and the proteome of exacerbated children and adolescents with wheeze and asthma. Considering that a certain proportion of wheezers may show a progression to asthma, the comparison of both groups provides important information regarding clinical and phenotype stratification. Thus, deep nasopharyngeal swab specimens, nasal epithelial spheroid (NAEsp) cultures, and blood samples of acute exacerbated wheezers (WH), asthmatics (AB), and healthy controls (HC) were used for culture (n = 146), 16 S-rRNA gene amplicon sequencing (n = 64), and proteomic and cytokine analyses. Interestingly, Proteobacteria were over-represented in WH, whereas Firmicutes and Bacteroidetes were associated with AB. In contrast, Actinobacteria commonly colonized HCs. Moreover, Staphylococcaceae, Enterobacteriaceae, Burkholderiaceae, Xanthobacteraceae, and Sphingomonadaceae were significantly more abundant in AB compared to WH and HC. The α-diversity analyses demonstrated an increase of bacterial abundance levels in atopic AB and a decrease in WH samples. Microbiome profiles of atopic WH differed significantly from atopic AB, whereby atopic samples of WH were more homogeneous than those of non-atopic subjects. The NAEsp bacterial exposure experiments provided a disrupted epithelial cell integrity, a cytokine release, and cohort-specific proteomic differences especially for Moraxella catarrhalis cultures. This comprehensive dataset contributes to a deeper insight into the poorly understood plasticity of the nasal microbiota, and, in particular, may enforce our understanding in the pathogenesis of asthma exacerbation in childhood.
Collapse
Affiliation(s)
- Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Faculty of Health, Center for Biomedical Education and Research, School of Life Sciences, Witten/Herdecke University, Witten, Germany
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
- *Correspondence: Malik Aydin
| | - Cornelius Weisser
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | | - Sandra Maaß
- Center of Functional Genomics of Microbes, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ann-Kathrin Behrendt
- Pediatric Rheumatology and Immunology, Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Tatje Heilker
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Maximilian Spaeth
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Silvia Vogel
- Department of Pathology, Division of Molecular Pathology, Helios University Hospital Wuppertal, Center for Clinical and Translational Research, Witten/Herdecke University, Wuppertal, Germany
| | - Sören Lutz
- Children's Hospital, Helios Hospital Niederberg, Teaching Hospital of University Hospital Essen, Velbert, Germany
| | - Parviz Ahmad-Nejad
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Viktoria Graf
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Aliyah Bellm
- Helios Hospital Krefeld, Children's Hospital, Teaching Hospital of Rheinisch-Westfälische Technische Hochschule (RTWH) University Aachen, Krefeld, Germany
| | - Christoph Weisser
- Department of Economics and Center for Statistics, Georg-August University Göttingen, Göttingen, Germany
| | - Ella A. Naumova
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wolfgang H. Arnold
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Almut Meyer-Bahlburg
- Pediatric Rheumatology and Immunology, Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Center of Functional Genomics of Microbes, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jan Postberg
- Laboratory of Clinical Molecular Genetics and Epigenetics, Faculty of Health, Center for Biomedical Education and Research, School of Life Sciences, Witten/Herdecke University, Wuppertal, Germany
| | - Beniam Ghebremedhin
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Stefan Wirth
- Laboratory of Experimental Pediatric Pneumology and Allergology, Faculty of Health, Center for Biomedical Education and Research, School of Life Sciences, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
19
|
Zhou J, Lénon M, Ravanat JL, Touati N, Velours C, Podskoczyj K, Leszczynska G, Fontecave M, Barras F, Golinelli-Pimpaneau B. Iron-sulfur biology invades tRNA modification: the case of U34 sulfuration. Nucleic Acids Res 2021; 49:3997-4007. [PMID: 33744947 PMCID: PMC8053098 DOI: 10.1093/nar/gkab138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfuration of uridine 34 in the anticodon of tRNAs is conserved in the three domains of life, guaranteeing fidelity of protein translation. In eubacteria, it is catalyzed by MnmA-type enzymes, which were previously concluded not to depend on an iron-sulfur [Fe-S] cluster. However, we report here spectroscopic and iron/sulfur analysis, as well as in vitro catalytic assays and site-directed mutagenesis studies unambiguously showing that MnmA from Escherichia coli can bind a [4Fe-4S] cluster, which is essential for sulfuration of U34-tRNA. We propose that the cluster serves to bind and activate hydrosulfide for nucleophilic attack on the adenylated nucleoside. Intriguingly, we found that E. coli cells retain s2U34 biosynthesis in the ΔiscUA ΔsufABCDSE strain, lacking functional ISC and SUF [Fe-S] cluster assembly machineries, thus suggesting an original and yet undescribed way of maturation of MnmA. Moreover, we report genetic analysis showing the importance of MnmA for sustaining oxidative stress.
Collapse
Affiliation(s)
- Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Universités, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| | - Marine Lénon
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, UMR CNRS 2001, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, F-38000 Grenoble, France
| | - Nadia Touati
- IR CNRS Renard, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Christophe Velours
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Karolina Podskoczyj
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Universités, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| | - Frédéric Barras
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, UMR CNRS 2001, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Universités, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| |
Collapse
|
20
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
21
|
Zhou J, Pecqueur L, Aučynaitė A, Fuchs J, Rutkienė R, Vaitekūnas J, Meškys R, Boll M, Fontecave M, Urbonavičius J, Golinelli‐Pimpaneau B. Structural Evidence for a [4Fe‐5S] Intermediate in the Non‐Redox Desulfuration of Thiouracil. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Jonathan Fuchs
- Faculty of Biology—Microbiology University of Freiburg 79104 Freiburg Germany
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Matthias Boll
- Faculty of Biology—Microbiology University of Freiburg 79104 Freiburg Germany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
- Department of Chemistry and Bioengineering Vilnius Gediminas Technical University Vilnius Lithuania
| | - Béatrice Golinelli‐Pimpaneau
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| |
Collapse
|
22
|
Abstract
Iron-Sulfur (Fe-S) clusters function as core prosthetic groups known to modulate the activity of metalloenzymes, act as trafficking vehicles for biological iron and sulfur, and participate in several intersecting metabolic pathways. The formation of these clusters is initiated by a class of enzymes called cysteine desulfurases, whose primary function is to shuttle sulfur from the amino acid L-cysteine to a variety of sulfur transfer proteins involved in Fe-S cluster synthesis as well as in the synthesis of other thiocofactors. Thus, sulfur and Fe-S cluster metabolism are connected through shared enzyme intermediates, and defects in their associated pathways cause a myriad of pleiotropic phenotypes, which are difficult to dissect. Post-transcriptionally modified transfer RNA (tRNA) represents a large class of analytes whose synthesis often requires the coordinated participation of sulfur transfer and Fe-S enzymes. Therefore, these molecules can be used as biologically relevant readouts for cellular Fe and S status. Methods employing LC-MS technology provide a valuable experimental tool to determine the relative levels of tRNA modification in biological samples and, consequently, to assess genetic, nutritional, and environmental factors modulating reactions dependent on Fe-S clusters. Herein, we describe a robust method for extracting RNA and analytically evaluating the degree of Fe-S-dependent and -independent tRNA modifications via an LC-MS platform.
Collapse
Affiliation(s)
- Ashley M Edwards
- Department of Chemistry, Wake Forest University, Winston Salem, NC, USA
| | - Maame A Addo
- Department of Chemistry, Wake Forest University, Winston Salem, NC, USA
| | | |
Collapse
|
23
|
Zhou J, Pecqueur L, Aučynaitė A, Fuchs J, Rutkienė R, Vaitekūnas J, Meškys R, Boll M, Fontecave M, Urbonavičius J, Golinelli-Pimpaneau B. Structural Evidence for a [4Fe-5S] Intermediate in the Non-Redox Desulfuration of Thiouracil. Angew Chem Int Ed Engl 2020; 60:424-431. [PMID: 32929873 DOI: 10.1002/anie.202011211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 11/10/2022]
Abstract
We recently discovered a [Fe-S]-containing protein with in vivo thiouracil desulfidase activity, dubbed TudS. The crystal structure of TudS refined at 1.5 Å resolution is reported; it harbors a [4Fe-4S] cluster bound by three cysteines only. Incubation of TudS crystals with 4-thiouracil trapped the cluster with a hydrosulfide ligand bound to the fourth non-protein-bonded iron, as established by the sulfur anomalous signal. This indicates that a [4Fe-5S] state of the cluster is a catalytic intermediate in the desulfuration reaction. Structural data and site-directed mutagenesis indicate that a water molecule is located next to the hydrosulfide ligand and to two catalytically important residues, Ser101 and Glu45. This information, together with modeling studies allow us to propose a mechanism for the unprecedented non-redox enzymatic desulfuration of thiouracil, in which a [4Fe-4S] cluster binds and activates the sulfur atom of the substrate.
Collapse
Affiliation(s)
- Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jonathan Fuchs
- Faculty of Biology-Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Matthias Boll
- Faculty of Biology-Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| |
Collapse
|
24
|
Carpentier P, Leprêtre C, Basset C, Douki T, Torelli S, Duarte V, Hamdane D, Fontecave M, Atta M. Structural, biochemical and functional analyses of tRNA-monooxygenase enzyme MiaE from Pseudomonas putida provide insights into tRNA/MiaE interaction. Nucleic Acids Res 2020; 48:9918-9930. [PMID: 32785618 PMCID: PMC7515727 DOI: 10.1093/nar/gkaa667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022] Open
Abstract
MiaE (2-methylthio-N6-isopentenyl-adenosine37-tRNA monooxygenase) is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide 2-methylthio-N6-isopentenyl-adenosine (ms2i6A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N6-4-hydroxyisopentenyl-adenosine (ms2io6A37). Here, we report the in vivo activity, biochemical, spectroscopic characterization and X-ray crystal structure of MiaE from Pseudomonas putida. The investigation demonstrates that the putative pp-2188 gene encodes a MiaE enzyme. The structure shows that Pp-MiaE consists of a catalytic diiron(III) domain with a four alpha-helix bundle fold. A docking model of Pp-MiaE in complex with tRNA, combined with site directed mutagenesis and in vivo activity shed light on the importance of an additional linker region for substrate tRNA recognition. Finally, krypton-pressurized Pp-MiaE experiments, revealed the presence of defined O2 site along a conserved hydrophobic tunnel leading to the diiron active center.
Collapse
Affiliation(s)
- Philippe Carpentier
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Chloé Leprêtre
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| | - Christian Basset
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, SyMMES, F-38000, 17 avenue des martyrs Grenoble, France
| | - Stéphane Torelli
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| | - Victor Duarte
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France-CNRS-Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France-CNRS-Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Mohamed Atta
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| |
Collapse
|
25
|
Bimai O, Arragain S, Golinelli-Pimpaneau B. Structure-based mechanistic insights into catalysis by tRNA thiolation enzymes. Curr Opin Struct Biol 2020; 65:69-78. [PMID: 32652441 DOI: 10.1016/j.sbi.2020.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
In all domains of life, ribonucleic acid (RNA) maturation includes post-transcriptional chemical modifications of nucleosides. Many sulfur-containing nucleosides have been identified in transfer RNAs (tRNAs), such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), 2-methylthioadenosine (ms2A). These modifications are essential for accurate and efficient translation of the genetic code from messenger RNA (mRNA) for protein synthesis. This review summarizes the recent discoveries concerning the mechanistic and structural characterization of tRNA thiolation enzymes that catalyze the non-redox substitution of oxygen for sulfur in nucleosides. Two mechanisms have been described. One involves persulfide formation on catalytic cysteines, while the other uses a [4Fe-4S] cluster, chelated by three conserved cysteines only, as a sulfur carrier.
Collapse
Affiliation(s)
- Ornella Bimai
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris Sciences et Lettres, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| | - Simon Arragain
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris Sciences et Lettres, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris Sciences et Lettres, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France.
| |
Collapse
|
26
|
The [4Fe-4S] cluster of sulfurtransferase TtuA desulfurizes TtuB during tRNA modification in Thermus thermophilus. Commun Biol 2020; 3:168. [PMID: 32265486 PMCID: PMC7138817 DOI: 10.1038/s42003-020-0895-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
TtuA and TtuB are the sulfurtransferase and sulfur donor proteins, respectively, for biosynthesis of 2-thioribothymidine (s2T) at position 54 of transfer RNA (tRNA), which is responsible for adaptation to high temperature environments in Thermus thermophilus. The enzymatic activity of TtuA requires an iron-sulfur (Fe-S) cluster, by which a sulfur atom supplied by TtuB is transferred to the tRNA substrate. Here, we demonstrate that the Fe-S cluster directly receives sulfur from TtuB through its inherent coordination ability. TtuB forms a [4Fe-4S]-TtuB intermediate, but that sulfur is not immediately released from TtuB. Further desulfurization assays and mutation studies demonstrated that the release of sulfur from the thiocarboxylated C-terminus of TtuB is dependent on adenylation of the substrate tRNA, and the essential residue for TtuB desulfurization was identified. Based on these findings, the molecular mechanism of sulfur transfer from TtuB to Fe-S cluster is proposed. Chen et al. demonstrate how the Fe-S cluster receives sulfur from TtuB, a ubiquitin-like sulfur donor during tRNA modification. They find that the release of sulfur from the thiocarboxylated C-terminus of TtuB depends on the adenylation of the substrate tRNA. This study provides molecular insights into the sulfur modification of tRNA.
Collapse
|
27
|
Distinct Modified Nucleosides in tRNA Trp from the Hyperthermophilic Archaeon Thermococcus kodakarensis and Requirement of tRNA m 2G10/m 2 2G10 Methyltransferase (Archaeal Trm11) for Survival at High Temperatures. J Bacteriol 2019; 201:JB.00448-19. [PMID: 31405913 DOI: 10.1128/jb.00448-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
tRNA m2G10/m2 2G10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms N 2,N 2-dimethylguanosine (m2 2G10) via N 2-methylguanosine (m2G10). We determined the complete sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermococcus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNATrp identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2'-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2'-O-methyluridine at position 20, 5,2'-O-dimethylcytidine at position 32, and 2'-O-methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNATrp, although 1-methylguanosine is generally found at this location in tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene disruptant strains and compared their tRNATrp with that of the wild-type strain, which confirmed the absence of m2 2G10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures. The m2 2G10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures.IMPORTANCE Thermococcus kodakarensis is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNATrp The construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures.
Collapse
|
28
|
Dunbar KL, Dell M, Molloy EM, Kloss F, Hertweck C. Reconstitution of Iterative Thioamidation in Closthioamide Biosynthesis Reveals Tailoring Strategy for Nonribosomal Peptide Backbones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyle L. Dunbar
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Maria Dell
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Evelyn M. Molloy
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Florian Kloss
- Transfer Group Antiinfectives Leibniz Institute for Natural Product Research and Infection Biology HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
- Chair of Natural Product Chemistry Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
29
|
Dunbar KL, Dell M, Molloy EM, Kloss F, Hertweck C. Reconstitution of Iterative Thioamidation in Closthioamide Biosynthesis Reveals Tailoring Strategy for Nonribosomal Peptide Backbones. Angew Chem Int Ed Engl 2019; 58:13014-13018. [PMID: 31276268 PMCID: PMC6772006 DOI: 10.1002/anie.201905992] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Thioamide-containing nonribosomal peptides (NRPs) are exceedingly rare. Recently the biosynthetic gene cluster for the thioamidated NRP antibiotic closthioamide (CTA) was reported, however, the enzyme responsible for and the timing of thioamide formation remained enigmatic. Here, genome editing, biochemical assays, and mutational studies are used to demonstrate that an Fe-S cluster containing member of the adenine nucleotide α-hydrolase protein superfamily (CtaC) is responsible for sulfur incorporation during CTA biosynthesis. However, unlike all previously characterized members, CtaC functions in a thiotemplated manner. In addition to prompting a revision of the CTA biosynthetic pathway, the reconstitution of CtaC provides the first example of a NRP thioamide synthetase. Finally, CtaC is used as a bioinformatic handle to demonstrate that thioamidated NRP biosynthetic gene clusters are more widespread than previously appreciated.
Collapse
Affiliation(s)
- Kyle L. Dunbar
- Dept. of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Maria Dell
- Dept. of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Evelyn M. Molloy
- Dept. of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Florian Kloss
- Transfer Group AntiinfectivesLeibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstrasse 11a07745JenaGermany
| | - Christian Hertweck
- Dept. of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
- Chair of Natural Product ChemistryFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
30
|
Mahanta N, Szantai-Kis DM, Petersson EJ, Mitchell DA. Biosynthesis and Chemical Applications of Thioamides. ACS Chem Biol 2019; 14:142-163. [PMID: 30698414 PMCID: PMC6404778 DOI: 10.1021/acschembio.8b01022] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thioamidation as a posttranslational modification is exceptionally rare, with only a few reported natural products and exactly one known protein example (methyl-coenzyme M reductase from methane-metabolizing archaea). Recently, there has been significant progress in elucidating the biosynthesis and function of several thioamide-containing natural compounds. Separate developments in the chemical installation of thioamides into peptides and proteins have enabled cell biology and biophysical studies to advance the current understanding of natural thioamides. This review highlights the various strategies used by Nature to install thioamides in peptidic scaffolds and the potential functions of this rare but important modification. We also discuss synthetic methods used for the site-selective incorporation of thioamides into polypeptides with a brief discussion of the physicochemical implications. This account will serve as a foundation for the further study of thioamides in natural products and their various applications.
Collapse
Affiliation(s)
| | - D Miklos Szantai-Kis
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine , University of Pennsylvania , 3700 Hamilton Walk , Philadelphia , Pennsylvania 19104 , United States
| | - E James Petersson
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine , University of Pennsylvania , 3700 Hamilton Walk , Philadelphia , Pennsylvania 19104 , United States
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
31
|
Cosentino C, Toivonen S, Diaz Villamil E, Atta M, Ravanat JL, Demine S, Schiavo A, Pachera N, Deglasse JP, Jonas JC, Balboa D, Otonkoski T, Pearson ER, Marchetti P, Eizirik DL, Cnop M, Igoillo-Esteve M. Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res 2018; 46:10302-10318. [PMID: 30247717 PMCID: PMC6212784 DOI: 10.1093/nar/gky839] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNAGln and tRNAiMeth as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic β-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in β-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNAGln fragmentation and that 5'-tRNAGln fragments mediate TRMT10A deficiency-induced β-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancreatic β-cell demise relevant to monogenic and polygenic forms of diabetes.
Collapse
Affiliation(s)
- Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Esteban Diaz Villamil
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Mohamed Atta
- CEA/Grenoble, DRF/BIG/LCBM UMR5249, Grenoble, France
| | - Jean-Luc Ravanat
- Université Grenoble Alpes, CEA, CNRS INAC, SyMMES UMR 5819, Grenoble, France
| | - Stéphane Demine
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Andrea Alex Schiavo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Nathalie Pachera
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jean-Philippe Deglasse
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’ Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’ Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ewan R Pearson
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
32
|
Shigi N. Recent Advances in Our Understanding of the Biosynthesis of Sulfur Modifications in tRNAs. Front Microbiol 2018; 9:2679. [PMID: 30450093 PMCID: PMC6225789 DOI: 10.3389/fmicb.2018.02679] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Sulfur is an essential element in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, introduced post-transcriptionally, that function to ensure proper codon recognition or stabilization of tRNA structure, thereby enabling accurate and efficient translation. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems that are closely related to cellular sulfur metabolism, and “modification enzymes” that incorporate sulfur atoms into tRNA. Herein, recent biochemical and structural characterization of the biosynthesis of sulfur modifications in tRNA is reviewed, with special emphasis on the reaction mechanisms of modification enzymes. It was recently revealed that TtuA/Ncs6-type 2-thiouridylases from thermophilic bacteria/archaea/eukaryotes are oxygen-sensitive iron-sulfur proteins that utilize a quite different mechanism from other 2-thiouridylase subtypes lacking iron-sulfur clusters such as bacterial MnmA. The various reaction mechanisms of RNA sulfurtransferases are also discussed, including tRNA methylthiotransferase MiaB (a radical S-adenosylmethionine-type iron-sulfur enzyme) and other sulfurtransferases involved in both primary and secondary sulfur-containing metabolites.
Collapse
Affiliation(s)
- Naoki Shigi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
33
|
Fellner M, Hausinger RP, Hu J. A structural perspective on the PP-loop ATP pyrophosphatase family. Crit Rev Biochem Mol Biol 2018; 53:607-622. [DOI: 10.1080/10409238.2018.1516728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Matthias Fellner
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Robert P. Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
34
|
Zhou G, Wang YS, Peng H, Huang XM, Xie XB, Shi QS. Role of Ttca of Citrobacter Werkmanii in Bacterial Growth, Biocides Resistance, Biofilm Formation and Swimming Motility. Int J Mol Sci 2018; 19:E2644. [PMID: 30200616 PMCID: PMC6165289 DOI: 10.3390/ijms19092644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
To screen, identify and study the genes involved in isothiazolone resistance and biofilm formation in Citrobacter werkmanii strain BF-6. A Tn5 transposon library of approximately 900 mutants of C. werkmanii strain BF-6 was generated and screened to isolate 1,2-benzisothiazolin-3-one (BIT) resistant strains. In addition, the tRNA 2-thiocytidine (32) synthetase gene (ttcA) was deleted through homologous recombination and the resulting phenotypic changes of the ΔttcA mutant were studied. A total of 3 genes were successfully identified, among which ΔttcA mutant exhibited a reduction in growth rate and swimming motility. On the other hand, an increase in biofilms formation in ΔttcA were observed but not with a significant resistance enhancement to BIT. This work, for the first time, highlights the role of ttcA gene of C. werkmanii strain BF-6 in BIT resistance and biofilm formation.
Collapse
Affiliation(s)
- Gang Zhou
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, Guangdong 510070, China.
| | - Ying-Si Wang
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, Guangdong 510070, China.
| | - Hong Peng
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, Guangdong 510070, China.
| | - Xiao-Mo Huang
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, Guangdong 510070, China.
| | - Xiao-Bao Xie
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, Guangdong 510070, China.
| | - Qing-Shan Shi
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, Guangdong 510070, China.
| |
Collapse
|
35
|
Litomska A, Ishida K, Dunbar KL, Boettger M, Coyne S, Hertweck C. Enzymatic Thioamide Formation in a Bacterial Antimetabolite Pathway. Angew Chem Int Ed Engl 2018; 57:11574-11578. [DOI: 10.1002/anie.201804158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/13/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Agnieszka Litomska
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Kyle L. Dunbar
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Marco Boettger
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Sébastien Coyne
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological SciencesFriedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
36
|
Romsang A, Duang-Nkern J, Khemsom K, Wongsaroj L, Saninjuk K, Fuangthong M, Vattanaviboon P, Mongkolsuk S. Pseudomonas aeruginosa ttcA encoding tRNA-thiolating protein requires an iron-sulfur cluster to participate in hydrogen peroxide-mediated stress protection and pathogenicity. Sci Rep 2018; 8:11882. [PMID: 30089777 PMCID: PMC6082896 DOI: 10.1038/s41598-018-30368-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/27/2018] [Indexed: 01/21/2023] Open
Abstract
During the translation process, transfer RNA (tRNA) carries amino acids to ribosomes for protein synthesis. Each codon of mRNA is recognized by a specific tRNA, and enzyme-catalysed modifications to tRNA regulate translation. TtcA is a unique tRNA-thiolating enzyme that requires an iron-sulfur ([Fe-S]) cluster to catalyse thiolation of tRNA. In this study, the physiological functions of a putative ttcA in Pseudomonas aeruginosa, an opportunistic human pathogen that causes serious problems in hospitals, were characterized. A P. aeruginosa ttcA-deleted mutant was constructed, and mutant cells were rendered hypersensitive to oxidative stress, such as hydrogen peroxide (H2O2) treatment. Catalase activity was lower in the ttcA mutant, suggesting that this gene plays a role in protecting against oxidative stress. Moreover, the ttcA mutant demonstrated attenuated virulence in a Drosophila melanogaster host model. Site-directed mutagenesis analysis revealed that the conserved cysteine motifs involved in [Fe-S] cluster ligation were required for TtcA function. Furthermore, ttcA expression increased upon H2O2 exposure, implying that enzyme levels are induced under stress conditions. Overall, the data suggest that P. aeruginosa ttcA plays a critical role in protecting against oxidative stress via catalase activity and is required for successful bacterial infection of the host.
Collapse
Affiliation(s)
- Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Khwannarin Khemsom
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Lampet Wongsaroj
- Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kritsakorn Saninjuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Mayuree Fuangthong
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
37
|
Litomska A, Ishida K, Dunbar KL, Boettger M, Coyne S, Hertweck C. Enzymatic Thioamide Formation in a Bacterial Antimetabolite Pathway. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Agnieszka Litomska
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstr. 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstr. 11a 07745 Jena Germany
| | - Kyle L. Dunbar
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstr. 11a 07745 Jena Germany
| | - Marco Boettger
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstr. 11a 07745 Jena Germany
| | - Sébastien Coyne
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstr. 11a 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological Sciences; Friedrich Schiller University Jena; 07743 Jena Germany
| |
Collapse
|
38
|
Aučynaitė A, Rutkienė R, Gasparavičiūtė R, Meškys R, Urbonavičius J. A gene encoding a DUF523 domain protein is involved in the conversion of 2-thiouracil into uracil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:49-56. [PMID: 29194984 DOI: 10.1111/1758-2229.12605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Modified nucleotides are present in many RNA species in all Domains of Life. While the biosynthetic pathways of such nucleotides are well studied, much less is known about the degradation of RNAs and the return to the metabolism of modified nucleotides, their respective nucleosides or heterocyclic bases. Using an E. coli uracil auxotroph, we screened the metagenomic libraries for genes, which would allow the conversion of 2-thiouracil to uracil and thereby lead to the growth on a defined synthetic medium. We show that a gene encoding a protein consisting of previously uncharacterized Domain of Unknown Function 523 (DUF523) is responsible for such phenotype. We have purified this recombinant protein and demonstrated that it contains a FeS cluster. The substitution of cysteines, which have been predicted to form such clusters, with alanines abolished the growth phenotype. We conclude that DUF523 is involved in the conversion of 2-thiouracil into uracil in vivo.
Collapse
Affiliation(s)
- Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
39
|
Sigel A, Operschall BP, Sigel RKO, Sigel H. Metal ion complexes of nucleoside phosphorothioates reflecting the ambivalent properties of lead(ii). NEW J CHEM 2018. [DOI: 10.1039/c7nj04989g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lead(ii)-lone pair leads to ambivalency: hemidirected (distorted, non-spherical) coordination spheres result from electronegative O-coordination and holodirected (symmetric, spherical) ones from less electronegative S-coordination.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry
- Inorganic Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Bert P. Operschall
- Department of Chemistry
- Inorganic Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | | | - Helmut Sigel
- Department of Chemistry
- Inorganic Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| |
Collapse
|
40
|
Bühning M, Friemel M, Leimkühler S. Functional Complementation Studies Reveal Different Interaction Partners of Escherichia coli IscS and Human NFS1. Biochemistry 2017; 56:4592-4605. [PMID: 28766335 DOI: 10.1021/acs.biochem.7b00627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trafficking and delivery of sulfur to cofactors and nucleosides is a highly regulated and conserved process among all organisms. All sulfur transfer pathways generally have an l-cysteine desulfurase as an initial sulfur-mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of sulfur-containing biomolecules like iron-sulfur (Fe-S) clusters, thiamine, biotin, lipoic acid, the molybdenum cofactor (Moco), and thiolated nucleosides in tRNA. The human l-cysteine desulfurase NFS1 and the Escherichia coli homologue IscS share a level of amino acid sequence identity of ∼60%. While E. coli IscS has a versatile role in the cell and was shown to have numerous interaction partners, NFS1 is mainly localized in mitochondria with a crucial role in the biosynthesis of Fe-S clusters. Additionally, NFS1 is also located in smaller amounts in the cytosol with a role in Moco biosynthesis and mcm5s2U34 thio modifications of nucleosides in tRNA. NFS1 and IscS were conclusively shown to have different interaction partners in their respective organisms. Here, we used functional complementation studies of an E. coli iscS deletion strain with human NFS1 to dissect their conserved roles in the transfer of sulfur to a specific target protein. Our results show that human NFS1 and E. coli IscS share conserved binding sites for proteins involved in Fe-S cluster assembly like IscU, but not with proteins for tRNA thio modifications or Moco biosynthesis. In addition, we show that human NFS1 was almost fully able to complement the role of IscS in Moco biosynthesis when its specific interaction partner protein MOCS3 from humans was also present.
Collapse
Affiliation(s)
- Martin Bühning
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam , D-14476 Potsdam, Germany
| | - Martin Friemel
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam , D-14476 Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam , D-14476 Potsdam, Germany
| |
Collapse
|
41
|
Nonredox thiolation in tRNA occurring via sulfur activation by a [4Fe-4S] cluster. Proc Natl Acad Sci U S A 2017; 114:7355-7360. [PMID: 28655838 DOI: 10.1073/pnas.1700902114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sulfur is present in several nucleosides within tRNAs. In particular, thiolation of the universally conserved methyl-uridine at position 54 stabilizes tRNAs from thermophilic bacteria and hyperthermophilic archaea and is required for growth at high temperature. The simple nonredox substitution of the C2-uridine carbonyl oxygen by sulfur is catalyzed by tRNA thiouridine synthetases called TtuA. Spectroscopic, enzymatic, and structural studies indicate that TtuA carries a catalytically essential [4Fe-4S] cluster and requires ATP for activity. A series of crystal structures shows that (i) the cluster is ligated by only three cysteines that are fully conserved, allowing the fourth unique iron to bind a small ligand, such as exogenous sulfide, and (ii) the ATP binding site, localized thanks to a protein-bound AMP molecule, a reaction product, is adjacent to the cluster. A mechanism for tRNA sulfuration is suggested, in which the unique iron of the catalytic cluster serves to bind exogenous sulfide, thus acting as a sulfur carrier.
Collapse
|
42
|
Biochemical and structural characterization of oxygen-sensitive 2-thiouridine synthesis catalyzed by an iron-sulfur protein TtuA. Proc Natl Acad Sci U S A 2017; 114:4954-4959. [PMID: 28439027 DOI: 10.1073/pnas.1615585114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-thiouridine (s2U) at position 54 of transfer RNA (tRNA) is a posttranscriptional modification that enables thermophilic bacteria to survive in high-temperature environments. s2U is produced by the combined action of two proteins, 2-thiouridine synthetase TtuA and 2-thiouridine synthesis sulfur carrier protein TtuB, which act as a sulfur (S) transfer enzyme and a ubiquitin-like S donor, respectively. Despite the accumulation of biochemical data in vivo, the enzymatic activity by TtuA/TtuB has rarely been observed in vitro, which has hindered examination of the molecular mechanism of S transfer. Here we demonstrate by spectroscopic, biochemical, and crystal structure analyses that TtuA requires oxygen-labile [4Fe-4S]-type iron (Fe)-S clusters for its enzymatic activity, which explains the previously observed inactivation of this enzyme in vitro. The [4Fe-4S] cluster was coordinated by three highly conserved cysteine residues, and one of the Fe atoms was exposed to the active site. Furthermore, the crystal structure of the TtuA-TtuB complex was determined at a resolution of 2.5 Å, which clearly shows the S transfer of TtuB to tRNA using its C-terminal thiocarboxylate group. The active site of TtuA is connected to the outside by two channels, one occupied by TtuB and the other used for tRNA binding. Based on these observations, we propose a molecular mechanism of S transfer by TtuA using the ubiquitin-like S donor and the [4Fe-4S] cluster.
Collapse
|
43
|
Bühning M, Valleriani A, Leimkühler S. The Role of SufS Is Restricted to Fe-S Cluster Biosynthesis in Escherichia coli. Biochemistry 2017; 56:1987-2000. [PMID: 28323419 DOI: 10.1021/acs.biochem.7b00040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, two different systems that are important for the coordinate formation of Fe-S clusters have been identified, namely, the ISC and SUF systems. The ISC system is the housekeeping Fe-S machinery, which provides Fe-S clusters for numerous cellular proteins. The IscS protein of this system was additionally revealed to be the primary sulfur donor for several sulfur-containing molecules with important biological functions, among which are the molybdenum cofactor (Moco) and thiolated nucleosides in tRNA. Here, we show that deletion of central components of the ISC system in addition to IscS leads to an overall decrease in Fe-S cluster enzyme and molybdoenzyme activity in addition to a decrease in the number of Fe-S-dependent thiomodifications of tRNA, based on the fact that some proteins involved in Moco biosynthesis and tRNA thiolation are Fe-S-dependent. Complementation of the ISC deficient strains with the suf operon restored the activity of Fe-S-containing proteins, including the MoaA protein, which is involved in the conversion of 5'GTP to cyclic pyranopterin monophosphate in the fist step of Moco biosynthesis. While both systems share a high degree of similarity, we show that the function of their respective l-cysteine desulfurase IscS or SufS is specific for each cellular pathway. It is revealed that SufS cannot play the role of IscS in sulfur transfer for the formation of 2-thiouridine, 4-thiouridine, or the dithiolene group of molybdopterin, being unable to interact with TusA or ThiI. The results demonstrate that the role of the SUF system is exclusively restricted to Fe-S cluster assembly in the cell.
Collapse
Affiliation(s)
- Martin Bühning
- Institute of Biochemistry and Biology, University of Potsdam , D-14476 Potsdam, Germany
| | - Angelo Valleriani
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces , Potsdam 14476, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, University of Potsdam , D-14476 Potsdam, Germany
| |
Collapse
|
44
|
Zheng C, Black KA, Dos Santos PC. Diverse Mechanisms of Sulfur Decoration in Bacterial tRNA and Their Cellular Functions. Biomolecules 2017; 7:biom7010033. [PMID: 28327539 PMCID: PMC5372745 DOI: 10.3390/biom7010033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023] Open
Abstract
Sulfur-containing transfer ribonucleic acids (tRNAs) are ubiquitous biomolecules found in all organisms that possess a variety of functions. For decades, their roles in processes such as translation, structural stability, and cellular protection have been elucidated and appreciated. These thionucleosides are found in all types of bacteria; however, their biosynthetic pathways are distinct among different groups of bacteria. Considering that many of the thio-tRNA biosynthetic enzymes are absent in Gram-positive bacteria, recent studies have addressed how sulfur trafficking is regulated in these prokaryotic species. Interestingly, a novel proposal has been given for interplay among thionucleosides and the biosynthesis of other thiocofactors, through participation of shared-enzyme intermediates, the functions of which are impacted by the availability of substrate as well as metabolic demand of thiocofactors. This review describes the occurrence of thio-modifications in bacterial tRNA and current methods for detection of these modifications that have enabled studies on the biosynthesis and functions of S-containing tRNA across bacteria. It provides insight into potential modes of regulation and potential evolutionary events responsible for divergence in sulfur metabolism among prokaryotes.
Collapse
Affiliation(s)
- Chenkang Zheng
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27101, USA.
| | | | | |
Collapse
|
45
|
Biosynthesis of Sulfur-Containing tRNA Modifications: A Comparison of Bacterial, Archaeal, and Eukaryotic Pathways. Biomolecules 2017; 7:biom7010027. [PMID: 28287455 PMCID: PMC5372739 DOI: 10.3390/biom7010027] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/12/2023] Open
Abstract
Post-translational tRNA modifications have very broad diversity and are present in all domains of life. They are important for proper tRNA functions. In this review, we emphasize the recent advances on the biosynthesis of sulfur-containing tRNA nucleosides including the 2-thiouridine (s2U) derivatives, 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Their biosynthetic pathways have two major types depending on the requirement of iron–sulfur (Fe–S) clusters. In all cases, the first step in bacteria and eukaryotes is to activate the sulfur atom of free l-cysteine by cysteine desulfurases, generating a persulfide (R-S-SH) group. In some archaea, a cysteine desulfurase is missing. The following steps of the bacterial s2U and s4U formation are Fe–S cluster independent, and the activated sulfur is transferred by persulfide-carrier proteins. By contrast, the biosynthesis of bacterial s2C and ms2A require Fe–S cluster dependent enzymes. A recent study shows that the archaeal s4U synthetase (ThiI) and the eukaryotic cytosolic 2-thiouridine synthetase (Ncs6) are Fe–S enzymes; this expands the role of Fe–S enzymes in tRNA thiolation to the Archaea and Eukarya domains. The detailed reaction mechanisms of Fe–S cluster depend s2U and s4U formation await further investigations.
Collapse
|
46
|
Leimkühler S, Bühning M, Beilschmidt L. Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes. Biomolecules 2017; 7:biom7010005. [PMID: 28098827 PMCID: PMC5372717 DOI: 10.3390/biom7010005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 11/18/2022] Open
Abstract
Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm5s2U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron–sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.
| | - Martin Bühning
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.
| | - Lena Beilschmidt
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
47
|
Sigel A, Operschall BP, Matera-Witkiewicz A, Świątek-Kozłowska J, Sigel H. Acid–base and metal ion-binding properties of thiopyrimidine derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proc Natl Acad Sci U S A 2016; 113:12703-12708. [PMID: 27791189 DOI: 10.1073/pnas.1615732113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sulfur-containing nucleosides in transfer RNA (tRNAs) are present in all three domains of life; they have critical functions for accurate and efficient translation, such as tRNA structure stabilization and proper codon recognition. The tRNA modification enzymes ThiI (in bacteria and archaea) and Ncs6 (in archaea and eukaryotic cytosols) catalyze the formation of 4-thiouridine (s4U) and 2-thiouridine (s2U), respectively. The ThiI homologs were proposed to transfer sulfur via cysteine persulfide enzyme adducts, whereas the reaction mechanism of Ncs6 remains unknown. Here we show that ThiI from the archaeon Methanococcus maripaludis contains a [3Fe-4S] cluster that is essential for its tRNA thiolation activity. Furthermore, the archaeal and eukaryotic Ncs6 homologs as well as phosphoseryl-tRNA (Sep-tRNA):Cys-tRNA synthase (SepCysS), which catalyzes the Sep-tRNA to Cys-tRNA conversion in methanogens, also possess a [3Fe-4S] cluster similar to the methanogenic archaeal ThiI. These results suggest that the diverse tRNA thiolation processes in archaea and eukaryotic cytosols share a common mechanism dependent on a [3Fe-4S] cluster for sulfur transfer.
Collapse
|
49
|
Iñigo S, Durand AN, Ritter A, Le Gall S, Termathe M, Klassen R, Tohge T, De Coninck B, Van Leene J, De Clercq R, Cammue BPA, Fernie AR, Gevaert K, De Jaeger G, Leidel SA, Schaffrath R, Van Lijsebettens M, Pauwels L, Goossens A. Glutaredoxin GRXS17 Associates with the Cytosolic Iron-Sulfur Cluster Assembly Pathway. PLANT PHYSIOLOGY 2016; 172:858-873. [PMID: 27503603 PMCID: PMC5047072 DOI: 10.1104/pp.16.00261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/03/2016] [Indexed: 05/12/2023]
Abstract
Cytosolic monothiol glutaredoxins (GRXs) are required in iron-sulfur (Fe-S) cluster delivery and iron sensing in yeast and mammals. In plants, it is unclear whether they have similar functions. Arabidopsis (Arabidopsis thaliana) has a sole class II cytosolic monothiol GRX encoded by GRXS17 Here, we used tandem affinity purification to establish that Arabidopsis GRXS17 associates with most known cytosolic Fe-S assembly (CIA) components. Similar to mutant plants with defective CIA components, grxs17 loss-of-function mutants showed some degree of hypersensitivity to DNA damage and elevated expression of DNA damage marker genes. We also found that several putative Fe-S client proteins directly bind to GRXS17, such as XANTHINE DEHYDROGENASE1 (XDH1), involved in the purine salvage pathway, and CYTOSOLIC THIOURIDYLASE SUBUNIT1 and CYTOSOLIC THIOURIDYLASE SUBUNIT2, both essential for the 2-thiolation step of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNAs. Correspondingly, profiling of the grxs17-1 mutant pointed to a perturbed flux through the purine degradation pathway and revealed that it phenocopied mutants in the elongator subunit ELO3, essential for the mcm5 tRNA modification step, although we did not find XDH1 activity or tRNA thiolation to be markedly reduced in the grxs17-1 mutant. Taken together, our data suggest that plant cytosolic monothiol GRXs associate with the CIA complex, as in other eukaryotes, and contribute to, but are not essential for, the correct functioning of client Fe-S proteins in unchallenged conditions.
Collapse
Affiliation(s)
- Sabrina Iñigo
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Andrés Ritter
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Sabine Le Gall
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Martin Termathe
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Roland Klassen
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Takayuki Tohge
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Barbara De Coninck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Bruno P A Cammue
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Alisdair R Fernie
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Kris Gevaert
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Sebastian A Leidel
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Raffael Schaffrath
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Mieke Van Lijsebettens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| |
Collapse
|
50
|
Tran TK, Han QQ, Shi Y, Guo L. A comparative proteomic analysis of Salmonella typhimurium under the regulation of the RstA/RstB and PhoP/PhoQ systems. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1686-1695. [PMID: 27618760 DOI: 10.1016/j.bbapap.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 11/17/2022]
Abstract
In pathogenic bacteria, the two-component regulatory systems (TCSs) play important roles in signal transduction and regulation of their pathogenesis. Here, we used quantitative proteomic methods to comparatively analyze functional networks under the control of the RstA/RstB system versus the PhoP/PhoQ system in Salmonella typhimurium. By comparing the proteomic profile from a wild-type strain to that from a ΔrstB strain or a ΔphoPQ strain under a condition known to activate these TCSs, we found that the levels of 159 proteins representing 6.92% of the 2297 proteins identified from the ΔrstB strain and 341 proteins representing 14.9% of the 2288 proteins identified from the ΔphoPQ strain were significantly changed, respectively. Bioinformatics analysis revealed that the RstA/RstB system and the PhoP/PhoQ system coordinated with regard to the regulation of specific proteins as well as metabolic processes. Our observations suggested that the regulatory networks controlled by the PhoP/PhoQ system were much more extensive than those by the RstA/RstB system, whereas the RstA/RstB system specifically regulated expression of the constituents participating in pyrimidine metabolism and iron acquisition. Additional results also suggested that the RstA/RstB system was required for regulation of Salmonella motility and invasion.
Collapse
Affiliation(s)
- Trung-Kien Tran
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China; Hung Vuong University, Phu Tho, Vietnam
| | - Qiang-Qiang Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yixin Shi
- The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; The Center for Infectious Diseases and Vaccinology at the Biodesign Institute, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|