1
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
3
|
Etheridge W, Brossard F, Zheng S, Moench S, Pavagada S, Owens RM, Fruk L. Activity-enhanced DNAzyme for design of label-free copper(II) biosensor. NANOSCALE 2023. [PMID: 37325900 DOI: 10.1039/d3nr02169f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal ion-driven, DNA-cleaving DNAzymes are characterised by high selectivity and specificity. However, their use for metal ion sensing remains largely unexplored due to long reaction times and poor reaction yields relative to RNA-cleaving DNAzymes and other sensing strategies. Herein we present a study demonstrating a significant rate enhancement of a copper-selective DNA cleaving DNAzyme by both polydopamine (PDA) and gold (Au) nanoparticles (NPs). PDA NPs enhance the reaction through the production of hydrogen peroxide, while for AuNPs the enhancement is aided by the presence of citrate surface moeities, both of which drive the oxidative cleavage of the substrate. A 50-fold enhancement for PDA NPs makes the combination of PDA and DNAzyme suitable for a practical application as a sensitive biosensor for Cu(II) ions. Using DNAzyme deposition onto a gold electrode followed by Polydopamine Assisted DNA Immobilisation (PADI), we achieve a cost-effective, label-free and fast (within 15 min) electrochemical biosensor with a limit of detection of 180 nmol (11 ppm), thus opening a route for the rational design of a new generation of hybrid DNAzyme-based biosensors.
Collapse
Affiliation(s)
- William Etheridge
- BioNano Engineering Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive CB3 0AS, Cambridge, UK.
- Hitachi Cambridge Laboratory, Hitachi Europe Ltd, J. J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Frederic Brossard
- Hitachi Cambridge Laboratory, Hitachi Europe Ltd, J. J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Sitan Zheng
- BioNano Engineering Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive CB3 0AS, Cambridge, UK.
| | - Svenja Moench
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Suraj Pavagada
- BioNano Engineering Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive CB3 0AS, Cambridge, UK.
| | - Róisín M Owens
- BioNano Engineering Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive CB3 0AS, Cambridge, UK.
| | - Ljiljana Fruk
- BioNano Engineering Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive CB3 0AS, Cambridge, UK.
| |
Collapse
|
4
|
Cramer ER, Starcovic SA, Avey RM, Kaya AI, Robart AR. Structure of a 10-23 deoxyribozyme exhibiting a homodimer conformation. Commun Chem 2023; 6:119. [PMID: 37301907 DOI: 10.1038/s42004-023-00924-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Deoxyribozymes (DNAzymes) are in vitro evolved DNA sequences capable of catalyzing chemical reactions. The RNA-cleaving 10-23 DNAzyme was the first DNAzyme to be evolved and possesses clinical and biotechnical applications as a biosensor and a knockdown agent. DNAzymes do not require the recruitment of other components to cleave RNA and can turnover, thus they have a distinct advantage over other knockdown methods (siRNA, CRISPR, morpholinos). Despite this, a lack of structural and mechanistic information has hindered the optimization and application of the 10-23 DNAzyme. Here, we report a 2.7 Å crystal structure of the RNA-cleaving 10-23 DNAzyme in a homodimer conformation. Although proper coordination of the DNAzyme to substrate is observed along with intriguing patterns of bound magnesium ions, the dimer conformation likely does not capture the true catalytic form of the 10-23 DNAzyme.
Collapse
Affiliation(s)
- Evan R Cramer
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 20506, USA
| | - Sarah A Starcovic
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 20506, USA
| | - Rebekah M Avey
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 20506, USA
| | - Ali I Kaya
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Aaron R Robart
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 20506, USA.
| |
Collapse
|
5
|
Cramer E, Starcovic S, Avey R, Kaya A, Robart A. Structure of a 10-23 Deoxyribozyme Exhibiting a Homodimer Conformation. RESEARCH SQUARE 2023:rs.3.rs-2252941. [PMID: 37398199 PMCID: PMC10312968 DOI: 10.21203/rs.3.rs-2252941/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Deoxyribozymes (DNAzymes) are in vitro evolved DNA sequences capable of catalyzing chemical reactions. The RNA cleaving 10-23 DNAzyme was the first DNAzyme to be evolved and possesses clinical and biotechnical applications as a biosensor and a knockdown agent. DNAzymes do not require the recruitment of other components to cleave RNA and can turnover, thus they have a distinct advantage over other knockdown methods (siRNA, CRISPR, morpholinos). Despite this, a lack of structural and mechanistic information has hindered the optimization and application of the 10-23 DNAzyme. Here, we report a 2.7 Å crystal structure of the RNA cleaving 10-23 DNAzyme in a homodimer conformation. Although proper coordination of the DNAzyme to substrate is observed along with intriguing patterns of bound magnesium ions, the dimer conformation likely does not capture the true catalytic form of the 10-23 DNAzyme.
Collapse
|
6
|
Yang M, Bakker D, Raghu D, Li ITS. A single strand: A simplified approach to DNA origami. Front Chem 2023; 11:1126177. [PMID: 36891219 PMCID: PMC9986268 DOI: 10.3389/fchem.2023.1126177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Just as a single polypeptide strand can self-fold into a complex 3D structure, a single strand of DNA can self-fold into DNA origami. Most DNA origami structures (i.e., the scaffold-staple and DNA tiling systems) utilize hundreds of short single-stranded DNA. As such, these structures come with challenges inherent to intermolecular construction. Many assembly challenges involving intermolecular interactions can be resolved if the origami structure is constructed from one DNA strand, where folding is not concentration dependent, the folded structure is more resistant to nuclease degradation, and the synthesis can be achieved at an industrial scale at a thousandth of the cost. This review discusses the design principles and considerations employed in single-stranded DNA origami and its potential benefits and drawbacks.
Collapse
Affiliation(s)
- Micah Yang
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - David Bakker
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Dyuti Raghu
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Isaac T S Li
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
7
|
Zhang Q, Liang Y, Xing H. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Mohammadi-Arani R, Javadi-Zarnaghi F, Boccaletto P, Bujnicki JM, Ponce-Salvatierra A. DNAzymeBuilder, a web application for in situ generation of RNA/DNA-cleaving deoxyribozymes. Nucleic Acids Res 2022; 50:W261-W265. [PMID: 35446426 PMCID: PMC9252740 DOI: 10.1093/nar/gkac269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
Nucleic acid cleaving DNAzymes are versatile and robust catalysts that outcompete ribozymes and protein enzymes in terms of chemical stability, affordability and ease to synthesize. In spite of their attractiveness, the choice of which DNAzyme should be used to cleave a given substrate is far from obvious, and requires expert knowledge as well as in-depth literature scrutiny. DNAzymeBuilder enables fast and automatic assembly of DNAzymes for the first time, superseding the manual design of DNAzymes. DNAzymeBuilder relies on an internal database with information on RNA and DNA cleaving DNAzymes, including the reaction conditions under which they best operate, their kinetic parameters, the type of cleavage reaction that is catalyzed, the specific sequence that is recognized by the DNAzyme, the cleavage site within this sequence, and special design features that might be necessary for optimal activity of the DNAzyme. Based on this information and the input sequence provided by the user, DNAzymeBuilder provides a list of DNAzymes to carry out the cleavage reaction and detailed information for each of them, including the expected yield, reaction products and optimal reaction conditions. DNAzymeBuilder is a resource to help researchers introduce DNAzymes in their day-to-day research, and is publicly available at https://iimcb.genesilico.pl/DNAzymeBuilder.
Collapse
Affiliation(s)
- Razieh Mohammadi-Arani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Azadi Square, Hezar Jerib Avenue, 8174673441, Isfahan, Iran
| | - Fatemeh Javadi-Zarnaghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Azadi Square, Hezar Jerib Avenue, 8174673441, Isfahan, Iran
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| |
Collapse
|
9
|
Yang T, Peng S, Zeng R, Xu Q, Zheng X, Wang D, Zhou X, Shao Y. Visible light-driven i-motif-based DNAzymes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120845. [PMID: 35016065 DOI: 10.1016/j.saa.2021.120845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/04/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
DNA foldings provide variant possibilities to develop DNAzymes with remarkable catalytic performance. In spite of fruitful reports on G-quadruplex DNAzymes, four-stranded cytosine-rich i-motifs have not been explored as the potential skeletons of DNAzymes. In this work, we developed a visible light-driven DNAzyme based on human telomeric i-motifs using a natural photosensitizer of hypericin (Hyp) as the cofactor and dissolved oxygen as the oxidant source. The i-motif folding in acidic solution caused the distal thymine overhangs at the 3' and 5' ends to approach each other to provide a favorable binding site for Hyp via an interaction of fully complementary hydrogen bonding. However, the i-motifs without the distal overhangs or with the inappropriate overhang length and the base identity exhibited no binding with Hyp. The binding event converted Hyp from the fully dark state to the emissive state under visible light illumination. Subsequently, the excited Hyp had an opportunity to transfer energy to dissolved oxygen. Resultantly, singlet oxygen (1O2) was generated to initiate the substrate oxidation. The catalytic performance of the DNAzyme can be improved using a long-lived mediator. Our developed i-motif-based DNAzyme can be driven by almost the whole range of visible lights, suggesting broad applications in the photocatalytic fields, for example, as an alternative strategy in developing biodevices.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Ruidi Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xiong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| |
Collapse
|
10
|
Lyu M, Kong L, Yang Z, Wu Y, McGhee CE, Lu Y. PNA-Assisted DNAzymes to Cleave Double-Stranded DNA for Genetic Engineering with High Sequence Fidelity. J Am Chem Soc 2021; 143:9724-9728. [PMID: 34156847 DOI: 10.1021/jacs.1c03129] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNAzymes have been widely used in many sensing and imaging applications but have rarely been used for genetic engineering since their discovery in 1994, because their substrate scope is mostly limited to single-stranded DNA or RNA, whereas genetic information is stored mostly in double-stranded DNA (dsDNA). To overcome this major limitation, we herein report peptide nucleic acid (PNA)-assisted double-stranded DNA nicking by DNAzymes (PANDA) as the first example to expand DNAzyme activity toward dsDNA. We show that PANDA is programmable in efficiently nicking or causing double strand breaks on target dsDNA, which mimics protein nucleases and can act as restriction enzymes in molecular cloning. In addition to being much smaller than protein enzymes, PANDA has a higher sequence fidelity compared with CRISPR/Cas under the condition we tested, demonstrating its potential as a novel alternative tool for genetic engineering and other biochemical applications.
Collapse
|
11
|
Zn 2+-dependent DNAzymes that cleave all combinations of ribonucleotides. Commun Biol 2021; 4:221. [PMID: 33594202 PMCID: PMC7886857 DOI: 10.1038/s42003-021-01738-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 11/14/2020] [Indexed: 11/08/2022] Open
Abstract
Although several DNAzymes are known, their utility is limited by a narrow range of substrate specificity. Here, we report the isolation of two zinc-dependent DNAzymes, ZincDz1 and ZincDz2, which exhibit compact catalytic core sequences with highly versatile hydrolysis activity. They were selected through in vitro selection followed by deep sequencing analysis. Despite their sequence similarity, each DNAzyme showed different Zn2+-concentration and pH-dependent reaction profiles, and cleaved the target RNA sequences at different sites. Using various substrate RNA sequences, we found that the cleavage sequence specificity of ZincDz2 and its highly active mutant ZincDz2-v2 to be 5'-rN↓rNrPu-3'. Furthermore, we demonstrated that the designed ZincDz2 could cut microRNA miR-155 at three different sites. These DNAzymes could be useful in a broad range of applications in the fields of medicine and biotechnology.
Collapse
|
12
|
Rosenbach H, Borggräfe J, Victor J, Wuebben C, Schiemann O, Hoyer W, Steger G, Etzkorn M, Span I. Influence of monovalent metal ions on metal binding and catalytic activity of the 10-23 DNAzyme. Biol Chem 2020; 402:99-111. [PMID: 33544488 DOI: 10.1515/hsz-2020-0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/13/2020] [Indexed: 11/15/2022]
Abstract
Deoxyribozymes (DNAzymes) are single-stranded DNA molecules that catalyze a broad range of chemical reactions. The 10-23 DNAzyme catalyzes the cleavage of RNA strands and can be designed to cleave essentially any target RNA, which makes it particularly interesting for therapeutic and biosensing applications. The activity of this DNAzyme in vitro is considerably higher than in cells, which was suggested to be a result of the low intracellular concentration of bioavailable divalent cations. While the interaction of the 10-23 DNAzyme with divalent metal ions was studied extensively, the influence of monovalent metal ions on its activity remains poorly understood. Here, we characterize the influence of monovalent and divalent cations on the 10-23 DNAzyme utilizing functional and biophysical techniques. Our results show that Na+ and K+ affect the binding of divalent metal ions to the DNAzyme:RNA complex and considerably modulate the reaction rates of RNA cleavage. We observe an opposite effect of high levels of Na+ and K+ concentrations on Mg2+- and Mn2+-induced reactions, revealing a different interplay of these metals in catalysis. Based on these findings, we propose a model for the interaction of metal ions with the DNAzyme:RNA complex.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany
| | - Jan Borggräfe
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany.,Institute for Biological Information Processing: Structural Biochemistry (IBI-7), Research Center Jülich, Wilhelm-Johnen-Str., D-52428Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany
| | - Christine Wuebben
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, D-53115Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, D-53115Bonn, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany.,Institute for Biological Information Processing: Structural Biochemistry (IBI-7), Research Center Jülich, Wilhelm-Johnen-Str., D-52428Jülich, Germany
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany.,Institute for Biological Information Processing: Structural Biochemistry (IBI-7), Research Center Jülich, Wilhelm-Johnen-Str., D-52428Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany
| |
Collapse
|
13
|
Characterization of a DNA-hydrolyzing DNAzyme for generation of PCR strands of unequal length. Biochimie 2020; 179:181-189. [PMID: 33022314 DOI: 10.1016/j.biochi.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022]
Abstract
I-R3 DNAzyme is a small, highly active catalytic DNA for DNA hydrolysis. In here, we designed two cis-structure DNAzymes (I-R3N and I-R3S) based on the different locates of the joint linker between I-R3 and its substrate. Data demonstrated that both DNAzymes were highly dependent on Zn2+, and worked at a narrow range around pH 7.0. They exhibited strong anti-interference with Mg2+ and Ca2+, but inhibited by Na+ and K+. Moreover, single and multiple-site mutations were generated within the catalytic core to carry out a comprehensive mutational study of I-R3 motif, in which most nucleotides were highly conserved and the nucleotides A5, T11 and T8 were identified as the mutational hotspots. Furthermore, an efficient variant A5G was obtained and its reaction condition was optimized. Finally, we constructed A5G to the 3' end of a single-stranded DNA (ssDNA) and applied it for asymmetrical PCR amplification to produce a single and double-stranded DNA mixture, in which A5G within ssDNA can self-cleave to generate a shorter desired ssDNA by denaturing gel separation. This would provide a new non-chemical modification approach for preparation of the expected ssDNA for in vitro selection of DNAzymes.
Collapse
|
14
|
Novel fluorescence palladium-alkoxime complexes: Synthesis, characterization, DNA/BSA spectroscopic and docking studies, evaluation of cytotoxicity and DNA cleavage mechanism. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 2020; 211:120709. [PMID: 32070594 DOI: 10.1016/j.talanta.2019.120709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages.
Collapse
|
16
|
Gao L, Tong X, Ye T, Gao H, Zhang Q, Yan C, Yu Y, Fei Y, Zhou X, Shao Y. G‐Quadruplex‐Based Photooxidase Driven by Visible Light. ChemCatChem 2019. [DOI: 10.1002/cctc.201901481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Xingyu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| |
Collapse
|
17
|
Targeting a viral DNA sequence with a deoxyribozyme in a preparative scale. Biochimie 2019; 165:161-169. [PMID: 31377192 DOI: 10.1016/j.biochi.2019.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/28/2019] [Indexed: 01/13/2023]
Abstract
Deoxyribozymes are synthetic and single stranded DNAs that are capable of catalysis of a variety of reactions, including cleavage of DNA substrates. Deoxyribozymes are usually characterized by analytical single-turnover kinetic assays, however, for many applications e.g. characterization of the reaction products, semi-preparative and preparative reactions are required. At such scales, there is a lack of comprehensive analysis and conditions that supports high amount of products in an appropriate time-scale are vaguely guessed by researchers. In this report, catalytic activity of an oxidizing DNA-cleaving deoxyribozyme, F-8(X), was comprehensively inspected in semi-preparative (10 μM substrate) scale. A 60 nucleotides long synthetic DNA sequence was selected as the target DNA for this study. The DNA sequence was originated from a single stranded DNA virus. Investigations revealed high yield in the presence of optimal concentration of oxidizing agents. The optimal conditions have been applied for scale-up of the reaction to preparative (40 μM substrate) and multi-turnover reactions to achieve highest amount of product in a cost-, time- and labor-effective manner. Such a comprehensive analysis of a deoxyribozyme's activity in semi-preparative scale provides a platform for expanded applications of DNA catalysts as a tool in chemical biology.
Collapse
|
18
|
An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases. Nat Catal 2019. [DOI: 10.1038/s41929-019-0290-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Xu J, Guo J, Maina SW, Yang Y, Hu Y, Li X, Qiu J, Xin Z. An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification. Anal Biochem 2018; 549:136-142. [PMID: 29550346 DOI: 10.1016/j.ab.2018.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
An ultra-sensitive aptamer-based biosensor for the detection of staphylococcus aureus was established by adopting the nicking enzyme amplification reaction (NEAR) and the rolling circle amplification (RCA) technologies. Aptamer-probe (AP), containing an aptamer and a probe sequence, was developed to act as the recognition unit of the biosensor, which was specifically bound to S. aureus. The probe was released from AP and initiated into the subsequent DNA amplification reactions where S. aureus was present, converting the detection of S. aureus to the investigation of probe oligonucleotide. The RCA amplification products contained a G-quadruplex motif and formed a three dimensional structure in presence of hemin. The G4/hemin complex showed horseradish peroxidase (HRP)-mimic activity and catalyzed the chemiluminescence reaction of luminol mediated by H2O2. The results showed that the established biosensor could detect S. aureus specifically with a good linear correlation at 5-104 CFU/mL. The signal values based on NEAR-RCA two-step cycle were boosted acutely, much higher than that relied on one-cycle magnification. The limit of detection (LoD) was determined to be as low as 5 CFU/mL. The established aptasensor exhibited a good discrimination of living against dead S. aureus, and can be applied to detect S. aureus in the food industry.
Collapse
Affiliation(s)
- Jingguo Xu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jia Guo
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Sarah Wanjiku Maina
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yumeng Yang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yimin Hu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xuanxuan Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiarong Qiu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
20
|
Thai HBD, Levi-Acobas F, Yum SY, Jang G, Hollenstein M, Ahn DR. Tetrahedral DNAzymes for enhanced intracellular gene-silencing activity. Chem Commun (Camb) 2018; 54:9410-9413. [DOI: 10.1039/c8cc05721d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We prepared tetrahedral DNAzymes (TDzs) to overcome potential limitations such as insufficient serum stability and poor cellular uptake of single-stranded DNAzymes (ssDzs).
Collapse
Affiliation(s)
- Hien Bao Dieu Thai
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Korea
| | - Fabienne Levi-Acobas
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- Department of Structural Biology and Chemistry
- Institut Pasteur
- CNRS UMR3523
- 75724 Paris Cedex 15
| | - Soo-Young Yum
- Department of Veterinary Clinical Science
- College of Veterinary Medicine and BK21 PLUS Program for Creative Veterinary Science Research
- Seoul National University
- Gwanak-gu
- Korea
| | - Goo Jang
- Department of Veterinary Clinical Science
- College of Veterinary Medicine and BK21 PLUS Program for Creative Veterinary Science Research
- Seoul National University
- Gwanak-gu
- Korea
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- Department of Structural Biology and Chemistry
- Institut Pasteur
- CNRS UMR3523
- 75724 Paris Cedex 15
| | - Dae-Ro Ahn
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Korea
| |
Collapse
|
21
|
Yuan Y, Zhao Y, Chen L, Wu J, Chen G, Li S, Zou J, Chen R, Wang J, Jiang F, Tang Z. Selective tumor cell death induced by irradiated riboflavin through recognizing DNA G-T mismatch. Nucleic Acids Res 2017; 45:8676-8683. [PMID: 28911109 PMCID: PMC5587794 DOI: 10.1093/nar/gkx602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
Riboflavin (vitamin B2) has been thought to be a promising antitumoral agent in photodynamic therapy, though the further application of the method was limited by the unclear molecular mechanism. Our work reveals that riboflavin was able to recognize G–T mismatch specifically and induce single-strand breaks in duplex DNA targets efficiently under irradiation. In the presence of riboflavin, the photo-irradiation could induce the death of tumor cells that are defective in mismatch repair system selectively, highlighting the G–T mismatch as potential drug target for tumor cells. Moreover, riboflavin is a promising leading compound for further drug design due to its inherent specific recognition of the G–T mismatch.
Collapse
Affiliation(s)
- Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.,College of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yongyun Zhao
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lianqi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jiasi Wu
- College of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Sheng Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jiawei Zou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Rong Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jian Wang
- College of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| |
Collapse
|
22
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
23
|
New cofactors and inhibitors for a DNA-cleaving DNAzyme: superoxide anion and hydrogen peroxide mediated an oxidative cleavage process. Sci Rep 2017; 7:378. [PMID: 28336968 PMCID: PMC5428237 DOI: 10.1038/s41598-017-00329-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Herein, we investigated the effects of new cofactors and inhibitors on an oxidative cleavage of DNA catalysis, known as a pistol-like DNAzyme (PLDz), to discuss its catalytic mechanism. PLDz performed its catalytic activity in the presence of ascorbic acid (AA), in which Cu2+ promoted, whereas Fe2+ significantly inhibited the catalytic function. Since Fe2+/AA-generated hydroxyl radicals are efficient on DNA damage, implying that oxidative cleavage of PLDz had no relation with hydroxyl radical. Subsequently, we used Fe2+/H2O2 and Cu2+/H2O2 to identify the role of hydroxyl radicals in PLDz catalysis. Data showed that PLDz lost its activity with Fe2+/H2O2, but exhibited significant cleavage with Cu2+/H2O2. Because Fe2+/H2O2 and Cu2+/H2O2 are popular reagents to generate hydroxyl radicals and the latter also produces superoxide anions, we excluded the possibility that hydroxyl radical participated in oxidative cleavage and confirmed that superoxide anion was involved in PLDz catalysis. Moreover, pyrogallol, riboflavin and hypoxanthine/xanthine oxidase with superoxide anion and hydrogen peroxide generation also induced self-cleavage of PLDz, where catalase inhibited but superoxide dismutase promoted the catalysis, suggesting that hydrogen peroxide played an essential role in PLDz catalysis. Therefore, we proposed a catalytic mechanism of PLDz in which superoxide anion and hydrogen peroxide mediated an oxidative cleavage process.
Collapse
|
24
|
Abstract
DNAzymes are catalytically active DNA molecules that are obtained via in vitro selection. RNA-cleaving DNAzymes have attracted significant attention for both therapeutic and diagnostic applications due to their excellent programmability, stability, and activity. They can be designed to cleave a specific mRNA to down-regulate gene expression. At the same time, DNAzymes can sense a broad range of analytes. By combining these two functions, theranostic DNAzymes are obtained. This review summarizes the progress of DNAzyme for theranostic applications. First, in vitro selection of DNAzymes is briefly introduced, and some representative DNAzymes related to biological applications are summarized. Then, the applications of DNAzyme for RNA cleaving are reviewed. DNAzymes have been used to cleave RNA for treating various diseases, such as viral infection, cancer, inflammation and atherosclerosis. Several formulations have entered clinical trials. Next, the use of DNAzymes for detecting metal ions, small molecules and nucleic acids related to disease diagnosis is summarized. Finally, the theranostic applications of DNAzyme are reviewed. The challenges to be addressed include poor DNAzyme activity under biological conditions, mRNA accessibility, delivery, and quantification of gene expression. Possible solutions to overcome these challenges are discussed, and future directions of the field are speculated.
Collapse
|
25
|
Lee Y, Klauser PC, Brandsen BM, Zhou C, Li X, Silverman SK. DNA-Catalyzed DNA Cleavage by a Radical Pathway with Well-Defined Products. J Am Chem Soc 2016; 139:255-261. [PMID: 27935689 DOI: 10.1021/jacs.6b10274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe an unprecedented DNA-catalyzed DNA cleavage process in which a radical-based reaction pathway cleanly results in excision of most atoms of a specific guanosine nucleoside. Two new deoxyribozymes (DNA enzymes) were identified by in vitro selection from N40 or N100 random pools initially seeking amide bond hydrolysis, although they both cleave simple single-stranded DNA oligonucleotides. Each deoxyribozyme generates both superoxide (O2-• or HOO•) and hydrogen peroxide (H2O2) and leads to the same set of products (3'-phosphoglycolate, 5'-phosphate, and base propenal) as formed by the natural product bleomycin, with product assignments by mass spectrometry and colorimetric assay. We infer the same mechanistic pathway, involving formation of the C4' radical of the guanosine nucleoside that is subsequently excised. Consistent with a radical pathway, glutathione fully suppresses catalysis. Conversely, adding either superoxide or H2O2 from the outset strongly enhances catalysis. The mechanism of generation and involvement of superoxide and H2O2 by the deoxyribozymes is not yet defined. The deoxyribozymes do not require redox-active metal ions and function with a combination of Zn2+ and Mg2+, although including Mn2+ increases the activity, and Mn2+ alone also supports catalysis. In contrast to all of these observations, unrelated DNA-catalyzed radical DNA cleavage reactions require redox-active metals and lead to mixtures of products. This study reports an intriguing example of a well-defined, DNA-catalyzed, radical reaction process that cleaves single-stranded DNA and requires only redox-inactive metal ions.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Paul C Klauser
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Benjamin M Brandsen
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cong Zhou
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Xinyi Li
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Catalytic DNA: Scope, Applications, and Biochemistry of Deoxyribozymes. Trends Biochem Sci 2016; 41:595-609. [PMID: 27236301 DOI: 10.1016/j.tibs.2016.04.010] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022]
Abstract
The discovery of natural RNA enzymes (ribozymes) prompted the pursuit of artificial DNA enzymes (deoxyribozymes) by in vitro selection methods. A key motivation is the conceptual and practical advantages of DNA relative to proteins and RNA. Early studies focused on RNA-cleaving deoxyribozymes, and more recent experiments have expanded the breadth of catalytic DNA to many other reactions. Including modified nucleotides has the potential to widen the scope of DNA enzymes even further. Practical applications of deoxyribozymes include their use as sensors for metal ions and small molecules. Structural studies of deoxyribozymes are only now beginning; mechanistic experiments will surely follow. Following the first report 21 years ago, the field of deoxyribozymes has promise for both fundamental and applied advances in chemistry, biology, and other disciplines.
Collapse
|
27
|
Huang PJJ, Liu J. An Ultrasensitive Light-up Cu(2+) Biosensor Using a New DNAzyme Cleaving a Phosphorothioate-Modified Substrate. Anal Chem 2016; 88:3341-7. [PMID: 26857405 DOI: 10.1021/acs.analchem.5b04904] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cu(2+) is a very important metal ion in biology, environmental science, and industry. Developing biosensors for Cu(2+) is a key topic in analytical chemistry. DNAzyme-based sensors are highly attractive for their excellent sensitivity, stability, and programmability. In the past decade, a few Cu(2+) biosensors were reported using DNAzymes with DNA cleavage or DNA ligation activity. However, they require unstable ascorbate or imidazole activation. So far, no RNA-cleaving DNAzymes specific for Cu(2+) are known. In this work, a phosphorothioate (PS) RNA-containing library was used for in vitro selection, and a few new Cu(2+)-specific RNA-cleaving DNAzymes were isolated. Among them, a DNAzyme named PSCu10 was studied further. It has only eight nucleotides in the enzyme loop with a cleavage rate of 0.1 min(-1) in the presence of 1 μM Cu(2+) at pH 6.0 (its optimal pH). Between the two diastereomers of the PS RNA chiral center, the R(p) isomer is 37 times more active than the S(p) one. Among the other divalent metal ions, only Hg(2+) can cleave the substrate due to its extremely high thiophilicity. A catalytic beacon sensor was designed with a detection limit of 1.6 nM Cu(2+) and extremely high selectivity. PSCu10 is specific for Cu(2+), and it has no cleavage in the presence of ascorbate, which reduces Cu(2+) to Cu(+).
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
28
|
Wang MQ, Dong J, Zhang H, Tang Z. Characterization of deoxyribozymes with site-specific oxidative cleavage activity against DNA obtained by in vitro selection. Org Biomol Chem 2016; 14:2347-51. [DOI: 10.1039/c6ob00148c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have generated a new class of deoxyribozymes that required Mn2+ and Cu2+ to catalyze a site-specific oxidative cleavage of DNA.
Collapse
Affiliation(s)
- Ming-Qi Wang
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Juan Dong
- Natural Products Research Center
- Chengdu Institution of Biology
- Chinese Academy of Science
- Chengdu 610041
- P. R. China
| | - Huafan Zhang
- Natural Products Research Center
- Chengdu Institution of Biology
- Chinese Academy of Science
- Chengdu 610041
- P. R. China
| | - Zhuo Tang
- Natural Products Research Center
- Chengdu Institution of Biology
- Chinese Academy of Science
- Chengdu 610041
- P. R. China
| |
Collapse
|
29
|
Hollenstein M. DNA Catalysis: The Chemical Repertoire of DNAzymes. Molecules 2015; 20:20777-804. [PMID: 26610449 PMCID: PMC6332124 DOI: 10.3390/molecules201119730] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|