1
|
Bartram E, Asai M, Gabant P, Wigneshweraraj S. Enhancing the antibacterial function of probiotic Escherichia coli Nissle: when less is more. Appl Environ Microbiol 2023; 89:e0097523. [PMID: 37930328 PMCID: PMC10686094 DOI: 10.1128/aem.00975-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Probiotic bacteria confer multiple health benefits, including preventing the growth, colonization, or carriage of harmful bacteria in the gut. Bacteriocins are antibacterial peptides produced by diverse bacteria, and their production is tightly regulated and coordinated at the transcriptional level. A popular strategy for enhancing the antibacterial properties of probiotic bacteria is to retrofit them with the ability to overproduce heterologous bacteriocins. This is often achieved from non-native constitutive promoters or in response to host or pathogen signal from synthetic promoters. How the dysregulated overproduction of heterologous bacteriocins affects the fitness and antibacterial efficacy of the retrofitted probiotic bacteria is often overlooked. We have conferred the prototypical probiotic Escherichia coli strain Nissle (EcN) the ability to produce microcin C (McC) from the wild-type promoter and two mutant promoters that allow, relative to the wild-type promoter, high and low amounts of McC production. This was done by introducing specific changes to the sequence of the wild-type promoter driving transcription of the McC operon while ensuring that the modified promoters respond to native regulation. By studying the transcriptomic responses and antibacterial efficacy of the retrofitted EcN bacteria in a Galleria mellonella infection model of enterohemorrhagic E. coli, we show that EcN bacteria that produce the lowest amount of McC display the highest antibacterial efficacy with little-to-none undesired collateral impact on their fitness. The results highlight considerations researchers may take into account when retrofitting probiotic bacteria with heterogenous gene products for therapeutic, prophylactic, or diagnostic applications. Bacteria that resist killing by antibiotics are a major risk to modern medicine. The use of beneficial "probiotic" bacteria to make antibiotic-like compounds at the site of infection in the body is emerging as a popular alternative to the use of conventional antibiotics. A potential drawback of engineering probiotic bacteria in this way is that producing antibiotic-like compounds could impart undesired side effects on the performance of such bacteria, thereby compromising their intended use. This study highlights considerations researchers may take into account when engineering probiotic bacteria for therapeutic, prophylactic, or diagnostic applications.
Collapse
Affiliation(s)
- Emma Bartram
- Section of Molecular Microbiology, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Masanori Asai
- Section of Molecular Microbiology, Imperial College London, London, United Kingdom
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Sivaramesh Wigneshweraraj
- Section of Molecular Microbiology, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Guharajan S, Chhabra S, Parisutham V, Brewster RC. Quantifying the regulatory role of individual transcription factors in Escherichia coli. Cell Rep 2021; 37:109952. [PMID: 34758318 PMCID: PMC8667592 DOI: 10.1016/j.celrep.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Gene regulation often results from the action of multiple transcription factors (TFs) acting at a promoter, obscuring the individual regulatory effect of each TF on RNA polymerase (RNAP). Here we measure the fundamental regulatory interactions of TFs in E. coli by designing synthetic target genes that isolate individual TFs' regulatory effects. Using a thermodynamic model, each TF's regulatory interactions are decoupled from TF occupancy and interpreted as acting through (de)stabilization of RNAP and (de)acceleration of transcription initiation. We find that the contribution of each mechanism depends on TF identity and binding location; regulation immediately downstream of the promoter is insensitive to TF identity, but the same TFs regulate by distinct mechanisms upstream of the promoter. These two mechanisms are uncoupled and can act coherently, to reinforce the observed regulatory role (activation/repression), or incoherently, wherein the TF regulates two distinct steps with opposing effects.
Collapse
Affiliation(s)
- Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivani Chhabra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert C Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
Ro C, Cashel M, Fernández-Coll L. The secondary messenger ppGpp interferes with cAMP-CRP regulon by promoting CRP acetylation in Escherichia coli. PLoS One 2021; 16:e0259067. [PMID: 34705884 PMCID: PMC8550359 DOI: 10.1371/journal.pone.0259067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
The cAMP-CRP regulon coordinates transcription regulation of several energy-related genes, the lac operon among them. Lactose, or IPTG, induces the lac operon expression by binding to the LacI repressor, and releasing it from the promoter sequence. At the same time, the expression of the lac operon requires the presence of the CRP-cAMP complex, which promotes the binding of the RNA polymerase to the promoter region. The modified nucleotide cAMP accumulates in the absence of glucose and binds to the CRP protein, but its ability to bind to DNA can be impaired by lysine-acetylation of CRP. Here we add another layer of control, as acetylation of CRP seems to be modified by ppGpp. In cells grown in glycerol minimal media, ppGpp seems to repress the expression of lacZ, where ΔrelA mutants show higher expression of lacZ than in WT. These differences between the WT and ΔrelA strains seem to depend on the levels of acetylated CRP. During the growth in minimal media supplemented with glycerol, ppGpp promotes the acetylation of CRP by the Nε-lysine acetyltransferases YfiQ. Moreover, the expression of the different genes involved in the production and degradation of Acetyl-phosphate (ackA-pta) and the enzymatic acetylation of proteins (yfiQ) are stimulated by the presence of ppGpp, depending on the growth conditions.
Collapse
Affiliation(s)
- Chunghwan Ro
- Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, Maryland, United States of America
| | - Michael Cashel
- Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, Maryland, United States of America
| | - Llorenç Fernández-Coll
- Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Fontana J, Dong C, Kiattisewee C, Chavali VP, Tickman BI, Carothers JM, Zalatan JG. Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nat Commun 2020; 11:1618. [PMID: 32238808 PMCID: PMC7113249 DOI: 10.1038/s41467-020-15454-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/04/2020] [Indexed: 11/09/2022] Open
Abstract
In bacterial systems, CRISPR-Cas transcriptional activation (CRISPRa) has the potential to dramatically expand our ability to regulate gene expression, but we lack predictive rules for designing effective gRNA target sites. Here, we identify multiple features of bacterial promoters that impose stringent requirements on CRISPRa target sites. Notably, we observe narrow, 2-4 base windows of effective sites with a periodicity corresponding to one helical turn of DNA, spanning ~40 bases and centered ~80 bases upstream of the TSS. However, we also identify two features suggesting the potential for broad scope: CRISPRa is effective at a broad range of σ70-family promoters, and an expanded PAM dCas9 allows the activation of promoters that cannot be activated by S. pyogenes dCas9. These results provide a roadmap for future engineering efforts to further expand and generalize the scope of bacterial CRISPRa.
Collapse
Affiliation(s)
- Jason Fontana
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, 98195, WA, USA
| | - Chen Dong
- Department of Chemistry, University of Washington, Seattle, 98195, WA, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, 98195, WA, USA
| | - Venkata P Chavali
- Department of Chemical Engineering, University of Washington, Seattle, 98195, WA, USA
| | - Benjamin I Tickman
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, 98195, WA, USA
| | - James M Carothers
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, 98195, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, 98195, WA, USA.
- Center for Synthetic Biology, University of Washington, Seattle, 98195, WA, USA.
| | - Jesse G Zalatan
- Department of Chemistry, University of Washington, Seattle, 98195, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, 98195, WA, USA.
- Center for Synthetic Biology, University of Washington, Seattle, 98195, WA, USA.
| |
Collapse
|
5
|
Fernández-Coll L, Cashel M. Contributions of SpoT Hydrolase, SpoT Synthetase, and RelA Synthetase to Carbon Source Diauxic Growth Transitions in Escherichia coli. Front Microbiol 2018; 9:1802. [PMID: 30123210 PMCID: PMC6085430 DOI: 10.3389/fmicb.2018.01802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
During the diauxic shift, Escherichia coli exhausts glucose and adjusts its expression pattern to grow on a secondary carbon source. Transcriptional profiling studies of glucose–lactose diauxic transitions reveal a key role for ppGpp. The amount of ppGpp depends on RelA synthetase and the balance between a strong SpoT hydrolase and its weak synthetase. In this study, mutants are used to search for synthetase or hydrolase specific regulation. Diauxic shifts experiments were performed with strains containing SpoT hydrolase and either RelA or SpoT synthetase as the sole source of ppGpp. Here, the length of the diauxic lag times is determined by the presence of ppGpp, showing contributions of both ppGpp synthetases (RelA and SpoT) as well as its hydrolase (SpoT). A balanced ppGpp response is key for a proper adaptation during diauxic shift. The effects of one or the other ppGpp synthetase on diauxic shifts are abolished by addition of amino acids or succinate, although by different mechanisms. While amino acids control the RelA response, succinate blocks the uptake of the excreted acetate via SatP. Acetate is converted to Acetyl-CoA through the ackA-pta pathway, producing Ac-P as intermediate. Evidence of control of the ackA-pta operon as well as a correlation between ppGpp and Ac-P is shown. Finally, acetylation of proteins is shown to occur during a diauxic glucose–lactose shift.
Collapse
Affiliation(s)
- Llorenç Fernández-Coll
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Michael Cashel
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Guebel DV, Torres NV. Influence of Glucose Availability and CRP Acetylation on the Genome-Wide Transcriptional Response of Escherichia coli: Assessment by an Optimized Factorial Microarray Analysis. Front Microbiol 2018; 9:941. [PMID: 29875739 PMCID: PMC5974110 DOI: 10.3389/fmicb.2018.00941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Background: While in eukaryotes acetylation/deacetylation regulation exerts multiple pleiotropic effects, in Escherichia coli it seems to be more limited and less known. Hence, we aimed to progress in the characterization of this regulation by dealing with three convergent aspects: the effector enzymes involved, the master regulator CRP, and the dependence on glucose availability. Methods: The transcriptional response of E. coli BW25113 was analyzed across 14 relevant scenarios. These conditions arise when the wild type and four isogenic mutants (defective in deacetylase CobB, defective in N(ε)-lysine acetyl transferase PatZ, Q- and R-type mutants of protein CRP) are studied under three levels of glucose availability (glucose-limited chemostat and glucose-excess or glucose-exhausted in batch culture). The Q-type emulates a permanent stage of CRPacetylated, whereas the R-type emulates a permanent stage of CRPdeacetylated. The data were analyzed by an optimized factorial microarray method (Q-GDEMAR). Results: (a) By analyzing one mutant against the other, we were able to unravel the true genes that participate in the interaction between ΔcobB/ΔpatZ mutations and glucose availability; (b) Increasing stages of glucose limitation appear to be associated with the up-regulation of specific sets of target genes rather than with the loss of genes present when glucose is in excess; (c) Both CRPdeacetylated and CRPacetylated produce extensive changes in specific subsets of genes, but their number and identity depend on the glucose availability; (d) In other sub-sets of genes, the transcriptional effect of CRP seems to be independent of its acetylation or deacetylation; (e) Some specific ontology functions can be associated with each of the different sets of genes detected herein. Conclusions: CRP cannot be thought of only as an effector of catabolite repression, because it acts along all the glucose conditions tested (excess, limited, and exhausted), exerting both positive and negative effects through different sets of genes. Acetylation of CRP does not seem to be a binary form of regulation, as there is not a univocal relationship between its activation/inhibitory effect and its acetylation/deacetylation stage. All the combinatorial possibilities are observed. During the exponential growth phase, CRP also exerts a very significant transcriptional effect, mainly on flagellar assembly and chemotaxis (FDR = 7.2 × 10−44).
Collapse
Affiliation(s)
| | - Néstor V Torres
- Systems Biology and Mathematical Modelling Group, Department of Biochemistry, Microbiology, Cellular Biology and Genetics, Institute of Biomedical Technologies, Center for Biomedical Research of the Canary Islands, University of La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
7
|
Duprey A, Nasser W, Léonard S, Brochier-Armanet C, Reverchon S. Transcriptional start site turnover in the evolution of bacterial paralogous genes - thepelE-pelDvirulence genes inDickeya. FEBS J 2016; 283:4192-4207. [DOI: 10.1111/febs.13921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/01/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Alexandre Duprey
- INSA-Lyon; CNRS, UMR5240; Microbiologie, Adaptation et Pathogénie; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| | - William Nasser
- INSA-Lyon; CNRS, UMR5240; Microbiologie, Adaptation et Pathogénie; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| | - Simon Léonard
- INSA-Lyon; CNRS, UMR5240; Microbiologie, Adaptation et Pathogénie; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| | - Céline Brochier-Armanet
- CNRS, UMR5558; Laboratoire de Biométrie et Biologie Évolutive; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| | - Sylvie Reverchon
- INSA-Lyon; CNRS, UMR5240; Microbiologie, Adaptation et Pathogénie; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| |
Collapse
|
8
|
|