1
|
Helsen J, Reza MH, Carvalho R, Sherlock G, Dey G. Spindle architecture constrains karyotype evolution. Nat Cell Biol 2024; 26:1496-1503. [PMID: 39117795 PMCID: PMC11392806 DOI: 10.1038/s41556-024-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The eukaryotic cell division machinery must rapidly and reproducibly duplicate and partition the cell's chromosomes in a carefully coordinated process. However, chromosome numbers vary dramatically between genomes, even on short evolutionary timescales. We sought to understand how the mitotic machinery senses and responds to karyotypic changes by using a series of budding yeast strains in which the native chromosomes have been successively fused. Using a combination of cell biological profiling, genetic engineering and experimental evolution, we show that chromosome fusions are well tolerated up until a critical point. Cells with fewer than five centromeres lack the necessary number of kinetochore-microtubule attachments needed to counter outward forces in the metaphase spindle, triggering the spindle assembly checkpoint and prolonging metaphase. Our findings demonstrate that spindle architecture is a constraining factor for karyotype evolution.
Collapse
Affiliation(s)
- Jana Helsen
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ricardo Carvalho
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
2
|
Barrientos-Moreno M, Maya-Miles D, Murillo-Pineda M, Fontalva S, Pérez-Alegre M, Andujar E, Prado F. Transcription and FACT facilitate the restoration of replication-coupled chromatin assembly defects. Sci Rep 2023; 13:11397. [PMID: 37452085 PMCID: PMC10349138 DOI: 10.1038/s41598-023-38280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Genome duplication occurs through the coordinated action of DNA replication and nucleosome assembly at replication forks. Defective nucleosome assembly causes DNA lesions by fork breakage that need to be repaired. In addition, it causes a loss of chromatin integrity. These chromatin alterations can be restored, even though the mechanisms are unknown. Here, we show that the process of chromatin restoration can deal with highly severe chromatin defects induced by the absence of the chaperones CAF1 and Rtt106 or a strong reduction in the pool of available histones, and that this process can be followed by analyzing the topoisomer distribution of the 2µ plasmid. Using this assay, we demonstrate that chromatin restoration is slow and independent of checkpoint activation, whereas it requires the action of transcription and the FACT complex. Therefore, cells are able to "repair" not only DNA lesions but also chromatin alterations associated with defective nucleosome assembly.
Collapse
Affiliation(s)
- Marta Barrientos-Moreno
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC‑University of Seville‑University Pablo de Olavide, Seville, Spain
| | - Douglas Maya-Miles
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC‑University of Seville‑University Pablo de Olavide, Seville, Spain
| | - Marina Murillo-Pineda
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC‑University of Seville‑University Pablo de Olavide, Seville, Spain
| | - Sara Fontalva
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC‑University of Seville‑University Pablo de Olavide, Seville, Spain
| | - Mónica Pérez-Alegre
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC‑University of Seville‑University Pablo de Olavide, Seville, Spain
| | - Eloísa Andujar
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC‑University of Seville‑University Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC‑University of Seville‑University Pablo de Olavide, Seville, Spain.
| |
Collapse
|
3
|
Gordon MR, Zhu J, Sun G, Li R. Suppression of chromosome instability by targeting a DNA helicase in budding yeast. Mol Biol Cell 2023; 34:ar3. [PMID: 36350688 PMCID: PMC9816644 DOI: 10.1091/mbc.e22-09-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Chromosome instability (CIN) is an important driver of cancer initiation, progression, drug resistance, and aging. As such, genes whose inhibition suppresses CIN are potential therapeutic targets. We report here that deletion of an accessory DNA helicase, Rrm3, suppresses high CIN caused by a wide range of genetic or pharmacological perturbations in yeast. Although this helicase mutant has altered cell cycle dynamics, suppression of CIN by rrm3∆ is independent of the DNA damage and spindle assembly checkpoints. Instead, the rrm3∆ mutant may have increased kinetochore-microtubule error correction due to an altered localization of Aurora B kinase and associated phosphatase, PP2A-Rts1.
Collapse
Affiliation(s)
- Molly R. Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute and
| | - Gordon Sun
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering and
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute and
- Department of Biological Sciences, National University of Singapore, 117411
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
4
|
Cano‐Linares MI, Yáñez‐Vilches A, García‐Rodríguez N, Barrientos‐Moreno M, González‐Prieto R, San‐Segundo P, Ulrich HD, Prado F. Non-recombinogenic roles for Rad52 in translesion synthesis during DNA damage tolerance. EMBO Rep 2021; 22:e50410. [PMID: 33289333 PMCID: PMC7788459 DOI: 10.15252/embr.202050410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023] Open
Abstract
DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error-prone, HR uses the sister chromatid and is mostly error-free. We report that the HR protein Rad52-but not Rad51 and Rad57-acts in concert with the TLS machinery (Rad6/Rad18-mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light-induced ssDNA gaps through a non-recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS- and UV-induced HR); accordingly, Rad52 is required for efficient DNA damage-induced mutagenesis. In addition, Rad52, Rad51, and Rad57, but not Rad54, facilitate Rad6/Rad18 binding to chromatin and subsequent DNA damage-induced PCNA ubiquitylation. Therefore, Rad52 facilitates the tolerance process not only by HR but also by TLS through Rad51/Rad57-dependent and -independent processes, providing a novel role for the recombination proteins in maintaining genome integrity.
Collapse
Affiliation(s)
- María I Cano‐Linares
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Aurora Yáñez‐Vilches
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Néstor García‐Rodríguez
- Institute of Molecular Biology (IMB)MainzGermany
- Present address:
Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Marta Barrientos‐Moreno
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Román González‐Prieto
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
- Present address:
Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Pedro San‐Segundo
- Institute of Functional Biology and Genomics (IBFG)CSIC‐University of SalamancaSalamancaSpain
| | | | - Félix Prado
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| |
Collapse
|
5
|
Yamamoto TG, Ding DQ, Nagahama Y, Chikashige Y, Haraguchi T, Hiraoka Y. Histone H2A insufficiency causes chromosomal segregation defects due to anaphase chromosome bridge formation at rDNA repeats in fission yeast. Sci Rep 2019; 9:7159. [PMID: 31073221 PMCID: PMC6509349 DOI: 10.1038/s41598-019-43633-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/28/2019] [Indexed: 11/16/2022] Open
Abstract
The nucleosome, composed of DNA and a histone core, is the basic structural unit of chromatin. The fission yeast Schizosaccharomyces pombe has two genes of histone H2A, hta1+ and hta2+; these genes encode two protein species of histone H2A (H2Aα and H2Aβ, respectively), which differ in three amino acid residues, and only hta2+ is upregulated during meiosis. However, it is unknown whether S. pombe H2Aα and H2Aβ have functional differences. Therefore, in this study, we examined the possible functional differences between H2Aα and H2Aβ during meiosis in S. pombe. We found that deletion of hta2+, but not hta1+, causes defects in chromosome segregation and spore formation during meiosis. Meiotic defects in hta2+ deletion cells were rescued by expressing additional copies of hta1+ or by expressing hta1+ from the hta2 promoter. This indicated that the defects were caused by insufficient amounts of histone H2A, and not by the amino acid residue differences between H2Aα and H2Aβ. Microscopic observation attributed the chromosome segregation defects to anaphase bridge formation in a chromosomal region at the repeats of ribosomal RNA genes (rDNA repeats). These results suggest that histone H2A insufficiency affects the chromatin structures of rDNA repeats, leading to chromosome missegregation in S. pombe.
Collapse
Affiliation(s)
- Takaharu G Yamamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yuki Nagahama
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
6
|
Histone stress: an unexplored source of chromosomal instability in cancer? Curr Genet 2019; 65:1081-1088. [DOI: 10.1007/s00294-019-00967-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023]
|
7
|
Barrientos-Moreno M, Murillo-Pineda M, Muñoz-Cabello AM, Prado F. Histone depletion prevents telomere fusions in pre-senescent cells. PLoS Genet 2018; 14:e1007407. [PMID: 29879139 PMCID: PMC5991667 DOI: 10.1371/journal.pgen.1007407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Upon telomerase inactivation, telomeres gradually shorten with each cell division until cells enter replicative senescence. In Saccharomyces cerevisiae, the kinases Mec1/ATR and Tel1/ATM protect the genome during pre-senescence by preventing telomere-telomere fusions (T-TFs) and the subsequent genetic instability associated with fusion-bridge-breakage cycles. Here we report that T-TFs in mec1Δ tel1Δ cells can be suppressed by reducing the pool of available histones. This protection associates neither with changes in bulk telomere length nor with major changes in the structure of subtelomeric chromatin. We show that the absence of Mec1 and Tel1 strongly augments double-strand break (DSB) repair by non-homologous end joining (NHEJ), which might contribute to the high frequency of T-TFs in mec1Δ tel1Δ cells. However, histone depletion does not prevent telomere fusions by inhibiting NHEJ, which is actually increased in histone-depleted cells. Rather, histone depletion protects telomeres from fusions by homologous recombination (HR), even though HR is proficient in maintaining the proliferative state of pre-senescent mec1Δ tel1Δ cells. Therefore, HR during pre-senescence not only helps stalled replication forks but also prevents T-TFs by a mechanism that, in contrast to the previous one, is promoted by a reduction in the histone pool and can occur in the absence of Rad51. Our results further suggest that the Mec1-dependent depletion of histones that occurs during pre-senescence in cells without telomerase (tlc1Δ) prevents T-TFs by favoring the processing of unprotected telomeres by Rad51-independent HR. Telomere shortening upon telomerase inactivation leads to an irreversible cell division arrest known as replicative senescence, which is considered as a tumor suppressor mechanism. Since pre-senescence is critical for tissue homeostasis, cells are endowed with recombination mechanisms that facilitate the replication of short telomeres and prevent premature entry into senescence. Consequently, pre-senescent cells divide with critically short telomeres, which have lost most of their shelterin proteins. The tumor suppressor genes ATR and ATM, as well as their yeast homologs Mec1 and Tel1, prevent telomere fusions during pre-senescence by unknown mechanisms. Here we show that the absence of Mec1 and Tel1 strongly augments DSB repair by non-homologous end joining, which might explain the high rate of telomere fusions in mec1Δ tel1Δ cells. Moreover, we show that a reduction in the pool of available histones prevents telomere fusions in mec1Δ tel1Δ cells by stimulating Rad51-independent homologous recombination. Our results suggest that the Mec1-dependent process of histone depletion that accompanies pre-senescence in cells lacking telomerase activity is required to prevent telomere fusions by promoting the processing of unprotected telomeres by recombination instead of non-homologous end joining.
Collapse
Affiliation(s)
- Marta Barrientos-Moreno
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Marina Murillo-Pineda
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Ana M. Muñoz-Cabello
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
- * E-mail:
| |
Collapse
|
8
|
Maya Miles D, Peñate X, Sanmartín Olmo T, Jourquin F, Muñoz Centeno MC, Mendoza M, Simon MN, Chavez S, Geli V. High levels of histones promote whole-genome-duplications and trigger a Swe1 WEE1-dependent phosphorylation of Cdc28 CDK1. eLife 2018; 7:35337. [PMID: 29580382 PMCID: PMC5871333 DOI: 10.7554/elife.35337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones.
Collapse
Affiliation(s)
- Douglas Maya Miles
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Xenia Peñate
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Trinidad Sanmartín Olmo
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Frederic Jourquin
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Maria Cruz Muñoz Centeno
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Manuel Mendoza
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Marie-Noelle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Sebastian Chavez
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Vincent Geli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| |
Collapse
|
9
|
Transcription of a B chromosome CAP-G pseudogene does not influence normal Condensin Complex genes in a grasshopper. Sci Rep 2017; 7:17650. [PMID: 29247237 PMCID: PMC5732253 DOI: 10.1038/s41598-017-15894-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022] Open
Abstract
Parasitic B chromosomes invade and persist in natural populations through several mechanisms for transmission advantage (drive). They may contain gene-derived sequences which, in some cases, are actively transcribed. A further interesting question is whether B-derived transcripts become functional products. In the grasshopper Eyprepocnemis plorans, one of the gene-derived sequences located on the B chromosome shows homology with the gene coding for the CAP-G subunit of condensin I. We show here, by means of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA), that this gene is located in the distal region of the B24 chromosome variant. The DNA sequence located in the B chromosome is a pseudogenic version of the CAP-G gene (B-CAP-G). In two Spanish populations, we found active transcription of B-CAP-G, but it did not influence the expression of CAP-D2 and CAP-D3 genes coding for corresponding condensin I and II subunits, respectively. Our results indicate that the transcriptional regulation of the B-CAP-G pseudogene is uncoupled from the standard regulation of the genes that constitute the condensin complex, and suggest that some of the B chromosome known effects may be related with its gene content and transcriptional activity, thus opening new exciting avenues for research.
Collapse
|
10
|
de Los Santos-Velázquez AI, de Oya IG, Manzano-López J, Monje-Casas F. Late rDNA Condensation Ensures Timely Cdc14 Release and Coordination of Mitotic Exit Signaling with Nucleolar Segregation. Curr Biol 2017; 27:3248-3263.e5. [PMID: 29056450 DOI: 10.1016/j.cub.2017.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/16/2017] [Accepted: 09/13/2017] [Indexed: 12/28/2022]
Abstract
The nucleolus plays a pivotal role in multiple key cellular processes. An illustrative example is the regulation of mitotic exit in Saccharomyces cerevisiae through the nucleolar sequestration of the Cdc14 phosphatase. The peculiar structure of the nucleolus, however, has also its drawbacks. The repetitive nature of the rDNA gives rise to cohesion-independent linkages whose resolution in budding yeast requires the Cdc14-dependent inhibition of rRNA transcription, which facilitates condensin accessibility to this locus. Thus, the rDNA condenses and segregates later than most other yeast genomic regions. Here, we show that defective function of a small nucleolar ribonucleoprotein particle (snoRNP) assembly factor facilitates condensin accessibility to the rDNA and induces nucleolar hyper-condensation. Interestingly, this increased compaction of the nucleolus interferes with the proper release of Cdc14 from this organelle. This observation provides an explanation for the delayed rDNA condensation in budding yeast, which is necessary to efficiently coordinate timely Cdc14 release and mitotic exit with nucleolar compaction and segregation.
Collapse
Affiliation(s)
- Ana Isabel de Los Santos-Velázquez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Inés G de Oya
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Javier Manzano-López
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain.
| |
Collapse
|
11
|
Prado F, Maya D. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly. Genes (Basel) 2017; 8:genes8020049. [PMID: 28125036 PMCID: PMC5333038 DOI: 10.3390/genes8020049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Felix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| | - Douglas Maya
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| |
Collapse
|
12
|
Prado F, Jimeno-González S, Reyes JC. Histone availability as a strategy to control gene expression. RNA Biol 2016; 14:281-286. [PMID: 27211514 DOI: 10.1080/15476286.2016.1189071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Histone proteins are main structural components of the chromatin and major determinants of gene regulation. Expression of canonical histone genes is strictly controlled during the cell cycle in order to couple DNA replication with histone deposition. Indeed, reductions in the levels of canonical histones or defects in chromatin assembly cause genetic instability. Early data from yeast demonstrated that severe histone depletion also causes strong gene expression changes. We have recently reported that a moderated depletion of canonical histones in human cells leads to an open chromatin configuration, which in turn increases RNA polymerase II elongation rates and causes pre-mRNA splicing defects. Interestingly, some of the observed defects accompany the scheduled histone depletion that is associated with several senescence and aging processes. Thus, our comparison of induced and naturally-occurring histone depletion processes suggests that a programmed reduction of the level of canonical histones might be a strategy to control gene expression during specific physiological processes.
Collapse
Affiliation(s)
- Félix Prado
- a Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) , Seville , Spain
| | - Silvia Jimeno-González
- a Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) , Seville , Spain
| | - José C Reyes
- a Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) , Seville , Spain
| |
Collapse
|