1
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
2
|
Treekitkarnmongkol W, Solis LM, Sankaran D, Gagea M, Singh PK, Mistry R, Nguyen T, Kai K, Liu J, Sasai K, Jitsumori Y, Liu J, Nagao N, Stossi F, Mancini MA, Wistuba II, Thompson AM, Lee JM, Cadiñanos J, Wong KK, Abbott CM, Sahin AA, Liu S, Katayama H, Sen S. eEF1A2 promotes PTEN-GSK3β-SCF complex-dependent degradation of Aurora kinase A and is inactivated in breast cancer. Sci Signal 2024; 17:eadh4475. [PMID: 38442201 DOI: 10.1126/scisignal.adh4475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3β, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.
Collapse
Affiliation(s)
- Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Deivendran Sankaran
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pankaj K Singh
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Ragini Mistry
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tristian Nguyen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kazuharu Kai
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshimi Jitsumori
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Norio Nagao
- Department of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Jonathan M Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juan Cadiñanos
- Fundación Centro Médico de Asturias, 33193 Oviedo, Spain
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), 33193 Oviedo, Spain
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Aysegul A Sahin
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hiroshi Katayama
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Subrata Sen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Hamey JJ, Nguyen A, Haddad M, Vázquez-Campos X, Pfeiffer PG, Wilkins MR. Methylation of elongation factor 1A by yeast Efm4 or human eEF1A-KMT2 involves a beta-hairpin recognition motif and crosstalks with phosphorylation. J Biol Chem 2024; 300:105639. [PMID: 38199565 PMCID: PMC10844748 DOI: 10.1016/j.jbc.2024.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Translation elongation factor 1A (eEF1A) is an essential and highly conserved protein required for protein synthesis in eukaryotes. In both Saccharomyces cerevisiae and human, five different methyltransferases methylate specific residues on eEF1A, making eEF1A the eukaryotic protein targeted by the highest number of dedicated methyltransferases after histone H3. eEF1A methyltransferases are highly selective enzymes, only targeting eEF1A and each targeting just one or two specific residues in eEF1A. However, the mechanism of this selectivity remains poorly understood. To reveal how S. cerevisiae elongation factor methyltransferase 4 (Efm4) specifically methylates eEF1A at K316, we have used AlphaFold-Multimer modeling in combination with crosslinking mass spectrometry (XL-MS) and enzyme mutagenesis. We find that a unique beta-hairpin motif, which extends out from the core methyltransferase fold, is important for the methylation of eEF1A K316 in vitro. An alanine mutation of a single residue on this beta-hairpin, F212, significantly reduces Efm4 activity in vitro and in yeast cells. We show that the equivalent residue in human eEF1A-KMT2 (METTL10), F220, is also important for its activity towards eEF1A in vitro. We further show that the eEF1A guanine nucleotide exchange factor, eEF1Bα, inhibits Efm4 methylation of eEF1A in vitro, likely due to competitive binding. Lastly, we find that phosphorylation of eEF1A at S314 negatively crosstalks with Efm4-mediated methylation of K316. Our findings demonstrate how protein methyltransferases can be highly selective towards a single residue on a single protein in the cell.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia.
| | - Amy Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| | - Mahdi Haddad
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| | - Paige G Pfeiffer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| |
Collapse
|
4
|
Davies FCJ, Marshall GF, Pegram E, Gadd D, Abbott CM. Endogenous epitope tagging of eEF1A2 in mice reveals early embryonic expression of eEF1A2 and subcellular compartmentalisation of neuronal eEF1A1 and eEF1A2. Mol Cell Neurosci 2023; 126:103879. [PMID: 37429391 DOI: 10.1016/j.mcn.2023.103879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
All vertebrate species express two independently-encoded forms of translation elongation factor eEF1A. In humans and mice eEF1A1 and eEF1A2 are 92 % identical at the amino acid level, but the well conserved developmental switch between the two variants in specific tissues suggests the existence of important functional differences. Heterozygous mutations in eEF1A2 result in neurodevelopmental disorders in humans; the mechanism of pathogenicity is unclear, but one hypothesis is that there is a dominant negative effect on eEF1A1 during development. The high degree of similarity between the eEF1A proteins has complicated expression analysis in the past; here we describe a gene edited mouse line in which we have introduced a V5 tag in the gene encoding eEF1A2. Expression analysis using anti-V5 and anti-eEF1A1 antibodies demonstrates that, in contrast to the prevailing view that eEF1A2 is only expressed postnatally, it is expressed from as early as E11.5 in the developing neural tube. Two colour immunofluorescence also reveals coordinated switching between eEF1A1 and eEF1A2 in different regions of postnatal brain. Completely reciprocal expression of the two variants is seen in post-weaning mouse brain with eEF1A1 expressed in oligodendrocytes and astrocytes and eEF1A2 in neuronal soma. Although eEF1A1 is absent from neuronal cell bodies after development, it is widely expressed in axons. This expression does not appear to coincide with myelin sheaths originating from oligodendrocytes but rather results from localised translation within the axon, suggesting that both variants are transcribed in neurons but show completely distinct subcellular localisation at the protein level. These findings will form an underlying framework for understanding how missense mutations in eEF1A2 result in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Faith C J Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Grant F Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Eleanor Pegram
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Danni Gadd
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
5
|
Cardenal Peralta C, Vandroux P, Neumann-Arnold L, Panvert M, Fagart J, Seufert W, Mechulam Y, Schmitt E. Binding of human Cdc123 to eIF2γ. J Struct Biol 2023; 215:108006. [PMID: 37507029 DOI: 10.1016/j.jsb.2023.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Eukaryotic initiation factor 2 (eIF2) plays a key role in protein synthesis and in its regulation. The assembly of this heterotrimeric factor is facilitated by Cdc123, a member of the ATP grasp family that binds the γ subunit of eIF2. Notably, some mutations related to MEHMO syndrome, an X-linked intellectual disability, affect Cdc123-mediated eIF2 assembly. The mechanism of action of Cdc123 is unclear and structural information for the human protein is awaited. Here, the crystallographic structure of human Cdc123 (Hs-Cdc123) bound to domain 3 of human eIF2γ (Hs-eIF2γD3) was determined. The structure shows that the domain 3 of eIF2γ is bound to domain 1 of Cdc123. In addition, the long C-terminal region of Hs-Cdc123 provides a link between the ATP and Hs-eIF2γD3 binding sites. A thermal shift assay shows that ATP is tightly bound to Cdc123 whereas the affinity of ADP is much smaller. Yeast cell viability experiments, western blot analysis and two-hybrid assays show that ATP is important for the function of Hs-Cdc123 in eIF2 assembly. These data and recent findings allow us to propose a refined model to explain the mechanism of action of Cdc123 in eIF2 assembly.
Collapse
Affiliation(s)
- Cristina Cardenal Peralta
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Paul Vandroux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Lea Neumann-Arnold
- Department of Genetics, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michel Panvert
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Jérôme Fagart
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Wolfgang Seufert
- Department of Genetics, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France.
| |
Collapse
|
6
|
Visualization of translation and protein biogenesis at the ER membrane. Nature 2023; 614:160-167. [PMID: 36697828 PMCID: PMC9892003 DOI: 10.1038/s41586-022-05638-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
The dynamic ribosome-translocon complex, which resides at the endoplasmic reticulum (ER) membrane, produces a major fraction of the human proteome1,2. It governs the synthesis, translocation, membrane insertion, N-glycosylation, folding and disulfide-bond formation of nascent proteins. Although individual components of this machinery have been studied at high resolution in isolation3-7, insights into their interplay in the native membrane remain limited. Here we use cryo-electron tomography, extensive classification and molecular modelling to capture snapshots of mRNA translation and protein maturation at the ER membrane at molecular resolution. We identify a highly abundant classical pre-translocation intermediate with eukaryotic elongation factor 1a (eEF1a) in an extended conformation, suggesting that eEF1a may remain associated with the ribosome after GTP hydrolysis during proofreading. At the ER membrane, distinct polysomes bind to different ER translocons specialized in the synthesis of proteins with signal peptides or multipass transmembrane proteins with the translocon-associated protein complex (TRAP) present in both. The near-complete atomic model of the most abundant ER translocon variant comprising the protein-conducting channel SEC61, TRAP and the oligosaccharyltransferase complex A (OSTA) reveals specific interactions of TRAP with other translocon components. We observe stoichiometric and sub-stoichiometric cofactors associated with OSTA, which are likely to include protein isomerases. In sum, we visualize ER-bound polysomes with their coordinated downstream machinery.
Collapse
|
7
|
El'skaya AV. A few notes on science in Ukraine. BBA ADVANCES 2023; 3:100089. [PMID: 37101685 PMCID: PMC10123332 DOI: 10.1016/j.bbadva.2023.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
As a person who has had a long scientific career in Ukraine, both before and after its re-acquisition of independence thirty years ago, I would like to share my observations with the readership of this Special Issue. By no means are these observations meant to provide a systematic presentation, which requires a different format. Rather, they are highly personal notes, providing snippets of the past and present and a discussion of the future of Ukrainian science. They also allow me to acknowledge my wonderful colleagues and bright students. I am delighted to see that many of them have contributed excellent reviews and original manuscripts to this Special Issue. (I am also keenly aware of the fact that because of the brutal invasion and bombardments by our imperial neighbor, many of my colleagues have been unable to share their latest work). It will be up to this next generation of Ukrainian scientists to develop Biological Sciences in Ukraine in the future.
Collapse
|
8
|
Negrutskii B, Shalak V, Novosylna O, Porubleva L, Lozhko D, El'skaya A. The eEF1 family of mammalian translation elongation factors. BBA ADVANCES 2022; 3:100067. [PMID: 37082266 PMCID: PMC10074971 DOI: 10.1016/j.bbadva.2022.100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The eEF1 family of mammalian translation elongation factors is comprised of the two variants of eEF1A (eEF1A1 and eEF1A2), and the eEF1B complex. The latter consists of eEF1Bα, eEF1Bβ, and eEF1Bγ subunits. The two eEF1A variants have similar translation activity but may differ with respect to their secondary, "moonlighting" functions. This variability is underlined by the difference in the spatial organization of eEF1A1 and eEF1A2, and also possibly by the differences in their post-translational modifications. Here, we review the data on the spatial organization and post-translation modifications of eEF1A1 and eEF1A2, and provide examples of their involvement in various processes in addition to translation. We also describe the structural models of eEF1B subunits, their organization in the subcomplexes, and the trimeric model of the entire eEF1B complex. We discuss the functional consequences of such an assembly into a complex as well as the involvement of individual subunits in non-translational processes.
Collapse
Affiliation(s)
- B.S. Negrutskii
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
- Aarhus Institute of Advanced Sciences, Høegh-Guldbergs Gade 6B, DK–8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - V.F. Shalak
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - O.V. Novosylna
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - L.V. Porubleva
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - D.M. Lozhko
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - A.V. El'skaya
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| |
Collapse
|
9
|
Belyi Y, Levanova N, Schroeder GN. Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion. Biomolecules 2022; 12:255. [PMID: 35204756 PMCID: PMC8961657 DOI: 10.3390/biom12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Work over the past two decades clearly defined a significant role of glycosyltransferase effectors in the infection strategy of the Gram-negative, respiratory pathogen Legionella pneumophila. Identification of the glucosyltransferase effectors Lgt1-3, specifically modifying elongation factor eEF1A, disclosed a novel mechanism of host protein synthesis manipulation by pathogens and illuminated its impact on the physiological state of the target cell, in particular cell cycle progression and immune and stress responses. Recent characterization of SetA as a general O-glucosyltransferase with a wide range of targets including the proteins Rab1 and Snx1, mediators of membrane transport processes, and the discovery of new types of glycosyltransferases such as LtpM and SidI indicate that the vast effector arsenal might still hold more so-far unrecognized family members with new catalytic features and substrates. In this article, we review our current knowledge regarding these fascinating biomolecules and discuss their role in introducing new or overriding endogenous post-translational regulatory mechanisms enabling the subversion of eukaryotic cells by L. pneumophila.
Collapse
Affiliation(s)
- Yury Belyi
- Laboratory of Molecular Pathogenesis, Gamaleya Research Centre, 123098 Moscow, Russia
| | | | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
10
|
Mills A, Gago F. On the Need to Tell Apart Fraternal Twins eEF1A1 and eEF1A2, and Their Respective Outfits. Int J Mol Sci 2021; 22:6973. [PMID: 34203525 PMCID: PMC8268798 DOI: 10.3390/ijms22136973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.
Collapse
Affiliation(s)
| | - Federico Gago
- Department of Biomedical Sciences & “Unidad Asociada IQM-CSIC”, School of Medicine and Health Sciences, University of Alcalá, E-28805 Alcalá de Henares, Spain;
| |
Collapse
|
11
|
Sahoo A, He Q, Walker SE. Flipping the Switch: An Unexpected Role for aEF1B in Modulating aEF1A Interactions with the Ribosome and tRNA. J Mol Biol 2021; 433:167052. [PMID: 34015279 DOI: 10.1016/j.jmb.2021.167052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ansuman Sahoo
- Department of Biological Sciences, The State University of New York at Buffalo, United States
| | - Qian He
- Department of Biological Sciences, The State University of New York at Buffalo, United States
| | - Sarah E Walker
- Department of Biological Sciences, The State University of New York at Buffalo, United States.
| |
Collapse
|
12
|
Dilated cardiomyopathy in a patient with autosomal dominant EEF1A2-related neurodevelopmental disorder. Eur J Med Genet 2020; 64:104121. [PMID: 33307280 DOI: 10.1016/j.ejmg.2020.104121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022]
Abstract
The EEF1A2 gene encodes eukaryotic translation elongation factor 1α2, an integral component of the elongation factor complex. Heterozygous pathogenic variants in EEF1A2 are associated with neurodevelopmental disorders characterized by epilepsy, global developmental delay, and autism. To date, dilated cardiomyopathy has only been reported in two siblings with neurodevelopmental phenotypes and a homozygous missense variant in EEF1A2. This report describes a nine-year-old female patient who presented with neurodevelopmental phenotypes and dilated cardiomyopathy. Analysis of 193 epilepsy genes by focused exome sequencing revealed a novel heterozygous variant c.46G > C (p.Val16Leu; NM_001958.3) in EEF1A2. The variant was not detected in either parent, confirming its de novo origin. No additional variants that explain the patient's phenotypes were found by subsequent whole exome analysis. Copy number analysis of the exome data and exon-level microarray excluded a deletion in the other allele of EEF1A2. We present the first patient with a heterozygous pathogenic EEF1A2 variant who had dilated cardiomyopathy as well as neurodevelopmental phenotypes, suggesting that this cardiac phenotype may be associated with the autosomal dominant form of the EEF1A2-related disorder.
Collapse
|
13
|
Carriles AA, Mills A, Muñoz-Alonso MJ, Gutiérrez D, Domínguez JM, Hermoso JA, Gago F. Structural Cues for Understanding eEF1A2 Moonlighting. Chembiochem 2020; 22:374-391. [PMID: 32875694 DOI: 10.1002/cbic.202000516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.
Collapse
Affiliation(s)
- Alejandra A Carriles
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain.,Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132, Milan, Italy
| | - Alberto Mills
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-José Muñoz-Alonso
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Dolores Gutiérrez
- Proteomics Unit, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Juan M Domínguez
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
14
|
Carvill GL, Helbig KL, Myers CT, Scala M, Huether R, Lewis S, Kruer TN, Guida BS, Bakhtiari S, Sebe J, Tang S, Stickney H, Oktay SU, Bhandiwad AA, Ramsey K, Narayanan V, Feyma T, Rohena LO, Accogli A, Severino M, Hollingsworth G, Gill D, Depienne C, Nava C, Sadleir LG, Caruso PA, Lin AE, Jansen FE, Koeleman B, Brilstra E, Willemsen MH, Kleefstra T, Sa J, Mathieu ML, Perrin L, Lesca G, Striano P, Casari G, Scheffer IE, Raible D, Sattlegger E, Capra V, Padilla-Lopez S, Mefford HC, Kruer MC. Damaging de novo missense variants in EEF1A2 lead to a developmental and degenerative epileptic-dyskinetic encephalopathy. Hum Mutat 2020; 41:1263-1279. [PMID: 32196822 DOI: 10.1002/humu.24015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
Heterozygous de novo variants in the eukaryotic elongation factor EEF1A2 have previously been described in association with intellectual disability and epilepsy but never functionally validated. Here we report 14 new individuals with heterozygous EEF1A2 variants. We functionally validate multiple variants as protein-damaging using heterologous expression and complementation analysis. Our findings allow us to confirm multiple variants as pathogenic and broaden the phenotypic spectrum to include dystonia/choreoathetosis, and in some cases a degenerative course with cerebral and cerebellar atrophy. Pathogenic variants appear to act via a haploinsufficiency mechanism, disrupting both the protein synthesis and integrated stress response functions of EEF1A2. Our studies provide evidence that EEF1A2 is highly intolerant to variation and that de novo pathogenic variants lead to an epileptic-dyskinetic encephalopathy with both neurodevelopmental and neurodegenerative features. Developmental features may be driven by impaired synaptic protein synthesis during early brain development while progressive symptoms may be linked to an impaired ability to handle cytotoxic stressors.
Collapse
Affiliation(s)
- Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, Illinois
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, Seattle, Washington
| | - Marcello Scala
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy
| | - Robert Huether
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - Sara Lewis
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Tyler N Kruer
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Brandon S Guida
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Somayeh Bakhtiari
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Joy Sebe
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Sha Tang
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - Heather Stickney
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Sehribani Ulusoy Oktay
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Ashwin A Bhandiwad
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona
| | - Timothy Feyma
- Department of Neurology, Gillette Children's Specialty Healthcare, St. Paul, Minnesota
| | - Luis O Rohena
- Department of Pediatrics, Division of Genetics, San Antonio Military Medical Center, San Antonio, Texas.,Department of Pediatrics, Long School of Medicine, University of Texas, San Antonio, Texas
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy.,Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariasavina Severino
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy
| | - Georgina Hollingsworth
- Departments of Medicine and Paediatrics, University of Melbourne and Austin Health Royal Children's Hospital, Melbourne, Australia
| | - Deepak Gill
- Ty Nelson Department of Neurology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Christel Depienne
- INSERM UMR 975, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Caroline Nava
- INSERM UMR 975, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington South, New Zealand
| | - Paul A Caruso
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center, Utrecht, The Netherlands
| | - Bobby Koeleman
- Department of Pediatric Neurology, University Medical Center, Utrecht, The Netherlands
| | - Eva Brilstra
- Department of Genetics, Utrecht University, Utrecht, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joaquim Sa
- Serviço de Genética Médica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Marie-Laure Mathieu
- Neuropaediatrics Department, Femme Mère Enfant Hospital, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Laurine Perrin
- Department of Paediatric Physical Medicine and Rehabilitation, CHU Saint-Etienne, Hôpital Bellevue, Saint-Étienne, France
| | - Gaetan Lesca
- CRNL Inserm U1028-CNRS UMR5292-Claude Bernard University Lyon 1, Lyon, France.,Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Pasquale Striano
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy
| | - Giorgio Casari
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy
| | - Ingrid E Scheffer
- Departments of Medicine and Paediatrics, University of Melbourne and Austin Health Royal Children's Hospital, Melbourne, Australia
| | - David Raible
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Evelyn Sattlegger
- School of Natural & Computational Sciences, Massey University, Auckland, New Zealand
| | - Valeria Capra
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy
| | - Sergio Padilla-Lopez
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, Seattle, Washington
| | - Michael C Kruer
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| |
Collapse
|
15
|
Long K, Wang H, Song Z, Yin X, Wang Y. EEF1A2 mutations in epileptic encephalopathy/intellectual disability: Understanding the potential mechanism of phenotypic variation. Epilepsy Behav 2020; 105:106955. [PMID: 32062104 DOI: 10.1016/j.yebeh.2020.106955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
EEF1A2 encodes protein elongation factor 1-alpha 2, which is involved in Guanosine triphosphate (GTP)-dependent binding of aminoacyl-transfer RNA (tRNA) to the A-site of ribosomes during protein biosynthesis and is highly expressed in the central nervous system. De novo mutations in EEF1A2 have been identified in patients with extensive neurological deficits, including intractable epilepsy, globe developmental delay, and severe intellectual disability. However, the mechanism underlying phenotype variation is unknown. Using next-generation sequencing, we identified a novel and a recurrent de novo mutation, c.294C>A; p.(Phe98Leu) and c.208G>A; p.(Gly70Ser), in patients with Lennox-Gastaut syndrome. The further systematic analysis revealed that all EEF1A2 mutations were associated with epilepsy and intellectual disability, suggesting its critical role in neurodevelopment. Missense mutations with severe molecular alteration in the t-RNA binding sites or GTP hydrolysis domain were associated with early-onset severe epilepsy, indicating that the clinical expression was potentially determined by the location of mutations and alteration of molecular effects. This study highlights the potential genotype-phenotype relationship in EEF1A2 and facilitates the evaluation of the pathogenicity of EEF1A2 mutations in clinical practice.
Collapse
Affiliation(s)
- Kexin Long
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hua Wang
- Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China; Key Laboratory of Birth Defects Research and Prevention, Changsha, Hunan 410008, China
| | - Zhanyi Song
- Med Department of Pediatric Neurology, Chenzhou No.1 People's Hospital (Children's Hospital), Chenzhou, Hunan 423000, China
| | - Xiaomeng Yin
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yaqin Wang
- Department of Health Management Centre, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
16
|
Kaur S, Van Bergen NJ, Gold WA, Eggers S, Lunke S, White SM, Ellaway C, Christodoulou J. Whole exome sequencing reveals a de novo missense variant in EEF1A2 in a Rett syndrome-like patient. Clin Case Rep 2019; 7:2476-2482. [PMID: 31893083 PMCID: PMC6935606 DOI: 10.1002/ccr3.2511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
Using whole exome sequencing, we found a pathogenic variant in the EEF1A2 gene in a patient with a Rett syndrome-like (RTT-like) phenotype, further confirming the association between EEF1A2 and Rett syndrome RTT and RTT-like phenotypes.
Collapse
Affiliation(s)
- Simranpreet Kaur
- Brain and Mitochondrial Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
| | - Nicole J. Van Bergen
- Brain and Mitochondrial Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
| | - Wendy Anne Gold
- Molecular Neurobiology Lab, Kids ResearchWestmead Children's HospitalWestmeadNSWAustralia
- Disciplines of Genetic Medicine and Child and Adolescent HealthSydney Medical SchoolUniversity of SydneyNSWAustralia
| | - Stefanie Eggers
- Translational Genomics UnitMurdoch Children's Research InstituteParkvilleVic.Australia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Sebastian Lunke
- Translational Genomics UnitMurdoch Children's Research InstituteParkvilleVic.Australia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Susan M. White
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Carolyn Ellaway
- Disciplines of Genetic Medicine and Child and Adolescent HealthSydney Medical SchoolUniversity of SydneyNSWAustralia
- Genetic Metabolic Disorders ServiceSydney Children's Hospital NetworkSydneyNSWAustralia
| | - John Christodoulou
- Brain and Mitochondrial Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
- Disciplines of Genetic Medicine and Child and Adolescent HealthSydney Medical SchoolUniversity of SydneyNSWAustralia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| |
Collapse
|
17
|
Weisser M, Ban N. Extensions, Extra Factors, and Extreme Complexity: Ribosomal Structures Provide Insights into Eukaryotic Translation. Cold Spring Harb Perspect Biol 2019; 11:11/9/a032367. [PMID: 31481454 DOI: 10.1101/cshperspect.a032367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the basic aspects of protein synthesis are preserved in all kingdoms of life, there are many important structural and functional differences between bacterial and the more complex eukaryotic ribosomes. High-resolution cryo-electron microscopy (cryo-EM) and X-ray crystallography structures of eukaryotic ribosomes have revealed the complex architectures of eukaryotic ribosomes and species-specific variations in protein and ribosomal RNA (rRNA) extensions. They also enabled structural studies of a range of eukaryotic ribosomal complexes involved in translation initiation, elongation, and termination, revealing unique mechanistic features of the eukaryotic translation process, especially with respect to the identification and recognition of translation start and stop codons on messenger RNAs (mRNAs). Most recently, structural biology has provided insights into the eukaryotic ribosomal biogenesis pathway by visualizing several of its complex intermediates. This review highlights the past decade's structural work on eukaryotic ribosomes and its implications on our understanding of eukaryotic translation.
Collapse
Affiliation(s)
- Melanie Weisser
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Sakamoto K, Kayanuma M, Inagaki Y, Hashimoto T, Shigeta Y. In Silico Structural Modeling and Analysis of Elongation Factor-1 Alpha and Elongation Factor-like Protein. ACS OMEGA 2019; 4:7308-7316. [PMID: 31459830 PMCID: PMC6648415 DOI: 10.1021/acsomega.8b03547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/11/2019] [Indexed: 06/10/2023]
Abstract
Translation elongation factor-1alpha (EF-1α) or its paralog elongation factor-like proteins (EFL) interact with an aminoacyl-transfer RNA (aa-tRNA) to play its essential role in elongation of peptide-chain during protein synthesis. Species usually have either an EF-1α or EFL protein; however, some species have both EF-1α and EFL (dual-EF-containing species). In the dual-EF-containing species, EF-1α appeared to be highly divergent in the sequence. Homology modeling and surface analysis of EF-1α and EFL were performed to examine the hypothesis that the divergent EF-1α in the dual-EF-containing eukaryotes does not strongly interact with aa-tRNA compared to the canonical EF-1α and EFL. The subsequent molecular dynamics simulations were carried out to confirm the validity of modeled structures and to analyze their stability. It was found that the molecular surfaces of the divergent EF-1α proteins were negatively charged partly, and thus they might not interact with negatively charged aa-tRNA as strongly as the canonical ones. The molecular docking simulations between EF-1α/EFL and aa-tRNA also support the hypothesis.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Leading
Graduate School Doctoral Program in Human Biology, Center for Computational
Sciences, Graduate School of Life and Environmental Sciences,
and Graduate School
of Pure and Applied Sciences, University
of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Megumi Kayanuma
- Leading
Graduate School Doctoral Program in Human Biology, Center for Computational
Sciences, Graduate School of Life and Environmental Sciences,
and Graduate School
of Pure and Applied Sciences, University
of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Yuji Inagaki
- Leading
Graduate School Doctoral Program in Human Biology, Center for Computational
Sciences, Graduate School of Life and Environmental Sciences,
and Graduate School
of Pure and Applied Sciences, University
of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsuo Hashimoto
- Leading
Graduate School Doctoral Program in Human Biology, Center for Computational
Sciences, Graduate School of Life and Environmental Sciences,
and Graduate School
of Pure and Applied Sciences, University
of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Leading
Graduate School Doctoral Program in Human Biology, Center for Computational
Sciences, Graduate School of Life and Environmental Sciences,
and Graduate School
of Pure and Applied Sciences, University
of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
19
|
Kobayashi D, Tokuda T, Sato K, Okanishi H, Nagayama M, Hirayama-Kurogi M, Ohtsuki S, Araki N. Identification of a Specific Translational Machinery via TCTP-EF1A2 Interaction Regulating NF1-associated Tumor Growth by Affinity Purification and Data-independent Mass Spectrometry Acquisition (AP-DIA). Mol Cell Proteomics 2019; 18:245-262. [PMID: 30381327 PMCID: PMC6356078 DOI: 10.1074/mcp.ra118.001014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease that predisposes individuals to developing benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). The mechanism of NF1-tumorigenesis or the curatives have not been established. Using unique trascriptome and proteome integration method, iPEACH (1), we previously identified translationally controlled tumor protein (TCTP) as a novel biological target for NF1-associated tumors (2). Here, we identified specific TCTP-interacting proteins by sequential affinity purification and data-independent mass spectrometry acquisition (AP-DIA/SWATH) to investigate the role of TCTP in NF1-associated malignant tumors. TCTP mainly interacts with proteins related to protein synthesis and especially to elongation factor complex components, including EF1A2, EF1B, EF1D, EF1G, and valyl-tRNA synthetase (VARS), in NF1-deficient malignant tumor cells. Interestingly, TCTP preferentially binds to EF1A2 (normally found only in neural and skeletal-muscle cells and several cancer cells), rather than EF1A1 despite the high homologies (98%) in their sequences. The docking simulation and further validations to study the interaction between TCTP and EF1A2 revealed that TCTP directly binds with EF1A2 via the contact areas of EF1A2 dimerization. Using unique and common sequences between EF1A2 and EF1A1 in AP-DIA/SWATH, we quantitatively validated the interaction of EF1A2 and TCTP/other elongation factors and found that TCTP coordinates the translational machinery of elongation factors via the association with EF1A2. These data suggest that TCTP activates EF1A2-dependent translation by mediating complex formation with other elongation factors. Inhibiting the TCTP-EF1A2 interaction with EF1A2 siRNAs or a TCTP inhibitor, artesunate, significantly down-regulated the factors related to protein translation and caused dramatic suppression of growth/translation in NF1-associated tumors. Our findings demonstrate that a specific protein translation machinery related to the TCTP-EF1A2 interaction is functionally implicated in the tumorigenesis and progression of NF1-associated tumors and could represent a therapeutic target.
Collapse
Affiliation(s)
- Daiki Kobayashi
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences
| | - Takaho Tokuda
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences
| | - Kyosuke Sato
- Department of Molecular Physiology, Faculty of Life Sciences
| | - Hiroki Okanishi
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences
| | - Megumi Nagayama
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences
| | - Mio Hirayama-Kurogi
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences,.
| |
Collapse
|
20
|
Chen YC, Chang YW, Huang YS. Dysregulated Translation in Neurodevelopmental Disorders: An Overview of Autism-Risk Genes Involved in Translation. Dev Neurobiol 2018; 79:60-74. [PMID: 30430754 DOI: 10.1002/dneu.22653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Regulated local translation-whereby specific mRNAs are transported and localized in subcellular domains where they are translated in response to regional signals-allows for remote control of gene expression to concentrate proteins in subcellular compartments. Neurons are highly polarized cells with unique features favoring local control for axonal pathfinding and synaptic plasticity, which are key processes involved in constructing functional circuits in the developing brain. Neurodevelopmental disorders are caused by genetic or environmental factors that disturb the nervous system's development during prenatal and early childhood periods. The growing list of genetic mutations that affect mRNA translation raises the question of whether aberrant translatomes in individuals with neurodevelopmental disorders share common molecular features underlying their stereotypical phenotypes and, vice versa, cause a certain degree of phenotypic heterogeneity. Here, we briefly give an overview of the role of local translation during neuronal development. We take the autism-risk gene list and discuss the molecules that (perhaps) are involved in mRNA transport and translation. Both exaggerated and suppressed translation caused by mutations in those genes have been identified or suggested. Finally, we discuss some proof-of-principle regimens for use in autism mouse models to correct dysregulated translation.
Collapse
Affiliation(s)
- Yan-Chu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Wei Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
21
|
McLachlan F, Sires AM, Abbott CM. The role of translation elongation factor eEF1 subunits in neurodevelopmental disorders. Hum Mutat 2018; 40:131-141. [PMID: 30370994 DOI: 10.1002/humu.23677] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/06/2022]
Abstract
The multi-subunit eEF1 complex plays a crucial role in de novo protein synthesis. The central functional component of the complex is eEF1A, which occurs as two independently encoded variants with reciprocal expression patterns: whilst eEF1A1 is widely expressed, eEF1A2 is found only in neurons and muscle. Heterozygous mutations in the gene encoding eEF1A2, EEF1A2, have recently been shown to cause epilepsy, autism, and intellectual disability. The remaining subunits of the eEF1 complex, eEF1Bα, eEF1Bδ, eEF1Bγ, and valyl-tRNA synthetase (VARS), together form the GTP exchange factor for eEF1A and are ubiquitously expressed, in keeping with their housekeeping role. However, mutations in the genes encoding these subunits EEF1B2 (eEF1Bα), EEF1D (eEF1Bδ), and VARS (valyl-tRNA synthetase) have also now been identified as causes of neurodevelopmental disorders. In this review, we describe the mutations identified so far in comparison with the degree of normal variation in each gene, and the predicted consequences of the mutations on the functions of the proteins and their isoforms. We discuss the likely effects of the mutations in the context of the role of protein synthesis in neuronal development.
Collapse
Affiliation(s)
- Fiona McLachlan
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Anna Martinez Sires
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| |
Collapse
|
22
|
Binding of eEF1A2 to the RNA-dependent protein kinase PKR modulates its activity and promotes tumour cell survival. Br J Cancer 2018; 119:1410-1420. [PMID: 30420615 PMCID: PMC6265344 DOI: 10.1038/s41416-018-0336-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/24/2018] [Indexed: 11/26/2022] Open
Abstract
Background Through several not-fully-characterised moonlighting functions, translation elongation factor eEF1A2 is known to provide a fitness boost to cancer cells. Furthermore, eEF1A2 has been demonstrated to confer neoplastic characteristics on preneoplastic, nontumourigenic precursor cells. We have previously shown that eEF1A2 is the target of plitidepsin, a marine drug currently in development for cancer treatment. Herein, we characterised a new signalling pathway through which eEF1A2 promotes tumour cell survival. Methods Previously unknown binding partners of eEF1A2 were identified through co-immunoprecipitation, high-performance liquid chromatography-mass spectrometry and proximity ligation assay. Using plitidepsin to release eEF1A2 from those protein complexes, their effects on cancer cell survival were analysed in vitro. Results We uncovered that double-stranded RNA-activated protein kinase (PKR) is a novel eEF1A2-interacting partner whose pro-apoptotic effect is hindered by the translation factor, most likely through sequestration and inhibition of its kinase activity. Targeting eEF1A2 with plitidepsin releases PKR from the complex, facilitating its activation and triggering a mitogen-activated protein kinase signalling cascade together with a nuclear factor-κB-dependent activation of the extrinsic apoptotic pathway, which lead to tumour cell death. Conclusions Through its binding to PKR, eEF1A2 provides a survival boost to cancer cells, constituting an Achilles heel that can be exploited in anticancer therapy.
Collapse
|
23
|
On elongation factor eEFSec, its role and mechanism during selenium incorporation into nascent selenoproteins. Biochim Biophys Acta Gen Subj 2018; 1862:2463-2472. [PMID: 29555379 DOI: 10.1016/j.bbagen.2018.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Selenium, an essential dietary micronutrient, is incorporated into proteins as the amino acid selenocysteine (Sec) in response to in-frame UGA codons. Complex machinery ensures accurate recoding of Sec codons in higher organisms. A specialized elongation factor eEFSec is central to the process. SCOPE OF REVIEW Selenoprotein synthesis relies on selenocysteinyl-tRNASec (Sec-tRNASec), selenocysteine inserting sequence (SECIS) and other selenoprotein mRNA elements, an in-trans SECIS binding protein 2 (SBP2) protein factor, and eEFSec. The exact mechanisms of discrete steps of the Sec UGA recoding are not well understood. However, recent studies on mammalian model systems have revealed the first insights into these mechanisms. Herein, we summarize the current knowledge about the structure and role of mammalian eEFSec. MAJOR CONCLUSIONS eEFSec folds into a chalice-like structure resembling that of the archaeal and bacterial orthologues SelB and the initiation protein factor IF2/eIF5B. The three N-terminal domains harbor major functional sites and adopt an EF-Tu-like fold. The C-terminal domain 4 binds to Sec-tRNASec and SBP2, senses distinct binding domains, and modulates the GTPase activity. Remarkably, GTP hydrolysis does not induce a canonical conformational change in eEFSec, but instead promotes a slight ratchet of domains 1 and 2 and a lever-like movement of domain 4, which may be critical for the release of Sec-tRNASec on the ribosome. GENERAL SIGNIFICANCE Based on current findings, a non-canonical mechanism for elongation of selenoprotein synthesis at the Sec UGA codon is proposed. Although incomplete, our understanding of this fundamental biological process is significantly improved, and it is being harnessed for biomedical and synthetic biology initiatives. This article is part of a Special Issue entitled "Selenium research" in celebration of 200 years of selenium discovery, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.
Collapse
|
24
|
Burglová K, Rylová G, Markos A, Prichystalova H, Soural M, Petracek M, Medvedikova M, Tejral G, Sopko B, Hradil P, Dzubak P, Hajduch M, Hlavac J. Identification of Eukaryotic Translation Elongation Factor 1-α 1 Gamendazole-Binding Site for Binding of 3-Hydroxy-4(1 H)-quinolinones as Novel Ligands with Anticancer Activity. J Med Chem 2018; 61:3027-3036. [PMID: 29498519 DOI: 10.1021/acs.jmedchem.8b00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we have identified the interaction site of the contraceptive drug gamendazole using computational modeling. The drug was previously described as a ligand for eukaryotic translation elongation factor 1-α 1 (eEF1A1) and found to be a potential target site for derivatives of 2-phenyl-3-hydroxy-4(1 H)-quinolinones (3-HQs), which exhibit anticancer activity. The interaction of this class of derivatives of 3-HQs with eEF1A1 inside cancer cells was confirmed via pull-down assay. We designed and synthesized a new family of 3-HQs and subsequently applied isothermal titration calorimetry to show that these compounds strongly bind to eEF1A1. Further, we found that some of these derivatives possess significant in vitro anticancer activity.
Collapse
Affiliation(s)
- Kristyna Burglová
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Gabriela Rylová
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Athanasios Markos
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Hana Prichystalova
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Miroslav Soural
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Marek Petracek
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Martina Medvedikova
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Gracian Tejral
- Department of Biophysics, Second Faculty of Medicine , Charles University , V Úvalu 84 , 150 06 Praha 5 , Czech Republic.,Department of Tissue Engineering , The Czech Academy of Sciences, Institute of Experimental Medicine , Vídeňská 1083 , 142 20 Praha 4 , Czech Republic.,University Center for Energy Efficient Buildings (UCEEB) , The Czech Technical University in Prague , Třinecká 1024 , 273 43 Bustehrad , Czech Republic
| | - Bruno Sopko
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine , Charles University and Motol University Hospital , V Úvalu 84 , 150 06 Praha 5 , Czech Republic.,Department of Tissue Engineering , The Czech Academy of Sciences, Institute of Experimental Medicine , Vídeňská 1083 , 142 20 Praha 4 , Czech Republic
| | - Pavel Hradil
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 5 , 779 00 Olomouc , Czech Republic
| | - Jan Hlavac
- Department of Organic Chemistry, Faculty of Science , Palacký University , Tř. 17. listopadu 12 , 771 46 Olomouc , Czech Republic
| |
Collapse
|
25
|
Negrutskii B, Vlasenko D, Mirande M, Futernyk P, El'skaya A. mRNA-Independent way to regulate translation elongation rate in eukaryotic cells. IUBMB Life 2018; 70:192-196. [PMID: 29417736 DOI: 10.1002/iub.1724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/23/2018] [Indexed: 01/10/2023]
Abstract
The question of what governs the translation elongation rate in eukaryotes has not yet been completely answered. Earlier, different availability of different tRNAs was considered as a main factor involved, however, recent data revealed that the elongation rate does not always depend on tRNA availability. Here, we offer another, codon-independent approach to explain specific tRNA-dependence of the elongation rate in eukaryotes. We hypothesize that the exit rate of eukaryotic translation elongation factor 1A (eEF1A)*GDP from the 80S ribosome depends on the protein affinity to specific aminoacyl-tRNA remaining on the ribosome after GTP hydrolysis. Subsequently, a slower dissociation of eEF1A*GDP from certain aminoacyl-tRNAs in the ribosome can negatively influence the ribosomal elongation rate in a tRNA-dependent and mRNA-independent way. The specific tRNA-dependent departure rate of eEF1A*GDP from the ribosome is suggested to be a novel factor contributing to the overall translation elongation control in eukaryotic cells. © 2018 IUBMB Life, 70(3):192-196, 2018.
Collapse
Affiliation(s)
- Boris Negrutskii
- Laboratory of Protein Synthesis, Institute of Molecular Biology and Genetics, Kiev, Ukraine
| | - Dmytro Vlasenko
- Laboratory of Protein Synthesis, Institute of Molecular Biology and Genetics, Kiev, Ukraine
| | - Marc Mirande
- Département de Biologie des Génomes,CEA, CNRS, Université Paris Sud, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Pavlo Futernyk
- Laboratory of Protein Synthesis, Institute of Molecular Biology and Genetics, Kiev, Ukraine
| | - Anna El'skaya
- Laboratory of Protein Synthesis, Institute of Molecular Biology and Genetics, Kiev, Ukraine
| |
Collapse
|
26
|
Hamey JJ, Wilkins MR. Methylation of Elongation Factor 1A: Where, Who, and Why? Trends Biochem Sci 2018; 43:211-223. [PMID: 29398204 DOI: 10.1016/j.tibs.2018.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/17/2022]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is an essential and highly conserved protein involved in diverse cellular processes, including translation, cytoskeleton organisation, nuclear export, and proteasomal degradation. Recently, nine novel and site-specific methyltransferases were discovered that target eEF1A, five in yeast and four in human, making it the eukaryotic protein with the highest number of independent methyltransferases. Some of these methyltransferases show striking evolutionary conservation. Yet, they come from diverse methyltransferase families, indicating they confer competitive advantage through independent origins. As might be expected, the first functional studies of specific methylation sites found them to have distinct effects, notably on eEF1A-related processes of translation and tRNA aminoacylation. Further functional studies of sites will likely reveal other unique roles for this interesting modification.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia.
| |
Collapse
|
27
|
Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B. J Comput Aided Mol Des 2017; 31:915-928. [DOI: 10.1007/s10822-017-0066-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023]
|
28
|
Malecki J, Aileni VK, Ho AYY, Schwarz J, Moen A, Sørensen V, Nilges BS, Jakobsson ME, Leidel SA, Falnes PØ. The novel lysine specific methyltransferase METTL21B affects mRNA translation through inducible and dynamic methylation of Lys-165 in human eukaryotic elongation factor 1 alpha (eEF1A). Nucleic Acids Res 2017; 45:4370-4389. [PMID: 28108655 PMCID: PMC5416902 DOI: 10.1093/nar/gkx002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022] Open
Abstract
Lysine methylation is abundant on histone proteins, representing a dynamic regulator of chromatin state and gene activity, but is also frequent on many non-histone proteins, including eukaryotic elongation factor 1 alpha (eEF1A). However, the functional significance of eEF1A methylation remains obscure and it has remained unclear whether eEF1A methylation is dynamic and subject to active regulation. We here demonstrate, using a wide range of in vitro and in vivo approaches, that the previously uncharacterized human methyltransferase METTL21B specifically targets Lys-165 in eEF1A in an aminoacyl-tRNA- and GTP-dependent manner. Interestingly, METTL21B-mediated eEF1A methylation showed strong variation across different tissues and cell lines, and was induced by altering growth conditions or by treatment with certain ER-stress-inducing drugs, concomitant with an increase in METTL21B gene expression. Moreover, genetic ablation of METTL21B function in mammalian cells caused substantial alterations in mRNA translation, as measured by ribosomal profiling. A non-canonical function for eEF1A in organization of the cellular cytoskeleton has been reported, and interestingly, METTL21B accumulated in centrosomes, in addition to the expected cytosolic localization. In summary, the present study identifies METTL21B as the enzyme responsible for methylation of eEF1A on Lys-165 and shows that this modification is dynamic, inducible and likely of regulatory importance.
Collapse
Affiliation(s)
- Jedrzej Malecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Vinay Kumar Aileni
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Angela Y Y Ho
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Juliane Schwarz
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Vigdis Sørensen
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway
| | - Benedikt S Nilges
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Magnus E Jakobsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
29
|
Jank T, Belyi Y, Wirth C, Rospert S, Hu Z, Dengjel J, Tzivelekidis T, Andersen GR, Hunte C, Schlosser A, Aktories K. Protein glutaminylation is a yeast-specific posttranslational modification of elongation factor 1A. J Biol Chem 2017; 292:16014-16023. [PMID: 28801462 DOI: 10.1074/jbc.m117.801035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Indexed: 11/06/2022] Open
Abstract
Ribosomal translation factors are fundamental for protein synthesis and highly conserved in all kingdoms of life. The essential eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl tRNAs to the A-site of the translating 80S ribosome. Several studies have revealed that eEF1A is posttranslationally modified. Using MS analysis, site-directed mutagenesis, and X-ray structural data analysis of Saccharomyces cerevisiae eEF1A, we identified a posttranslational modification in which the α amino group of mono-l-glutamine is covalently linked to the side chain of glutamate 45 in eEF1A. The MS analysis suggested that all eEF1A molecules are modified by this glutaminylation and that this posttranslational modification occurs at all stages of yeast growth. The mutational studies revealed that this glutaminylation is not essential for the normal functions of eEF1A in S. cerevisiae However, eEF1A glutaminylation slightly reduced growth under antibiotic-induced translational stress conditions. Moreover, we identified the same posttranslational modification in eEF1A from Schizosaccharomyces pombe but not in various other eukaryotic organisms tested despite strict conservation of the Glu45 residue among these organisms. We therefore conclude that eEF1A glutaminylation is a yeast-specific posttranslational modification that appears to influence protein translation.
Collapse
Affiliation(s)
- Thomas Jank
- From the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany,
| | - Yury Belyi
- the Gamaleya Research Centre, Moscow 123098, Russia.,the Bioclinicum, Moscow 123098, Russia
| | - Christophe Wirth
- the Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Sabine Rospert
- the Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,the BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Zehan Hu
- the Department of Dermatology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,the Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany.,the Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Jörn Dengjel
- the Department of Dermatology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,the Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany.,the Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Tina Tzivelekidis
- From the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gregers Rom Andersen
- the Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, DK8000 Aarhus, Denmark, and
| | - Carola Hunte
- the Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,the BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Andreas Schlosser
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Klaus Aktories
- From the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany, .,the BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany.,the Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
30
|
Novosylna O, Doyle A, Vlasenko D, Murphy M, Negrutskii B, El'skaya A. Comparison of the ability of mammalian eEF1A1 and its oncogenic variant eEF1A2 to interact with actin and calmodulin. Biol Chem 2017; 398:113-124. [PMID: 27483363 DOI: 10.1515/hsz-2016-0172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/26/2016] [Indexed: 11/15/2022]
Abstract
The question as to why a protein exerts oncogenic properties is answered mainly by well-established ideas that these proteins interfere with cellular signaling pathways. However, the knowledge about structural and functional peculiarities of the oncoproteins causing these effects is far from comprehensive. The 97.5% homologous tissue-specific A1 and A2 isoforms of mammalian translation elongation factor eEF1A represent an interesting model to study a difference between protein variants of a family that differ in oncogenic potential. We propose that the different oncogenic impact of A1 and A2 might be explained by differences in their ability to communicate with their respective cellular partners. Here we probed this hypothesis by studying the interaction of eEF1A with two known partners - calmodulin and actin. Indeed, an inability of the A2 isoform to interact with calmodulin is shown, while calmodulin is capable of binding A1 and interferes with its tRNA-binding and actin-bundling activities in vitro. Both A1 and A2 variants revealed actin-bundling activity; however, the form of bundles formed in the presence of A1 or A2 was distinctly different. Thus, a potential inability of A2 to be controlled by Ca2+-mediated regulatory systems is revealed.
Collapse
|
31
|
Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell 2017; 167:1229-1240.e15. [PMID: 27863242 PMCID: PMC5119991 DOI: 10.1016/j.cell.2016.10.046] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022]
Abstract
In eukaryotes, accurate protein synthesis relies on a family of translational GTPases that pair with specific decoding factors to decipher the mRNA code on ribosomes. We present structures of the mammalian ribosome engaged with decoding factor⋅GTPase complexes representing intermediates of translation elongation (aminoacyl-tRNA⋅eEF1A), termination (eRF1⋅eRF3), and ribosome rescue (Pelota⋅Hbs1l). Comparative analyses reveal that each decoding factor exploits the plasticity of the ribosomal decoding center to differentially remodel ribosomal proteins and rRNA. This leads to varying degrees of large-scale ribosome movements and implies distinct mechanisms for communicating information from the decoding center to each GTPase. Additional structural snapshots of the translation termination pathway reveal the conformational changes that choreograph the accommodation of decoding factors into the peptidyl transferase center. Our results provide a structural framework for how different states of the mammalian ribosome are selectively recognized by the appropriate decoding factor⋅GTPase complex to ensure translational fidelity.
Collapse
Affiliation(s)
- Sichen Shao
- MRC-LMB, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jason Murray
- MRC-LMB, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alan Brown
- MRC-LMB, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
32
|
Crystal structures of the human elongation factor eEFSec suggest a non-canonical mechanism for selenocysteine incorporation. Nat Commun 2016; 7:12941. [PMID: 27708257 PMCID: PMC5059743 DOI: 10.1038/ncomms12941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2016] [Indexed: 01/07/2023] Open
Abstract
Selenocysteine is the only proteinogenic amino acid encoded by a recoded in-frame UGA codon that does not operate as the canonical opal stop codon. A specialized translation elongation factor, eEFSec in eukaryotes and SelB in prokaryotes, promotes selenocysteine incorporation into selenoproteins by a still poorly understood mechanism. Our structural and biochemical results reveal that four domains of human eEFSec fold into a chalice-like structure that has similar binding affinities for GDP, GTP and other guanine nucleotides. Surprisingly, unlike in eEF1A and EF-Tu, the guanine nucleotide exchange does not cause a major conformational change in domain 1 of eEFSec, but instead induces a swing of domain 4. We propose that eEFSec employs a non-canonical mechanism involving the distinct C-terminal domain 4 for the release of the selenocysteinyl-tRNA during decoding on the ribosome.
Collapse
|
33
|
Lam WWK, Millichap JJ, Soares DC, Chin R, McLellan A, FitzPatrick DR, Elmslie F, Lees MM, Schaefer GB, Abbott CM. Novel de novo EEF1A2 missense mutations causing epilepsy and intellectual disability. Mol Genet Genomic Med 2016; 4:465-74. [PMID: 27441201 PMCID: PMC4947865 DOI: 10.1002/mgg3.219] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Exome sequencing has led to the discovery of mutations in novel causative genes for epilepsy. One such gene is EEF1A2, encoding a neuromuscular specific translation elongation factor, which has been found to be mutated de novo in five cases of severe epilepsy. We now report on a further seven cases, each with a different mutation, of which five are newly described. METHODS New cases were identified and sequenced through the Deciphering Developmental Disabilities project, via direct contact with neurologists or geneticists, or recruited via our website. RESULTS All the mutations cause epilepsy and intellectual disability, but with a much wider range of severity than previously identified. All new cases share specific subtle facial dysmorphic features. Each mutation occurs at an evolutionarily highly conserved amino acid position indicating strong structural or functional selective pressure. CONCLUSIONS EEF1A2 should be considered as a causative gene not only in cases of epileptic encephalopathy but also in children with less severe epilepsy and intellectual disability. The emergence of a possible discernible phenotype, a broad nasal bridge, tented upper lip, everted lower lip and downturned corners of the mouth may help in identifying patients with mutations in EEF1A2.
Collapse
Affiliation(s)
- Wayne W K Lam
- South East of Scotland Clinical Genetics ServiceCrewe RoadEdinburghUK; Centre for Genomic & Experimental MedicineMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK; Muir Maxwell Epilepsy CentreUniversity of Edinburgh20 Sylvan PlaceEdinburghEH9 1UWUK; Paediatric NeurosciencesRoyal Hospital for Sick ChildrenSciennes RoadEdinburghEH9 1LFUK
| | - John J Millichap
- Epilepsy Center Departments of Pediatrics and Neurology Ann & Robert H. Lurie Children's Hospital of Chicago Northwestern University Feinberg School of Medicine 225 E Chicago Ave Box #29 Chicago Illinois 60611
| | - Dinesh C Soares
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK; MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK
| | - Richard Chin
- Muir Maxwell Epilepsy CentreUniversity of Edinburgh20 Sylvan PlaceEdinburghEH9 1UWUK; Paediatric NeurosciencesRoyal Hospital for Sick ChildrenSciennes RoadEdinburghEH9 1LFUK; Child Life and HealthUniversity of Edinburgh20 Sylvan PlaceEdinburghEH9 1UWUK
| | - Ailsa McLellan
- Paediatric Neurosciences Royal Hospital for Sick Children Sciennes Road Edinburgh EH9 1LF UK
| | - David R FitzPatrick
- Paediatric NeurosciencesRoyal Hospital for Sick ChildrenSciennes RoadEdinburghEH9 1LFUK; MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK
| | - Frances Elmslie
- South West Thames Regional Genetics Service St George's Hospital Tooting London UK
| | - Melissa M Lees
- Department of Clinical Genetics Great Ormond Street Hospital Great Ormond Street London UK
| | - G Bradley Schaefer
- Division of Medical Genetics Arkansas Children's Hospital Little Rock Arkansas
| | | | - Catherine M Abbott
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK; Muir Maxwell Epilepsy CentreUniversity of Edinburgh20 Sylvan PlaceEdinburghEH9 1UWUK
| |
Collapse
|
34
|
Wu H, Wang C, Gong W, Wang J, Xuan J, Perrett S, Feng Y. The C-terminal region of human eukaryotic elongation factor 1Bδ. JOURNAL OF BIOMOLECULAR NMR 2016; 64:181-187. [PMID: 26762120 DOI: 10.1007/s10858-016-0012-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Huiwen Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Wang
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China
- Shandong Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinsong Xuan
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yingang Feng
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China.
- Shandong Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China.
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China.
| |
Collapse
|
35
|
Trosiuk TV, Shalak VF, Szczepanowski RH, Negrutskii BS, El'skaya AV. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα. FEBS J 2015; 283:484-97. [PMID: 26587907 DOI: 10.1111/febs.13599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect.
Collapse
Affiliation(s)
- Tetiana V Trosiuk
- State Key Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vyacheslav F Shalak
- State Key Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Boris S Negrutskii
- State Key Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anna V El'skaya
- State Key Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
36
|
Jank T, Belyi Y, Aktories K. Bacterial glycosyltransferase toxins. Cell Microbiol 2015; 17:1752-65. [DOI: 10.1111/cmi.12533] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Thomas Jank
- Institute for Experimental and Clinical Pharmacology and Toxicology; Albert-Ludwigs University of Freiburg; Freiburg Germany
| | - Yury Belyi
- Gamaleya Research Institute; Moscow 123098 Russia
- Freiburg Institute for Advanced Studies (FRIAS); Albert-Ludwigs University of Freiburg; Freiburg Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology; Albert-Ludwigs University of Freiburg; Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS); Albert-Ludwigs University of Freiburg; Freiburg Germany
| |
Collapse
|
37
|
Migliaccio N, Ruggiero I, Martucci NM, Sanges C, Arbucci S, Tatè R, Rippa E, Arcari P, Lamberti A. New insights on the interaction between the isoforms 1 and 2 of human translation elongation factor 1A. Biochimie 2015. [PMID: 26212729 DOI: 10.1016/j.biochi.2015.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eukaryotic translation elongation factor 1A (eEF1A) is a moonlighting protein that besides to its canonical role in protein synthesis is also involved in many other cellular processes such as cell survival and apoptosis. In a previous work, we identified eEF1A Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and apoptosis of human cancer cells. We proposed that the phosphorylation of eEF1A by C-Raf required the presence of both eEF1A isoforms thus suggesting the formation of a potential eEF1A heterodimer owning regulatory properties. This study aimed at investigating the cellular localization and interaction between two eEF1A isoforms. To this end, we developed chimera proteins by adding at the N-terminal end of both eEF1A1 and eEF1A2 cyan fluorescence protein (mCerulean) and yellow fluorescence protein (mVenus), respectively. The fluorescent eEF1A1 and eEF1A2 chimeras were both addressed to COS-7 cells and found co-localized in the cytoplasm at the level of cellular membranes. We highlighted FRET between the labeled N-termini of eEF1A isoforms. The intra-molecular FRET of this chimera was about 17%. Our results provide novel information on the intracellular distribution and interaction of eEF1A isoforms.
Collapse
Affiliation(s)
- Nunzia Migliaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Immacolata Ruggiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicola M Martucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carmen Sanges
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Arbucci
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Via Gaetano Salvatore 486, I-80145 Naples, Italy.
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
38
|
The importance of codon–anticodon interactions in translation elongation. Biochimie 2015; 114:72-9. [DOI: 10.1016/j.biochi.2015.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
|
39
|
Vlasenko DO, Novosylna OV, Negrutskii BS, El'skaya AV. Truncation of the A,A∗,A′ helices segment impairs the actin bundling activity of mammalian eEF1A1. FEBS Lett 2015; 589:1187-93. [DOI: 10.1016/j.febslet.2015.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/26/2022]
|