1
|
Ghosh S, Takahashi S, Ohyama T, Liu L, Sugimoto N. Elucidating the Role of Groove Hydration on Stability and Functions of Biased DNA Duplexes in Cell-Like Chemical Environments. J Am Chem Soc 2024; 146:32479-32497. [PMID: 39505325 PMCID: PMC11613987 DOI: 10.1021/jacs.4c09388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Hydration plays a key role in the structure-specific stabilization of biomolecules such as nucleic acids. The hydration patterns of biased DNA sequences in the genome, such as GC-repetitive and AT-repetitive regions, are unique to their duplex grooves. As these regions are crucial for maintaining genomic homeostasis and preventing diseases such as cancer and neurodegenerative disorders, the effects of hydration on their stability and functions must be quantitatively analyzed in chemical environments that resemble intracellular conditions. In this study, we systematically investigated duplex formation of biased sequences in cell-like molecularly crowded environments to quantify the effects of groove hydration on their thermodynamics. The interaction of crowders with water molecules in the grooves was found to provide excess stabilization to biased DNAs than to unbiased DNAs, as estimated from the nearest-neighbor prediction model. These hydration effects are sequence-specific and depend on the cation type and cosolute size. Introduction of the "hydration parameters" into the nearest-neighbor model quantifying the effect of groove hydration remarkably enhanced the prediction accuracy for biased DNA stability in crowded environments. Hydration parameters can aid in elucidating the roles of biased sequences in cells such as cation-dependent quadruplex formation in cancer-related genes and regulation of replication initiation by intracellular crowding fluctuations. Additionally, these parameters can predict the free energy changes during the binding of protein to DNA grooves. Overall, our findings can help in realizing and predicting the functions of biased DNAs in cells controlled by variable chemical environments.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
- FIRST
(Graduate School of Frontiers of Innovative Research in Science and
Technology), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tatsuya Ohyama
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
| | - Lutan Liu
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
2
|
Gustavsson T, Markovitsi D. The Ubiquity of High-Energy Nanosecond Fluorescence in DNA Duplexes. J Phys Chem Lett 2023; 14:2141-2147. [PMID: 36802626 DOI: 10.1021/acs.jpclett.2c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During the past few years, several studies reported that a significant part of the intrinsic fluorescence of DNA duplexes decays with surprisingly long lifetimes (1-3 ns) at wavelengths shorter than the ππ* emission of their monomeric constituents. This high-energy nanosecond emission (HENE), hardly discernible in the steady-state fluorescence spectra of most duplexes, was investigated by time-correlated single-photon counting. The ubiquity of HENE contrasts with the paradigm that the longest-lived excited states correspond to low-energy excimers/exciplexes. Interestingly, the latter were found to decay faster than the HENE. So far, the excited states responsible for HENE remain elusive. In order to foster future studies for their characterization, this Perspective presents a critical summary of the experimental observations and the first theoretical approaches. Moreover, some new directions for further work are outlined. Finally, the obvious need for computations of the fluorescence anisotropy considering the dynamic conformational landscape of duplexes is stressed.
Collapse
Affiliation(s)
- Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
3
|
Murata T, Minami K, Yamazaki T, Yoshikawa G, Ariga K. Detection of Trace Amounts of Water in Organic Solvents by DNA-Based Nanomechanical Sensors. BIOSENSORS 2022; 12:1103. [PMID: 36551070 PMCID: PMC9775023 DOI: 10.3390/bios12121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The detection of trace amounts of water in organic solvents is of great importance in the field of chemistry and in the industry. Karl Fischer titration is known as a classic method and is widely used for detecting trace amounts of water; however, it has some limitations in terms of rapid and direct detection because of its time-consuming sample preparation and specific equipment requirements. Here, we found that a DNA-based nanomechanical sensor exhibits high sensitivity and selectivity to water vapor, leading to the detection and quantification of trace amounts of water in organic solvents as low as 12 ppm in THF, with a ppb level of LoD through their vapors. Since the present method is simple and rapid, it can be an alternative technique to the conventional Karl Fischer titration.
Collapse
Affiliation(s)
- Tomohiro Murata
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kosuke Minami
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Genki Yoshikawa
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
4
|
Ahmed M, Ganesan A, Barakat K. Leveraging structural and 2D-QSAR to investigate the role of functional group substitutions, conserved surface residues and desolvation in triggering the small molecule-induced dimerization of hPD-L1. BMC Chem 2022; 16:49. [PMID: 35761353 PMCID: PMC9238240 DOI: 10.1186/s13065-022-00842-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Small molecules are rising as a new generation of immune checkpoints’ inhibitors, with compounds targeting the human Programmed death-ligand 1 (hPD-L1) protein are pioneering this area of research. Promising examples include the recently disclosed compounds from Bristol-Myers-Squibb (BMS). These molecules bind specifically to hPD-L1 through a unique mode of action. They induce dimerization between two hPD-L1 monomers through the hPD-1 binding interface in each monomer, thereby inhibiting the PD-1/PD-L1 axis. While the recently reported crystal structures of such small molecules bound to hPD-L1 reveal valuable insights regarding their molecular interactions, there is still limited information about the dynamics driving this unusual complex formation. The current study provides an in-depth computational structural analysis to study the interactions of five small molecule compounds in complex with hPD-L1. By employing a combination of molecular dynamic simulations, binding energy calculations and computational solvent mapping techniques, our analyses quantified the dynamic roles of different hydrophilic and lipophilic residues at the surface of hPD-L1 in mediating these interactions. Furthermore, ligand-based analyses, including Free-Wilson 2D-QSAR was conducted to quantify the impact of R-group substitutions at different sites of the phenoxy-methyl biphenyl core. Our results emphasize the importance of a terminal phenyl ring that must be present in any hPD-L1 small molecule inhibitor. This phenyl moiety overlaps with a very unfavorable hydration site, which can explain the ability of such small molecules to trigger hPD-L1 dimerization.
Collapse
Affiliation(s)
- Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aravindhan Ganesan
- ArGan's Lab, School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada. .,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Yadav K, Sardana D, Shweta H, Clovis NS, Sen S. Molecular Picture of the Effect of Cosolvent Crowding on Ligand Binding and Dispersed Solvation Dynamics in G-Quadruplex DNA. J Phys Chem B 2022; 126:1668-1681. [PMID: 35170968 DOI: 10.1021/acs.jpcb.1c09349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding molecular interactions and dynamics of proteins and DNA in a cell-like crowded environment is crucial for predicting their functions within the cell. Noncanonical G-quadruplex DNA (GqDNA) structures adopt various topologies that were shown to be strongly affected by molecular crowding. However, it is unknown how such crowding affects the solvation dynamics in GqDNA. Here, we study the effect of cosolvent (acetonitrile) crowding on ligand (DAPI) solvation dynamics within human telomeric antiparallel GqDNA through direct comparison of time-resolved fluorescence Stokes shift (TRFSS) experiments and molecular dynamics (MD) simulations results. We show that ligand binding affinity to GqDNA is drastically affected by acetonitrile (ACN). Solvation dynamics probed by DAPI in GqDNA groove show dispersed dynamics from ∼100 fs to 10 ns in the absence and presence of 20% and 40% (v/v) ACN. The nature of dynamics remain similar in buffer and 20% ACN, although in 40% ACN, distinct dynamics is observed in <100 ps. MD simulations performed on GqDNA/DAPI complex reveal preferential solvation of ligand by ACN, particularly in 40% ACN. Simulated solvation time-correlation functions calculated from MD trajectories compare very well to the overall solvation dynamics of DAPI in GqDNA, observed in experiments. Linear response decomposition of simulated solvation correlation functions unfolds the origin of dispersed dynamics, showing that the slower dynamics is dominated by DNA-motion in the presence of ACN (and also by the ACN dynamics at higher concentration). However, water-DNA coupled motion controls the slow dynamics in the absence of ACN. Our data, thus, unravel a detailed molecular picture showing that though ACN crowding affect ligand binding affinity to GqDNA significantly, the overall dispersed solvation dynamics in GqDNA remain similar in the absence and the presence of 20% ACN, albeit with a small effect on the dynamics in the presence of 40% ACN due to preferential solvation of ligand by ACN.
Collapse
Affiliation(s)
- Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepika Sardana
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Him Shweta
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Takahashi S, Sugimoto N. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life. Acc Chem Res 2021; 54:2110-2120. [PMID: 33591181 DOI: 10.1021/acs.accounts.0c00734] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nucleic acids typically form a double helix structure through Watson-Crick base-pairing. In contrast, non-Watson-Crick base pairs can form other three-dimensional structures. Although it is well-known that Watson-Crick base pairs may be more unstable than non-Watson-Crick base pairs under some conditions, the importance of non-Watson-Crick base pairs has not been widely examined. Hoogsteen base pairs, the non-Watson-Crick base pairs, contain important hydrogen-bond patterns that form the helices of nucleic acids, such as in Watson-Crick base pairs, and can form non-double helix structures such as triplexes and quadruplexes. In recent years, non-double helix structures have been discovered in cells and were reported to considerably influence gene expression. The complex behavior of these nucleic acids in cells is gradually being revealed, but the underlying mechanisms remain almost unknown.Quantitatively analyzing the structural stability of nucleic acids is important for understanding their behavior. A nucleic acid is an anionic biopolymer composed of a sugar, base, and phosphoric acid. The physicochemical factors that determine the stability of nucleic acid structures include those derived from the interactions of nucleic acid structures and those derived from the environments surrounding nucleic acids. The Gibbs free energy change (ΔG) of structure formation is the most commonly used physicochemical parameter for analyzing quantitative stability. Quantitatively understanding the intracellular behavior of nucleic acids involves describing the formation of nucleic acid structures and related reactions as ΔG. Based on this concept, we quantitatively analyzed the stability of double helix and non-double helix structures and found that decreased water activity, an important factor in crowded cellular conditions, significantly destabilize the formation of Watson-Crick base pairs but stabilizes Hoogsteen base pairs.Here, we describe a physicochemical approach to understand the regulation of gene expressions based on the stability of nucleic acid structures. We developed new methods for predicting the stability of double and non-double helices in various molecular environments by mimicking intracellular environments. Furthermore, the physicochemical approach used for analyzing gene expression regulated by non-double helix structures is useful for not only determining how gene expression is controlled by cellular environments but also for developing new technologies to chemically regulate gene expression by targeting non-double helix structures. We discuss the roles of Watson-Crick and Hoogsteen base pairs in cells based on our results and why both types of base pairing are required for life. Finally, a new concept in nucleic acid science beyond that of Watson and Crick base pairing is introduced.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
7
|
Golyshev VM, Pyshnyi DV, Lomzov AA. Effects of Phosphoryl Guanidine Modification of Phosphate Residues on the Structure and Hybridization of Oligodeoxyribonucleotides. J Phys Chem B 2021; 125:2841-2855. [PMID: 33724825 DOI: 10.1021/acs.jpcb.0c10214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphoryl guanidine oligonucleotides (PGOs) are promising tools for biological research and development of biosensors and therapeutics. We performed structural and hybridization analyses of octa-, deca-, and dodecamers with all phosphate residues modified by 1,3-dimethylimidazolidine-2-imine moieties. Similarity of the B-form double helix between native and modified duplexes was noted. In PGO duplexes, we detected a decrease in the proportion of C2'-endo and an increased proportion of C1'-exo sugar conformations of the modified chain. Applicability of the two-state model to denaturation transition of all studied duplexes was proved for the first time. Sequence-dependent effects of this modification on hybridization properties were observed. The thermal stability of PGO complexes is almost native at 100 mM NaCl and slightly increases with decreasing ionic strength. An increase in water activity and dramatic changes in interaction with cations and in solvation of PGOs and their duplexes were noted, resulting in slight elevation of the melting temperature after an ionic-strength decrease from 1 M NaCl down to deionized water. Decreased binding of sodium ions and decreased water solvation were documented for PGOs and their duplexes. In contrast to DNA, the PGO duplex formation leads to a release of several cations. The water shell is significantly more disordered near PGOs and their complexes. Nevertheless, changes in solvation during the formation of native and PGO complexes are similar and indicate that it is possible to develop models for predictive calculations of the thermodynamic properties of phosphoryl guanidine oligomers. Our results may help devise an approach for the rational design of PGOs as novel improved molecular probes and tools for many modern methods involving oligonucleotides.
Collapse
Affiliation(s)
- Victor M Golyshev
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Nearest-neighbor parameters for predicting DNA duplex stability in diverse molecular crowding conditions. Proc Natl Acad Sci U S A 2020; 117:14194-14201. [PMID: 32522884 DOI: 10.1073/pnas.1920886117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular environment is crowded and heterogeneous. Although the thermodynamic stability of nucleic acid duplexes is predictable in dilute solutions, methods of predicting such stability under specific intracellular conditions are not yet available. We recently showed that the nearest-neighbor model for self-complementary DNA is valid under molecular crowding condition of 40% polyethylene glycol with an average molecular weight of 200 (PEG 200) in 100 mM NaCl. Here, we determined nearest-neighbor parameters for DNA duplex formation under the same crowding condition to predict the thermodynamics of DNA duplexes in the intracellular environment. Preferential hydration of the nucleotides was found to be the key factor for nearest-neighbor parameters in the crowding condition. The determined parameters were shown to predict the thermodynamic parameters (∆H°, ∆S°, and ∆G°37) and melting temperatures (T m) of the DNA duplexes in the crowding condition with significant accuracy. Moreover, we proposed a general method for predicting the stability of short DNA duplexes in different cosolutes based on the relationship between duplex stability and the water activity of the cosolute solution. The method described herein would be valuable for investigating biological processes that occur under specific intracellular crowded conditions and for the application of DNA-based biotechnologies in crowded environments.
Collapse
|
9
|
Jonchhe S, Pandey S, Karna D, Pokhrel P, Cui Y, Mishra S, Sugiyama H, Endo M, Mao H. Duplex DNA Is Weakened in Nanoconfinement. J Am Chem Soc 2020; 142:10042-10049. [PMID: 32383870 PMCID: PMC7295077 DOI: 10.1021/jacs.0c01978] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For proteins and DNA secondary structures such as G-quadruplexes and i-motifs, nanoconfinement can facilitate their folding and increase structural stabilities. However, the properties of the physiologically prevalent B-DNA duplex have not been elucidated inside the nanocavity. Using a 17-bp DNA duplex in the form of a hairpin stem, here, we probed folding and unfolding transitions of the hairpin DNA duplex inside a DNA origami nanocavity. Compared to the free solution, the DNA hairpin inside the nanocage with a 15 × 15 nm cross section showed a drastic decrease in mechanical (20 → 9 pN) and thermodynamic (25 → 6 kcal/mol) stabilities. Free energy profiles revealed that the activation energy of unzipping the hairpin DNA duplex decreased dramatically (28 → 8 kcal/mol), whereas the transition state moved closer to the unfolded state inside the nanocage. All of these indicate that nanoconfinement weakens the stability of the hairpin DNA duplex to an unexpected extent. In a DNA hairpin made of a stem that contains complementary telomeric G-quadruplex (GQ) and i-motif (iM) forming sequences, formation of the Hoogsteen base pairs underlining the GQ or iM is preferred over the Watson-Crick base pairs in the DNA hairpin. These results shed light on the behavior of DNA in nanochannels, nanopores, or nanopockets of various natural or synthetic machineries. It also elucidates an alternative pathway to populate noncanonical DNA over B-DNA in the cellular environment where the nanocavity is abundant.
Collapse
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yunxi Cui
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shubham Mishra
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
10
|
Jaiswal AK, Srivastava R, Pandey P, Bandyopadhyay P. Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics. PLoS One 2018; 13:e0206359. [PMID: 30427849 PMCID: PMC6235303 DOI: 10.1371/journal.pone.0206359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
It is known that crowded molecular environment affects the structure, thermodynamics, and dynamics of macromolecules. Most of the previous works on molecular crowding have majorly focused on the behavior of the macromolecule with less emphasis on the behavior of the crowder and water molecules. In the current study, we have precisely focused on the behavior of the crowder, (ethylene glycol (EG)), salt ions, and water in the presence of a DNA with the increase of the EG concentration. We have probed the behavior of water and crowder using molecular dynamics (MD) simulation and by calculating localized thermodynamic properties. Our results show an interesting competition between EG and water molecules to make hydrogen bonds (H-bond) with DNA. Although the total number of H-bonds involving DNA with both EG and water remains essentially same irrespective of the increase in EG concentration, there is a proportional change in the H-bonding pattern between water-water, EG-EG, and EG-water near DNA and in bulk. At low concentrations of EG, the displacement of water molecules near DNA is relatively easy. However, the displacement of water becomes more difficult as the concentration of EG increases. The density of Na+ (Cl-) near DNA increases (decreases) as the concentration of EG is increased. The density of Cl- near Na+ increases with the increase in EG concentration. It was also found that the average free energy per water in the first solvation shell increases with the increase in EG concentration. Putting all these together, a microscopic picture of EG, water, salt interaction in the presence of DNA, as a function of EG concentration, has emerged.
Collapse
Affiliation(s)
- Atul Kumar Jaiswal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Srivastava
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Pandey
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
11
|
Abdalla S, Obaid A, Al-Marzouki FM. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule. NANOSCALE RESEARCH LETTERS 2017; 12:316. [PMID: 28454482 PMCID: PMC5407417 DOI: 10.1186/s11671-017-2076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Deoxyribonucleic acid (DNA) is one of the best candidate materials for various device applications such as in electrodes for rechargeable batteries, biosensors, molecular electronics, medical- and biomedical-applications etc. Hence, it is worthwhile to examine the mechanism of charge transport in the DNA molecule, however, still a question without a clear answer is DNA a molecular conducting material (wire), semiconductor, or insulator? The answer, after the published data, is still ambiguous without any confirmed and clear scientific answer. DNA is found to be always surrounded with different electric charges, ions, and dipoles. These surrounding charges and electric barrier(s) due to metallic electrodes (as environmental factors (EFs)) play a substantial role when measuring the electrical conductivity through λ-double helix (DNA) molecule suspended between metallic electrodes. We found that strong frequency dependence of AC-complex conductivity comes from the electrical conduction of EFs. This leads to superimposing serious incorrect experimental data to measured ones. METHODS At 1 MHz, we carried out a first control experiment on electrical conductivity with and without the presence of DNA molecule. If there are possible electrical conduction due to stray ions and contribution of substrate, we will detected them. This control experiment revealed that there is an important role played by the environmental-charges around DNA molecule and any experiment should consider this role. RESULTS AND DISCUSSION We have succeeded to measure both electrical conductivity due to EFs (σ ENV) and electrical conductivity due to DNA molecule (σ DNA) independently by carrying the measurements at different DNA-lengths and subtracting the data. We carried out measurements as a function of frequency (f) and temperature (T) in the ranges 0.1 Hz < f < 1 MHz and 288 K < T < 343 K. The measured conductivity (σ MES) portrays a metal-like behavior at high frequencies near 1 MHz. However, we found that σ DNA was far from this behavior because the conduction due to EFs superimposes σ DNA, in particular at low frequencies. By measuring the electrical conductivity at different lengths: 40, 60, 80, and 100 nm, we have succeeded not only to separate the electrical conduction of the DNA molecule from all EFs effects that surround the molecule, but also to present accurate values of σ DNA and the dielectric constant of the molecule ε'DNA as a function of temperature and frequency. Furthermore, in order to explain these data, we present a model describing the electrical conduction through DNA molecule: DNA is a classical semiconductor with charges, dipoles and ions that result in creation of localized energy-states (LESs) in the extended bands and in the energy gap of the DNA molecule. CONCLUSIONS This model explains clearly the mechanism of charge transfer mechanism in the DNA, and it sheds light on why the charge transfer through the DNA can lead to insulating, semiconducting, or metallic behavior on the same time. The model considers charges on DNA, in the extended bands, either could be free to move under electric field or localized in potential wells/hills. Localization of charges in DNA is an intrinsic structural-property of this solitaire molecule. At all temperatures, the expected increase in thermal-induced charge is attributed to the delocalization of holes (or/and electrons) in potential hills (or/and potential wells) which accurately accounts for the total electric and dielectric behavior through DNA molecule. We succeeded to fit the experimental data to the proposed model with reasonable magnitudes of potential hills/wells that are in the energy range from 0.068 eV.
Collapse
Affiliation(s)
- S. Abdalla
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589 Saudi Arabia
| | - A. Obaid
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589 Saudi Arabia
| | - F. M. Al-Marzouki
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
12
|
Abstract
Ectoine plays an important role in protecting biomolecules and entire cells against environmental stressors such as salinity, freezing, drying and high temperatures. Recent studies revealed that ectoine also provides effective protection for human skin cells from damage caused by UV-A radiation. These protective properties make ectoine a valuable compound and it is applied as an active ingredient in numerous pharmaceutical devices and cosmetics. Interestingly, the underlying mechanism resulting in protecting cells from radiation is not yet fully understood. Here we present a study on ectoine and its protective influence on DNA during electron irradiation. Applying gel electrophoresis and atomic force microscopy, we demonstrate for the first time that ectoine prevents DNA strand breaks caused by ionizing electron radiation. The results presented here point to future applications of ectoine for instance in cancer radiation therapy.
Collapse
|
13
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
14
|
Tateishi-Karimata H, Ohyama T, Muraoka T, Podbevsek P, Wawro AM, Tanaka S, Nakano SI, Kinbara K, Plavec J, Sugimoto N. Newly characterized interaction stabilizes DNA structure: oligoethylene glycols stabilize G-quadruplexes CH-π interactions. Nucleic Acids Res 2017; 45:7021-7030. [PMID: 28453855 PMCID: PMC5499538 DOI: 10.1093/nar/gkx299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Oligoethylene glycols are used as crowding agents in experiments that aim to understand the effects of intracellular environments on DNAs. Moreover, DNAs with covalently attached oligoethylene glycols are used as cargo carriers for drug delivery systems. To investigate how oligoethylene glycols interact with DNAs, we incorporated deoxythymidine modified with oligoethylene glycols of different lengths, such as tetraethylene glycol (TEG), into DNAs that form antiparallel G-quadruplex or hairpin structures such that the modified residues were incorporated into loop regions. Thermodynamic analysis showed that because of enthalpic differences, the modified G-quadruplexes were stable and the hairpin structures were slightly unstable relative to unmodified DNA. The stability of G-quadruplexes increased with increasing length of the ethylene oxides and the number of deoxythymidines modified with ethylene glycols in the G-quadruplex. Nuclear magnetic resonance analyses and molecular dynamics calculations suggest that TEG interacts with bases in the G-quartet and loop via CH–π and lone pair–π interactions, although it was previously assumed that oligoethylene glycols do not directly interact with DNAs. The results suggest that numerous cellular co-solutes likely affect DNA function through these CH–π and lone pair–π interactions.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahiro Muraoka
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Peter Podbevsek
- Slovenian NMR Center, National Institute of Chemistry, Slovenia
| | - Adam M Wawro
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shu-Ichi Nakano
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazushi Kinbara
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Slovenia
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
15
|
Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase. Proc Natl Acad Sci U S A 2017; 114:9605-9610. [PMID: 28827350 DOI: 10.1073/pnas.1704258114] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases.
Collapse
|
16
|
Meyer S, Schröter MA, Hahn MB, Solomun T, Sturm H, Kunte HJ. Ectoine can enhance structural changes in DNA in vitro. Sci Rep 2017; 7:7170. [PMID: 28775267 PMCID: PMC5543045 DOI: 10.1038/s41598-017-07441-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022] Open
Abstract
Strand breaks and conformational changes of DNA have consequences for the physiological role of DNA. The natural protecting molecule ectoine is beneficial to entire bacterial cells and biomolecules such as proteins by mitigating detrimental effects of environmental stresses. It was postulated that ectoine-like molecules bind to negatively charged spheres that mimic DNA surfaces. We investigated the effect of ectoine on DNA and whether ectoine is able to protect DNA from damages caused by ultraviolet radiation (UV-A). In order to determine different isoforms of DNA, agarose gel electrophoresis and atomic force microscopy experiments were carried out with plasmid pUC19 DNA. Our quantitative results revealed that a prolonged incubation of DNA with ectoine leads to an increase in transitions from supercoiled (undamaged) to open circular (single-strand break) conformation at pH 6.6. The effect is pH dependent and no significant changes were observed at physiological pH of 7.5. After UV-A irradiation in ectoine solution, changes in DNA conformation were even more pronounced and this effect was pH dependent. We hypothesize that ectoine is attracted to the negatively charge surface of DNA at lower pH and therefore fails to act as a stabilizing agent for DNA in our in vitro experiments.
Collapse
Affiliation(s)
- S Meyer
- Federal Institute for Materials Research and Testing, D-12205, Berlin, Germany. .,Institute of Biochemistry and Biology, University of Potsdam, D-14476, Potsdam, Germany.
| | - M-A Schröter
- Federal Institute for Materials Research and Testing, D-12205, Berlin, Germany
| | - M B Hahn
- Federal Institute for Materials Research and Testing, D-12205, Berlin, Germany.,Institute of Experimental Physics, Free University Berlin, Department of Physics, D-14195, Berlin, Germany
| | - T Solomun
- Federal Institute for Materials Research and Testing, D-12205, Berlin, Germany
| | - H Sturm
- Federal Institute for Materials Research and Testing, D-12205, Berlin, Germany.,Technical University Berlin, D-10587, Berlin, Germany
| | - H J Kunte
- Federal Institute for Materials Research and Testing, D-12205, Berlin, Germany
| |
Collapse
|