1
|
Madru C, Martínez-Carranza M, Laurent S, Alberti AC, Chevreuil M, Raynal B, Haouz A, Le Meur RA, Delarue M, Henneke G, Flament D, Krupovic M, Legrand P, Sauguet L. DNA-binding mechanism and evolution of replication protein A. Nat Commun 2023; 14:2326. [PMID: 37087464 PMCID: PMC10122647 DOI: 10.1038/s41467-023-38048-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023] Open
Abstract
Replication Protein A (RPA) is a heterotrimeric single stranded DNA-binding protein with essential roles in DNA replication, recombination and repair. Little is known about the structure of RPA in Archaea, the third domain of life. By using an integrative structural, biochemical and biophysical approach, we extensively characterize RPA from Pyrococcus abyssi in the presence and absence of DNA. The obtained X-ray and cryo-EM structures reveal that the trimerization core and interactions promoting RPA clustering on ssDNA are shared between archaea and eukaryotes. However, we also identified a helical domain named AROD (Acidic Rpa1 OB-binding Domain), and showed that, in Archaea, RPA forms an unanticipated tetrameric supercomplex in the absence of DNA. The four RPA molecules clustered within the tetramer could efficiently coat and protect stretches of ssDNA created by the advancing replisome. Finally, our results provide insights into the evolution of this primordial replication factor in eukaryotes.
Collapse
Affiliation(s)
- Clément Madru
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Sébastien Laurent
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Alessandra C Alberti
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Maelenn Chevreuil
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Bertrand Raynal
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Ahmed Haouz
- Crystallography Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Rémy A Le Meur
- Biological NMR Platform & HDX, C2RT, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Marc Delarue
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Ghislaine Henneke
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Didier Flament
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), F-29280, Plouzané, France
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 6047, Paris, France
| | - Pierre Legrand
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
- Synchrotron SOLEIL, HelioBio group, L'Orme des Merisiers, 91190, Saint-Aubin, France
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France.
| |
Collapse
|
2
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
3
|
Wang P, Fang X, Du R, Wang J, Liu M, Xu P, Li S, Zhang K, Ye S, You Q, Yang Y, Wang C. Principles of Amino Acid and Nucleotide Revealed by Binding Affinities between Homogeneous Oligopeptides and Single-stranded DNA Molecule s. Chembiochem 2022; 23:e202200048. [PMID: 35191574 DOI: 10.1002/cbic.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Indexed: 11/11/2022]
Abstract
We have determined the binding strengths between nucleotides of adenine, thymine, guanine and cytosine in homogeneous single stranded DNAs and homo-octapeptides consisting of 20 common amino acids. We use a bead-based fluorescence assay for these measurements in which octapeptides are immobilized on the bead surface and ssDNAs are in solutions. The results provide a molecular basis for analyzing selectivity, specificity and polymorphisms of amino-acid-nucleotide interactions. Comparative analyses of the distribution of the binding energies reveal unique binding strengths patterns assignable to each pair of DNA nucleotide and amino acid originating from the chemical structures. Pronounced favorable (such as Arg-G , etc.) and unfavorable (such as Ile-T , etc.) binding interactions can be identified in selected groups of amino acid and nucleotide pairs that could provide basis to elucidate energetics of amino-acid-nucleotide interactions. Such interaction selectivity, specificity and polymorphism manifest the contributions from DNA backbone, DNA bases, as well as main chain and side chain of the amino acids.
Collapse
Affiliation(s)
- Pengyu Wang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Xiaocui Fang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Rong Du
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Jiali Wang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Mingpeng Liu
- Tsinghua University, Department of Chemistry, CHINA
| | - Peng Xu
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Shiqi Li
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Kaiyue Zhang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Siyuan Ye
- Tsinghua University, Department of Chemistry, CHINA
| | - Qing You
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Yanlian Yang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Chen Wang
- National Center for NanoScience and Technology, China(NCNST), Beijing, CHINA
| |
Collapse
|
4
|
Ackermann K, Chapman A, Bode BE. A Comparison of Cysteine-Conjugated Nitroxide Spin Labels for Pulse Dipolar EPR Spectroscopy. Molecules 2021; 26:7534. [PMID: 34946616 PMCID: PMC8706713 DOI: 10.3390/molecules26247534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The structure-function and materials paradigms drive research on the understanding of structures and structural heterogeneity of molecules and solids from materials science to structural biology. Functional insights into complex architectures are often gained from a suite of complementary physicochemical methods. In the context of biomacromolecular structures, the use of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) has become increasingly popular. The main interest in PDS is providing long-range nanometre distance distributions that allow for identifying macromolecular topologies, validating structural models and conformational transitions as well as docking of quaternary complexes. Most commonly, cysteines are introduced into protein structures by site-directed mutagenesis and modified site-specifically to a spin-labelled side-chain such as a stable nitroxide radical. In this contribution, we investigate labelling by four different commercial labelling agents that react through different sulfur-specific reactions. Further, the distance distributions obtained are between spin-bearing moieties and need to be related to the protein structure via modelling approaches. Here, we compare two different approaches to modelling these distributions for all four side-chains. The results indicate that there are significant differences in the optimum labelling procedure. All four spin-labels show differences in the ease of labelling and purification. Further challenges arise from the different tether lengths and rotamers of spin-labelled side-chains; both influence the modelling and translation into structures. Our comparison indicates that the spin-label with the shortest tether in the spin-labelled side-group, (bis-(2,2,5,5-Tetramethyl-3-imidazoline-1-oxyl-4-yl) disulfide, may be underappreciated and could increase the resolution of structural studies by PDS if labelling conditions are optimised accordingly.
Collapse
Affiliation(s)
| | | | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (K.A.); (A.C.)
| |
Collapse
|
5
|
Chen J, Zaer S, Drori P, Zamel J, Joron K, Kalisman N, Lerner E, Dokholyan NV. The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds. Structure 2021; 29:1048-1064.e6. [PMID: 34015255 PMCID: PMC8419013 DOI: 10.1016/j.str.2021.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
α-Synuclein plays an important role in synaptic functions by interacting with synaptic vesicle membrane, while its oligomers and fibrils are associated with several neurodegenerative diseases. The specific monomer structures that promote its membrane binding and self-association remain elusive due to its transient nature as an intrinsically disordered protein. Here, we use inter-dye distance distributions from bulk time-resolved Förster resonance energy transfer as restraints in discrete molecular dynamics simulations to map the conformational space of the α-synuclein monomer. We further confirm the generated conformational ensemble in orthogonal experiments utilizing far-UV circular dichroism and cross-linking mass spectrometry. Single-molecule protein-induced fluorescence enhancement measurements show that within this conformational ensemble, some of the conformations of α-synuclein are surprisingly stable, exhibiting conformational transitions slower than milliseconds. Our comprehensive analysis of the conformational ensemble reveals essential structural properties and potential conformations that promote its various functions in membrane interaction or oligomer and fibril formation.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sofia Zaer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Joanna Zamel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Abstract
Single-stranded (ss) DNA-binding proteins are found in all three domains of life where they play vital roles in nearly all aspects of DNA metabolism by binding to and stabilizing exposed ssDNA and acting as platforms onto which DNA-processing activities can assemble. The ssDNA-binding factors SSB and RPA are extremely well conserved across bacteria and eukaryotes, respectively, and comprise one or more OB-fold ssDNA-binding domains. In the third domain of life, the archaea, multiple types of ssDNA-binding protein are found with a variety of domain architectures and subunit compositions, with OB-fold ssDNA-binding domains being a characteristic of most, but not all. This chapter summarizes current knowledge of the distribution, structure, and biological function of the archaeal ssDNA-binding factors, highlighting key features shared between clades and those that distinguish the proteins of different clades from one another. The likely cellular functions of the proteins are discussed and gaps in current knowledge identified.
Collapse
Affiliation(s)
- Najwa Taib
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France
- Hub Bioinformatics and Biostatistics, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Simonetta Gribaldo
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
8
|
McCluskey K, Boudreault J, St-Pierre P, Perez-Gonzalez C, Chauvier A, Rizzi A, Beauregard PB, Lafontaine DA, Penedo JC. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2. Nucleic Acids Res 2020; 47:6478-6487. [PMID: 31045204 PMCID: PMC6614840 DOI: 10.1093/nar/gkz316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer–ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK
| | - Julien Boudreault
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Patrick St-Pierre
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Adrien Chauvier
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Adrien Rizzi
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Pascale B Beauregard
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | | | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, Scotland KY16 9ST, UK
| |
Collapse
|
9
|
Rashid F, Raducanu VS, Zaher MS, Tehseen M, Habuchi S, Hamdan SM. Initial state of DNA-Dye complex sets the stage for protein induced fluorescence modulation. Nat Commun 2019; 10:2104. [PMID: 31068591 PMCID: PMC6506533 DOI: 10.1038/s41467-019-10137-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
Protein-induced fluorescence enhancement (PIFE) is a popular tool for characterizing protein-DNA interactions. PIFE has been explained by an increase in local viscosity due to the presence of the protein residues. This explanation, however, denies the opposite effect of fluorescence quenching. This work offers a perspective for understanding PIFE mechanism and reports the observation of a phenomenon that we name protein-induced fluorescence quenching (PIFQ), which exhibits an opposite effect to PIFE. A detailed characterization of these two fluorescence modulations reveals that the initial fluorescence state of the labeled mediator (DNA) determines whether this mediator-conjugated dye undergoes PIFE or PIFQ upon protein binding. This key role of the mediator DNA provides a protocol for the experimental design to obtain either PIFQ or PIFE, on-demand. This makes the arbitrary nature of the current experimental design obsolete, allowing for proper integration of both PIFE and PIFQ with existing bulk and single-molecule fluorescence techniques. Protein-induced fluorescence enhancement (PIFE) is a popular tool for characterizing protein-DNA interactions. Here, authors provide a perspective on understanding the general phenomenon of induced fluorescence modulation
Collapse
Affiliation(s)
- Fahad Rashid
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955, Saudi Arabia
| | - Manal S Zaher
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955, Saudi Arabia
| | - Muhammad Tehseen
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955, Saudi Arabia
| | - Satoshi Habuchi
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955, Saudi Arabia
| | - Samir M Hamdan
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
10
|
White MF, Allers T. DNA repair in the archaea-an emerging picture. FEMS Microbiol Rev 2018; 42:514-526. [PMID: 29741625 DOI: 10.1093/femsre/fuy020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
There has long been a fascination in the DNA repair pathways of archaea, for two main reasons. Firstly, many archaea inhabit extreme environments where the rate of physical damage to DNA is accelerated. These archaea might reasonably be expected to have particularly robust or novel DNA repair pathways to cope with this. Secondly, the archaea have long been understood to be a lineage distinct from the bacteria, and to share a close relationship with the eukarya, particularly in their information processing systems. Recent discoveries suggest the eukarya arose from within the archaeal domain, and in particular from lineages related to the TACK superphylum and Lokiarchaea. Thus, archaeal DNA repair proteins and pathways can represent a useful model system. This review focuses on recent advances in our understanding of archaeal DNA repair processes including base excision repair, nucleotide excision repair, mismatch repair and double-strand break repair. These advances are discussed in the context of the emerging picture of the evolution and relationship of the three domains of life.
Collapse
Affiliation(s)
- Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife KY16 9ST, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
11
|
Rollie C, Graham S, Rouillon C, White MF. Prespacer processing and specific integration in a Type I-A CRISPR system. Nucleic Acids Res 2018; 46:1007-1020. [PMID: 29228332 PMCID: PMC5815122 DOI: 10.1093/nar/gkx1232] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
The CRISPR-Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3' ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3' ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR-Cas elements and host proteins across CRISPR types.
Collapse
Affiliation(s)
- Clare Rollie
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Christophe Rouillon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
12
|
Cook A, Hari-Gupta Y, Toseland CP. Application of the SSB biosensor to study in vitro transcription. Biochem Biophys Res Commun 2018; 496:820-825. [PMID: 29378185 PMCID: PMC5811048 DOI: 10.1016/j.bbrc.2018.01.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 01/09/2023]
Abstract
Gene expression, catalysed by RNA polymerases (RNAP), is one of the most fundamental processes in living cells. The majority of methods to quantify mRNA are based upon purification of the nucleic acid which leads to experimental inaccuracies and loss of product, or use of high cost dyes and sensitive spectrophotometers. Here, we describe the use of a fluorescent biosensor based upon the single stranded binding (SSB) protein. In this study, the SSB biosensor showed similar binding properties to mRNA, to that of its native substrate, single-stranded DNA (ssDNA). We found the biosensor to be reproducible with no associated loss of product through purification, or the requirement for expensive dyes. Therefore, we propose that the SSB biosensor is a useful tool for comparative measurement of mRNA yield following in vitro transcription. Single-stranded binding protein can bind mRNA similar to single-stranded DNA. The biosensor MDCC-SSB can be used to quantify mRNA yield from in vitro transcription. Myosin VI motor activity is required for in vitro and in vivo transcription.
Collapse
Affiliation(s)
- Alexander Cook
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | |
Collapse
|
13
|
Touma C, Adams MN, Ashton NW, Mizzi M, El-Kamand S, Richard DJ, Cubeddu L, Gamsjaeger R. A data-driven structural model of hSSB1 (NABP2/OBFC2B) self-oligomerization. Nucleic Acids Res 2017; 45:8609-8620. [PMID: 28609781 PMCID: PMC5737504 DOI: 10.1093/nar/gkx526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022] Open
Abstract
The maintenance of genome stability depends on the ability of the cell to repair DNA efficiently. Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. While the role of human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) in the repair of double-stranded breaks has been well established, we have recently shown that it is also essential for the base excision repair (BER) pathway following oxidative DNA damage. However, unlike in DSB repair, the formation of stable hSSB1 oligomers under oxidizing conditions is an important prerequisite for its proper function in BER. In this study, we have used solution-state NMR in combination with biophysical and functional experiments to obtain a structural model of hSSB1 self-oligomerization. We reveal that hSSB1 forms a tetramer that is structurally similar to the SSB from Escherichia coli and is stabilized by two cysteines (C81 and C99) as well as a subset of charged and hydrophobic residues. Our structural and functional data also show that hSSB1 oligomerization does not preclude its function in DSB repair, where it can interact with Ints3, a component of the SOSS1 complex, further establishing the versatility that hSSB1 displays in maintaining genome integrity.
Collapse
Affiliation(s)
- Christine Touma
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mark N Adams
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Nicholas W Ashton
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Michael Mizzi
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Serene El-Kamand
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Kinetic insights into the temperature dependence of DNA strand cleavage and religation by topoisomerase III from the hyperthermophile Sulfolobus solfataricus. Sci Rep 2017; 7:5494. [PMID: 28710489 PMCID: PMC5511271 DOI: 10.1038/s41598-017-05837-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/23/2017] [Indexed: 11/08/2022] Open
Abstract
All cellular organisms encode type IA topoisomerases which catalyze DNA topological changes essential for DNA transactions. However, the kinetics of the reaction catalyzed by these enzymes remains poorly characterized. Here we measured the rapid kinetics of template binding, cleavage and religation by Sso topo III, a type IA topoisomerase from the hyperthermophilic archaeon Sulfolobus solfataricus, by using a novel FRET/PIFE-based method in a stopped-flow spectrometer. We show that Sso topo III bound the template rapidly, and the rate of binding was 2–3 orders of magnitudes higher than that of template cleavage at 25 °C. The rate of template cleavage was favored over that of template religation by the enzyme, and was more so at lower temperatures (25–55 °C). Significant template cleavage [(2.23 ± 0.11) × 10−3 s−1] was observed while little religation was detectable at 25 °C. This is consistent with the presence of a higher activation energy for template religation (41 ± 5 kcal·mol−1) than that for template cleavage (32 ± 1 kcal·mol−1). Our results provide a kinetic interpretation for the ability of Sso topo III to relax negatively supercoiled DNA only at higher temperature and offer clues to the adaptation of the reaction mechanisms of thermophilic enzymes to high temperature.
Collapse
|
15
|
Morten MJ, Gamsjaeger R, Cubeddu L, Kariawasam R, Peregrina J, Penedo JC, White MF. High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein. Extremophiles 2017; 21:369-379. [PMID: 28074284 PMCID: PMC5346138 DOI: 10.1007/s00792-016-0910-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022]
Abstract
Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.
Collapse
Affiliation(s)
- Michael J Morten
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jose Peregrina
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - J Carlos Penedo
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|
16
|
Gidi Y, Götte M, Cosa G. Conformational Changes Spanning Angstroms to Nanometers via a Combined Protein-Induced Fluorescence Enhancement-Förster Resonance Energy Transfer Method. J Phys Chem B 2017; 121:2039-2048. [PMID: 28177636 DOI: 10.1021/acs.jpcb.6b11495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Förster resonance energy transfer (FRET)-based single-molecule techniques have revolutionized our understanding of conformational dynamics in biomolecular systems. Recently, a new single-molecule technique based on protein-induced fluorescence enhancement (PIFE) has aided studies in which minimal (<3 nm) displacements occur. Concerns have been raised regarding whether donor fluorophore intensity (and correspondingly fluorescence quantum yield Φf) fluctuations, intrinsic to PIFE methods, may adversely affect FRET studies when retrieving the donor-acceptor dye distance. Here, we initially show through revisions of Förster's original equation that distances may be calculated in FRET experiments regardless of protein-induced intensity (and Φf) fluctuations occurring in the donor fluorophore. We additionally demonstrate by an analysis of the recorded emission intensity and competing decay pathways that PIFE and FRET methods may be conveniently combined, providing parallel complementary information in a single experiment. Single-molecule studies conducted with Cy3- and ATTO647N-labeled RNA structures and the HCV-NS5B polymerase protein undergoing binding dynamics along the RNA backbone provide a case study to validate the results. The analysis behind the proposed method enables for PIFE and FRET changes to be disentangled when both FRET and PIFE fluctuate over time following protein arrival and, for example, sliding. A new method, intensity-FRET, is thus proposed to monitor conformational changes spanning from angstroms to nanometers.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Matthias Götte
- Department of Biochemistry and Department of Medical Microbiology and Immunology, University of Alberta , 6020K Katz Group Centre, Edmonton, Alberta, Canada T6G 2E1
| | - Gonzalo Cosa
- Department of Chemistry and Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
17
|
Phelps C, Israels B, Marsh MC, von Hippel PH, Marcus AH. Using Multiorder Time-Correlation Functions (TCFs) To Elucidate Biomolecular Reaction Pathways from Microsecond Single-Molecule Fluorescence Experiments. J Phys Chem B 2016; 120:13003-13016. [PMID: 27992233 DOI: 10.1021/acs.jpcb.6b08449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in single-molecule fluorescence imaging have made it possible to perform measurements on microsecond time scales. Such experiments have the potential to reveal detailed information about the conformational changes in biological macromolecules, including the reaction pathways and dynamics of the rearrangements involved in processes, such as sequence-specific DNA "breathing" and the assembly of protein-nucleic acid complexes. Because microsecond-resolved single-molecule trajectories often involve "sparse" data, that is, they contain relatively few data points per unit time, they cannot be easily analyzed using the standard protocols that were developed for single-molecule experiments carried out with tens-of-millisecond time resolution and high "data density." Here, we describe a generalized approach, based on time-correlation functions, to obtain kinetic information from microsecond-resolved single-molecule fluorescence measurements. This approach can be used to identify short-lived intermediates that lie on reaction pathways connecting relatively long-lived reactant and product states. As a concrete illustration of the potential of this methodology for analyzing specific macromolecular systems, we accompany the theoretical presentation with the description of a specific biologically relevant example drawn from studies of reaction mechanisms of the assembly of the single-stranded DNA binding protein of the T4 bacteriophage replication complex onto a model DNA replication fork.
Collapse
Affiliation(s)
- Carey Phelps
- Institute of Molecular Biology and Department of Chemistry and Biochemistry and ‡Oregon Center for Optical, Molecular and Quantum Science and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Brett Israels
- Institute of Molecular Biology and Department of Chemistry and Biochemistry and ‡Oregon Center for Optical, Molecular and Quantum Science and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Morgan C Marsh
- Institute of Molecular Biology and Department of Chemistry and Biochemistry and ‡Oregon Center for Optical, Molecular and Quantum Science and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Peter H von Hippel
- Institute of Molecular Biology and Department of Chemistry and Biochemistry and ‡Oregon Center for Optical, Molecular and Quantum Science and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Andrew H Marcus
- Institute of Molecular Biology and Department of Chemistry and Biochemistry and ‡Oregon Center for Optical, Molecular and Quantum Science and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| |
Collapse
|
18
|
Lee W, Gillies JP, Jose D, Israels BA, von Hippel PH, Marcus AH. Single-molecule FRET studies of the cooperative and non-cooperative binding kinetics of the bacteriophage T4 single-stranded DNA binding protein (gp32) to ssDNA lattices at replication fork junctions. Nucleic Acids Res 2016; 44:10691-10710. [PMID: 27694621 PMCID: PMC5159549 DOI: 10.1093/nar/gkw863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/20/2016] [Accepted: 09/19/2016] [Indexed: 11/14/2022] Open
Abstract
Gene 32 protein (gp32) is the single-stranded (ss) DNA binding protein of the bacteriophage T4. It binds transiently and cooperatively to ssDNA sequences exposed during the DNA replication process and regulates the interactions of the other sub-assemblies of the replication complex during the replication cycle. We here use single-molecule FRET techniques to build on previous thermodynamic studies of gp32 binding to initiate studies of the dynamics of the isolated and cooperative binding of gp32 molecules within the replication complex. DNA primer/template (p/t) constructs are used as models to determine the effects of ssDNA lattice length, gp32 concentration, salt concentration, binding cooperativity and binding polarity at p/t junctions. Hidden Markov models (HMMs) and transition density plots (TDPs) are used to characterize the dynamics of the multi-step assembly pathway of gp32 at p/t junctions of differing polarity, and show that isolated gp32 molecules bind to their ssDNA targets weakly and dissociate quickly, while cooperatively bound dimeric or trimeric clusters of gp32 bind much more tightly, can 'slide' on ssDNA sequences, and exhibit binding dynamics that depend on p/t junction polarities. The potential relationships of these binding dynamics to interactions with other components of the T4 DNA replication complex are discussed.
Collapse
Affiliation(s)
- Wonbae Lee
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, OR 97403, USA.,Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - John P Gillies
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Davis Jose
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Brett A Israels
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, OR 97403, USA.,Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Peter H von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA .,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, OR 97403, USA .,Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
19
|
Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. Sci Rep 2016; 6:33257. [PMID: 27641327 PMCID: PMC5027553 DOI: 10.1038/srep33257] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/24/2016] [Indexed: 01/24/2023] Open
Abstract
Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.
Collapse
|
20
|
Lerner E, Ploetz E, Hohlbein J, Cordes T, Weiss S. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET). J Phys Chem B 2016; 120:6401-10. [PMID: 27184889 PMCID: PMC4939467 DOI: 10.1021/acs.jpcb.6b03692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Single-molecule,
protein-induced fluorescence enhancement (PIFE)
serves as a molecular ruler at molecular distances inaccessible to
other spectroscopic rulers such as Förster-type resonance energy
transfer (FRET) or photoinduced electron transfer. In order to provide
two simultaneous measurements of two distances on different molecular
length scales for the analysis of macromolecular complexes, we and
others recently combined measurements of PIFE and FRET (PIFE-FRET)
on the single molecule level. PIFE relies on steric hindrance of the
fluorophore Cy3, which is covalently attached to a biomolecule of
interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate.
In this work, we provide a theoretical framework that accounts for
relevant photophysical and kinetic parameters of PIFE-FRET, show how
this framework allows the extraction of the fold-decrease in isomerization
mobility from experimental data, and show how these results provide
information on changes in the accessible volume of Cy3. The utility
of this model is then demonstrated for experimental results on PIFE-FRET
measurement of different protein–DNA interactions. The proposed
model and extracted parameters could serve as a benchmark to allow
quantitative comparison of PIFE effects in different biological systems.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Evelyn Ploetz
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research , Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.,Microspectroscopy Centre, Wageningen University and Research , Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|