1
|
Hefzi H, Martínez-Monge I, Marin de Mas I, Cowie NL, Toledo AG, Noh SM, Karottki KJLC, Decker M, Arnsdorf J, Camacho-Zaragoza JM, Kol S, Schoffelen S, Pristovšek N, Hansen AH, Miguez AA, Bjorn SP, Brøndum KK, Javidi EM, Jensen KL, Stangl L, Kreidl E, Kallehauge TB, Ley D, Ménard P, Petersen HM, Sukhova Z, Bauer A, Casanova E, Barron N, Malmström J, Nielsen LK, Lee GM, Kildegaard HF, Voldborg BG, Lewis NE. Multiplex genome editing eliminates the Warburg Effect without impacting growth rate in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606284. [PMID: 39211256 PMCID: PMC11361052 DOI: 10.1101/2024.08.02.606284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. In contrast to long-standing assumptions about the role of aerobic glycolysis, Warburg-null cells maintain wildtype growth rate while producing negligible lactate. Further characterization of Warburg-null CHO cells showed a compensatory increase in oxygen consumption, a near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. These cells remained amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titers and maintaining product glycosylation. Thus, the ability to eliminate the Warburg effect is an important development for biotherapeutic production and provides a tool for investigating a near-universal metabolic phenomenon.
Collapse
|
2
|
John MM, Hunjadi M, Hawlin V, Reiser JB, Kunert R. Interaction Studies of Hexameric and Pentameric IgMs with Serum-Derived C1q and Recombinant C1q Mimetics. Life (Basel) 2024; 14:638. [PMID: 38792658 PMCID: PMC11123335 DOI: 10.3390/life14050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The interaction between IgM and C1q represents the first step of the classical pathway of the complement system in higher vertebrates. To identify the significance of particular IgM/C1q interactions, recombinant IgMs were used in both hexameric and pentameric configurations and with two different specificities, along with C1q derived from human serum (sC1q) and two recombinant single-chain variants of the trimeric globular region of C1q. Interaction and complement activation assays were performed using the ELISA format, and bio-layer interferometry measurements to study kinetic behavior. The differences between hexameric and pentameric IgM conformations were only slightly visible in the interaction assay, but significant in the complement activation assay. Hexameric IgM requires a lower concentration of sC1q to activate the complement compared to pentameric IgM, leading to an increased release of C4 compared to pentameric IgM. The recombinant C1q mimetics competed with sC1q in interaction assays and were able to inhibit complement activation. The bio-layer interferometry measurements revealed KD values in the nanomolar range for the IgM/C1q interaction, while the C1q mimetics exhibited rapid on and off binding rates with the IgMs. Our results make C1q mimetics valuable tools for developing recombinant C1q, specifically its variants, for further scientific studies and clinical applications.
Collapse
Affiliation(s)
- Maria Magdalena John
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, BOKU University, Muthgasse 11, 1190 Vienna, Austria; (M.M.J.)
| | - Monika Hunjadi
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, BOKU University, Muthgasse 11, 1190 Vienna, Austria; (M.M.J.)
| | - Vanessa Hawlin
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, BOKU University, Muthgasse 11, 1190 Vienna, Austria; (M.M.J.)
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Renate Kunert
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, BOKU University, Muthgasse 11, 1190 Vienna, Austria; (M.M.J.)
| |
Collapse
|
3
|
Zboray K, Toth AV, Miskolczi TD, Pesti K, Casanova E, Kreidl E, Mike A, Szenes Á, Sági L, Lukacs P. High-throughput ligand profile characterization in novel cell lines expressing seven heterologous insect olfactory receptors for the detection of volatile plant biomarkers. Sci Rep 2023; 13:21757. [PMID: 38066004 PMCID: PMC10709440 DOI: 10.1038/s41598-023-47455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Agriculturally important crop plants emit a multitude of volatile organic compounds (VOCs), which are excellent indicators of their health status and their interactions with pathogens and pests. In this study, we have developed a novel cellular olfactory panel for detecting fungal pathogen-related VOCs we had identified in the field, as well as during controlled inoculations of several crop plants. The olfactory panel consists of seven stable HEK293 cell lines each expressing a functional Drosophila olfactory receptor as a biosensing element along with GCaMP6, a fluorescent calcium indicator protein. An automated 384-well microplate reader was used to characterize the olfactory receptor cell lines for their sensitivity to reference VOCs. Subsequently, we profiled a set of 66 VOCs on all cell lines, covering a concentration range from 1 to 100 μM. Results showed that 49 VOCs (74.2%) elicited a response in at least one olfactory receptor cell line. Some VOCs activated the cell lines even at nanomolar (ppb) concentrations. The interaction profiles obtained here will support the development of biosensors for agricultural applications. Additionally, the olfactory receptor proteins can be purified from these cell lines with sufficient yields for further processing, such as structure determination or integration with sensor devices.
Collapse
Affiliation(s)
- Katalin Zboray
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- TetraLab Ltd., Budapest, Hungary
| | - Adam V Toth
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tímea D Miskolczi
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Krisztina Pesti
- TetraLab Ltd., Budapest, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Emilio Casanova
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Emanuel Kreidl
- Department of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Novartis AG, 6336, Langkampfen, Austria
| | - Arpad Mike
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Áron Szenes
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - László Sági
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Peter Lukacs
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary.
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary.
| |
Collapse
|
4
|
Yoon C, Baek KE, Kim D, Lee GM. Mitigating transcriptional bottleneck using a constitutively active transcription factor, VP16-CREB, in mammalian cells. Metab Eng 2023; 80:33-44. [PMID: 37709006 DOI: 10.1016/j.ymben.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
High-level expression of recombinant proteins in mammalian cells has long been an area of interest. Inefficient transcription machinery is often an obstacle in achieving high-level expression of recombinant proteins in mammalian cells. Synthetic promoters have been developed to improve the transcription efficiency, but have achieved limited success due to the limited availability of transcription factors (TFs). Here, we present a TF-engineering approach to mitigate the transcriptional bottlenecks of recombinant proteins. This includes: (i) identification of cAMP response element binding protein (CREB) as a candidate TF by searching for TFs enriched in the cytomegalovirus (CMV) promoter-driven high-producing recombinant Chinese hamster ovary (rCHO) cell lines via transcriptome analysis, (ii) confirmation of transcriptional limitation of active CREB in rCHO cell lines, and (iii) direct activation of the transgene promoter by expressing constitutively active CREB at non-cytotoxic levels in rCHO cell lines. With the expression of constitutively active VP16-CREB, the production of therapeutic proteins, such as monoclonal antibody and etanercept, in CMV promoter-driven rCHO cell lines was increased up to 3.9-fold. VP16-CREB was also used successfully with synthetic promoters containing cAMP response elements. Taken together, this strategy to introduce constitutively active TFs into cells is a useful means of overcoming the transcriptional limitations in recombinant mammalian cells.
Collapse
Affiliation(s)
- Chansik Yoon
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyoung Eun Baek
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Dongil Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Martin GM, Russell RA, Mundsperger P, Harris S, Jovanoska L, Trajano LF, Schiffner T, Fabian K, Tolazzi M, Scarlatti G, McFarlane L, Cheeseman H, Aldon Y, Schermer EE, Breemen M, Sliepen K, Katinger D, Kunert R, Sanders RW, Shattock R, Ward AB, Sattentau QJ. Profound structural conservation of chemically cross-linked HIV-1 envelope glycoprotein experimental vaccine antigens. NPJ Vaccines 2023; 8:101. [PMID: 37443366 PMCID: PMC10345191 DOI: 10.1038/s41541-023-00696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chemical cross-linking is used to stabilize protein structures with additional benefits of pathogen and toxin inactivation for vaccine use, but its use has been restricted by the potential for local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for inducing a biological outcome such as the elicitation of antibodies to conformationally sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimide (EDC) to cross-link two soluble Env trimers, selected well-folded trimer species using antibody affinity, and transferred this process to good manufacturing practice (GMP) for experimental medicine use. Cross-linking enhanced trimer stability to biophysical and enzyme attack. Cryo-EM analysis revealed that cross-linking retained the overall structure with root-mean-square deviations (RMSDs) between unmodified and cross-linked Env trimers of 0.4-0.5 Å. Despite this negligible distortion of global trimer structure, we identified individual inter-subunit, intra-subunit, and intra-protomer cross-links. Antigenicity and immunogenicity of the trimers were selectively modified by cross-linking, with cross-linked ConS retaining bnAb binding more consistently than ConM. Thus, the EDC cross-linking process improves trimer stability whilst maintaining protein folding, and is readily transferred to GMP, consistent with the more general use of this approach in protein-based vaccine design.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Rebecca A Russell
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | - Philip Mundsperger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Scarlett Harris
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | - Lu Jovanoska
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | | | - Torben Schiffner
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Katalin Fabian
- Department of Immunology, National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Leon McFarlane
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Hannah Cheeseman
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Yoann Aldon
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Edith E Schermer
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle Breemen
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Dietmar Katinger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Robin Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Zhang YN, Paynter J, Antanasijevic A, Allen JD, Eldad M, Lee YZ, Copps J, Newby ML, He L, Chavez D, Frost P, Goodroe A, Dutton J, Lanford R, Chen C, Wilson IA, Crispin M, Ward AB, Zhu J. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates. Nat Commun 2023; 14:1985. [PMID: 37031217 PMCID: PMC10082823 DOI: 10.1038/s41467-023-37742-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Uncleaved prefusion-optimized (UFO) design can stabilize diverse HIV-1 envelope glycoproteins (Envs). Single-component, self-assembling protein nanoparticles (1c-SApNP) can display 8 or 20 native-like Env trimers as vaccine candidates. We characterize the biophysical, structural, and antigenic properties of 1c-SApNPs that present the BG505 UFO trimer with wildtype and modified glycans. For 1c-SApNPs, glycan trimming improves recognition of the CD4 binding site without affecting broadly neutralizing antibodies (bNAbs) to major glycan epitopes. In mice, rabbits, and nonhuman primates, glycan trimming increases the frequency of vaccine responders (FVR) and steers antibody responses away from immunodominant glycan holes and glycan patches. The mechanism of vaccine-induced immunity is examined in mice. Compared with the UFO trimer, the multilayered E2p and I3-01v9 1c-SApNPs show 420 times longer retention in lymph node follicles, 20-32 times greater presentation on follicular dendritic cell dendrites, and up-to-4 times stronger germinal center reactions. These findings can inform future HIV-1 vaccine development.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mor Eldad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deborah Chavez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Pat Frost
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - John Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Christopher Chen
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Irreversible and reversible impact on cellular behavior upon intra-experimental process parameter shifts in a CHO semi-continuous perfusion process. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Pappenreiter M, Lhota G, Vorauer‐Uhl K, Sissolak B. Antibody glycation during a
CHO
fed‐batch process following a constrained second order reaction. Biotechnol Prog 2022; 38:e3261. [DOI: 10.1002/btpr.3261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Magdalena Pappenreiter
- Innovation Management Bilfinger Life Science GmbH Salzburg Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology University of Natural Resources and Life Sciences Vienna Austria
| | - Gabriele Lhota
- Institute of Bioprocess Science and Engineering, Department of Biotechnology University of Natural Resources and Life Sciences Vienna Austria
| | - Karola Vorauer‐Uhl
- Institute of Bioprocess Science and Engineering, Department of Biotechnology University of Natural Resources and Life Sciences Vienna Austria
| | | |
Collapse
|
9
|
Schellenberg J, Nagraik T, Wohlenberg OJ, Ruhl S, Bahnemann J, Scheper T, Solle D. Stress‐induced increase of monoclonal antibody production in CHO cells. Eng Life Sci 2022; 22:427-436. [PMID: 35573136 PMCID: PMC9077828 DOI: 10.1002/elsc.202100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) are of great interest to the biopharmaceutical industry due to their widely used application as human therapeutic and diagnostic agents. As such, mAb require to exhibit human‐like glycolization patterns. Therefore, recombinant Chinese hamster ovary (CHO) cells are the favored production organisms; many relevant biopharmaceuticals are already produced by this cell type. To optimize the mAb yield in CHO DG44 cells a corelation between stress‐induced cell size expansion and increased specific productivity was investigated. CO2 and macronutrient supply of the cells during a 12‐day fed‐batch cultivation process were tested as stress factors. Shake flasks (500 mL) and a small‐scale bioreactor system (15 mL) were used for the cultivation experiments and compared in terms of their effect on cell diameter, integral viable cell concentration (IVCC), and cell‐specific productivity. The achieved stress‐induced increase in cell‐specific productivity of up to 94.94.9%–134.4% correlates to a cell diameter shift of up to 7.34 μm. The highest final product titer of 4 g/L was reached by glucose oversupply during the batch phase of the process.
Collapse
Affiliation(s)
- Jana Schellenberg
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| | - Tamanna Nagraik
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| | | | - Sebastian Ruhl
- Field Application Specialist – Cell Culture Technologies Sartorius Stedim Biotech GmbH Göttingen Germany
| | - Janina Bahnemann
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| | - Thomas Scheper
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| | - Dörte Solle
- Institut für Technische Chemie Leibniz Universität Hannover Hannover Germany
| |
Collapse
|
10
|
Bayer B, Duerkop M, Striedner G, Sissolak B. Model Transferability and Reduced Experimental Burden in Cell Culture Process Development Facilitated by Hybrid Modeling and Intensified Design of Experiments. Front Bioeng Biotechnol 2022; 9:740215. [PMID: 35004635 PMCID: PMC8733703 DOI: 10.3389/fbioe.2021.740215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Reliable process development is accompanied by intense experimental effort. The utilization of an intensified design of experiments (iDoE) (intra-experimental critical process parameter (CPP) shifts combined) with hybrid modeling potentially reduces process development burden. The iDoE can provide more process response information in less overall process time, whereas hybrid modeling serves as a commodity to describe this behavior the best way. Therefore, a combination of both approaches appears beneficial for faster design screening and is especially of interest at larger scales where the costs per experiment rise significantly. Ideally, profound process knowledge is gathered at a small scale and only complemented with few validation experiments on a larger scale, saving valuable resources. In this work, the transferability of hybrid modeling for Chinese hamster ovary cell bioprocess development along process scales was investigated. A two-dimensional DoE was fully characterized in shake flask duplicates (300 ml), containing three different levels for the cultivation temperature and the glucose concentration in the feed. Based on these data, a hybrid model was developed, and its performance was assessed by estimating the viable cell concentration and product titer in 15 L bioprocesses with the same DoE settings. To challenge the modeling approach, 15 L bioprocesses also comprised iDoE runs with intra-experimental CPP shifts, impacting specific cell rates such as growth, consumption, and formation. Subsequently, the applicability of the iDoE cultivations to estimate static cultivations was also investigated. The shaker-scale hybrid model proved suitable for application to a 15 L scale (1:50), estimating the viable cell concentration and the product titer with an NRMSE of 10.92% and 17.79%, respectively. Additionally, the iDoE hybrid model performed comparably, displaying NRMSE values of 13.75% and 21.13%. The low errors when transferring the models from shaker to reactor and between the DoE and the iDoE approach highlight the suitability of hybrid modeling for mammalian cell culture bioprocess development and the potential of iDoE to accelerate process characterization and to improve process understanding.
Collapse
Affiliation(s)
- Benjamin Bayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | - Mark Duerkop
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | | |
Collapse
|
11
|
Mayrhofer P, Hunjadi M, Kunert R. Functional Trimeric SARS-CoV-2 Envelope Protein Expressed in Stable CHO Cells. Front Bioeng Biotechnol 2021; 9:779359. [PMID: 34976974 PMCID: PMC8718689 DOI: 10.3389/fbioe.2021.779359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a β-coronavirus, is the causative agent of the COVID-19 pandemic. One of the three membrane-bound envelope proteins is the spike protein (S), the one responsible for docking to the cellular surface protein ACE2 enabling infection with SARS-CoV-2. Although the structure of the S-protein has distinct similarities to other viral envelope proteins, robust and straightforward protocols for recombinant expression and purification are not described in the literature. Therefore, most studies are done with truncated versions of the protein, like the receptor-binding domain. To learn more about the interaction of the virus with the ACE2 and other cell surface proteins, it is mandatory to provide recombinant spike protein in high structural quality and adequate quantity. Additional mutant variants will give new insights on virus assembly, infection mechanism, and therapeutic drug development. Here, we describe the development of a recombinant CHO cell line stably expressing the extracellular domain of a trimeric variant of the SARS CoV-2 spike protein and discuss significant parameters to be considered during the expression and purification process.
Collapse
Affiliation(s)
| | | | - Renate Kunert
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
12
|
Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:25-34. [PMID: 34895638 DOI: 10.1016/j.ddtec.2021.02.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Recombinant proteins used in biomedical research, diagnostics and different therapies are mostly produced in Chinese hamster ovary cells in the pharmaceutical industry. These biotherapeutics, monoclonal antibodies in particular, have shown remarkable market growth in the past few decades. The increasing demand for high amounts of biologics requires continuous optimization and improvement of production technologies. Research aims at discovering better means and methods for reaching higher volumetric capacity, while maintaining stable product quality. An increasing number of complex novel protein therapeutics, such as viral antigens, vaccines, bi- and tri-specific monoclonal antibodies, are currently entering industrial production pipelines. These biomolecules are, in many cases, difficult to express and require tailored product-specific solutions to improve their transient or stable production. All these requirements boost the development of more efficient expression optimization systems and high-throughput screening platforms to facilitate the design of product-specific cell line engineering and production strategies. In this minireview, we provide an overview on recent advances in CHO cell line development, targeted genome manipulation techniques, selection systems and screening methods currently used in recombinant protein production.
Collapse
Affiliation(s)
- Borbála Tihanyi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
13
|
Strobl F, Duerkop M, Palmberger D, Striedner G. High shear resistance of insect cells: the basis for substantial improvements in cell culture process design. Sci Rep 2021; 11:9413. [PMID: 33941799 PMCID: PMC8093278 DOI: 10.1038/s41598-021-88813-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
Abstract
Multicellular organisms cultivated in continuous stirred tank reactors (CSTRs) are more sensitive to environmental conditions in the suspension culture than microbial cells. The hypothesis, that stirring induced shear stress is the main problem, persists, although it has been shown that these cells are not so sensitive to shear. As these results are largely based on Chinese Hamster Ovary (CHO) cell experiments the question remains if similar behavior is valid for insect cells with a higher specific oxygen demand. The requirement of higher oxygen transfer rates is associated with higher shear forces in the process. Consequently, we focused on the shear resistance of insect cells, using CHO cells as reference system. We applied a microfluidic device that allowed defined variations in shear rates. Both cell lines displayed high resistance to shear rates up to 8.73 × 105 s−1. Based on these results we used microbial CSTRs, operated at high revolution speeds and low aeration rates and found no negative impact on cell viability. Further, this cultivation approach led to substantially reduced gas flow rates, gas bubble and foam formation, while addition of pure oxygen was no longer necessary. Therefore, this study contributes to the development of more robust insect cell culture processes.
Collapse
Affiliation(s)
| | - Mark Duerkop
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | | | - Gerald Striedner
- ACIB GmbH, Vienna, Austria. .,Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria. .,Novasign GmbH, Vienna, Austria.
| |
Collapse
|
14
|
Bhaskara V, Leal MT, Seigner J, Friedrich T, Kreidl E, Gadermaier E, Tesarz M, Rogalli A, Stangl L, Wallwitz J, Hammel K, Rothbauer M, Moll H, Ertl P, Hahn R, Himmler G, Bauer A, Casanova E. Efficient production of recombinant secretory IgA against Clostridium difficile toxins in CHO-K1 cells. J Biotechnol 2021; 331:1-13. [PMID: 33689865 DOI: 10.1016/j.jbiotec.2021.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Despite the essential role secretory IgAs play in the defense against pathogenic invasion and the proposed value of recombinant secretory IgAs as novel therapeutics, currently there are no IgA-based therapies in clinics. Secretory IgAs are complex molecules and the major bottleneck limiting their therapeutic potential is a reliable recombinant production system. In this report, we addressed this issue and established a fast and robust production method for secretory IgAs in CHO-K1 cells using BAC-based expression vectors. As a proof of principle, we produced IgAs against Clostridium difficile toxins TcdA and TcdB. Recombinant secretory IgAs produced using our expression system showed comparable titers to IgGs, widely used as therapeutic biologicals. Importantly, secretory IgAs produced using our method were functional and could efficiently neutralize Clostridium difficile toxins TcdA and TcdB. These results show that recombinant secretory IgAs can be efficiently produced, thus opening the possibility to use them as therapeutic agents in clinics.
Collapse
Affiliation(s)
- Venugopal Bhaskara
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria.
| | - Maria Trinidad Leal
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Jacqueline Seigner
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Friedrich
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | - Laura Stangl
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | | | - Katharina Hammel
- Department for Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Mario Rothbauer
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, 1060 Vienna, Austria
| | - Herwig Moll
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, 1060 Vienna, Austria
| | - Rainer Hahn
- Department for Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | | | - Anton Bauer
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria; The Antibody Lab GmbH, 1210 Vienna, Austria.
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Lhota G, Sissolak B, Striedner G, Sommeregger W, Vorauer-Uhl K. Quantification of glycated IgG in CHO supernatants: A practical approach. Biotechnol Prog 2021; 37:e3124. [PMID: 33428326 PMCID: PMC8365726 DOI: 10.1002/btpr.3124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 01/26/2023]
Abstract
Post-translational, nonenzymatic glycation of monoclonal antibodies (mAbs) in the presence of reducing sugars (in bioprocesses) is a widely known phenomenon, which affects protein heterogeneity and potentially has an impact on quality, safety, and efficacy of the end product. Quantification of individual glycation levels is compulsory for each mAb therapeutically applied in humans. We therefore propose an analytical method for monitoring glycation levels of mAb products during the bioprocess. This is a useful tool for process-design considerations, especially concerning glucose-feed strategies and temperature as major driving factors of protein glycation. In this study, boronate affinity chromatography (BAC) was optimized for determination of the glycation level of mAbs in supernatants. In fact, the complex matrix found in supernatants is an underlying obstacle to use BAC, but with a simple clean-up step, we found that the elution profile could be significantly improved so that qualitative and quantitative determination could be reached. Complementary analytical methods confirmed the performance quality, including the correctness and specificity of the results. For quantitative determination of mAb glycation in supernatants, we established a calibration procedure for the retained mAb peak, identified as glycated antibody monomers. For this approach, an available fully characterized mAb standard, Humira®, was successfully applied, and continuous monitoring of mAbs across three repetitive fed-batch processes was finally performed. With this practical, novel approach, an insight was obtained into glycation levels during bioprocessing, in conjunction with glucose levels and product titer over time, facilitating efficient process development and batch-consistency monitoring.
Collapse
Affiliation(s)
- Gabriele Lhota
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bernhard Sissolak
- Research and Development, Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria
| | - Gerald Striedner
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Sommeregger
- Research and Development, Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria
| | - Karola Vorauer-Uhl
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
16
|
Guo X, Wang C, Wang TY. Chromatin-modifying elements for recombinant protein production in mammalian cell systems. Crit Rev Biotechnol 2020; 40:1035-1043. [PMID: 32777953 DOI: 10.1080/07388551.2020.1805401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian cells are the preferred choice system for the production of complex molecules, such as recombinant therapeutic proteins. Although the technology for increasing the yield of proteins has improved rapidly, the process of selecting, identifying as well as maintaining high-yield cell clones is still troublesome, time-consuming and usually uncertain. Optimization of expression vectors is one of the most effective methods for enhancing protein expression levels. Several commonly used chromatin-modifying elements, including the matrix attachment region, ubiquitous chromatin opening elements, insulators, stabilizing anti-repressor elements can be used to increase the expression level and stability of recombinant proteins. In this review, these chromatin-modifying elements used for the expression vector optimization in mammalian cells are summarized, and future strategies for the utilization of expression cassettes are also discussed.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,Perildicals Publishing House, Xinxiang Medical University, Xinxiang, China
| | - Chong Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,Perildicals Publishing House, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
17
|
Abstract
Following the success of and the high demand for recombinant protein-based therapeutics during the last 25 years, the pharmaceutical industry has invested significantly in the development of novel treatments based on biologics. Mammalian cells are the major production systems for these complex biopharmaceuticals, with Chinese hamster ovary (CHO) cell lines as the most important players. Over the years, various engineering strategies and modeling approaches have been used to improve microbial production platforms, such as bacteria and yeasts, as well as to create pre-optimized chassis host strains. However, the complexity of mammalian cells curtailed the optimization of these host cells by metabolic engineering. Most of the improvements of titer and productivity were achieved by media optimization and large-scale screening of producer clones. The advances made in recent years now open the door to again consider the potential application of systems biology approaches and metabolic engineering also to CHO. The availability of a reference genome sequence, genome-scale metabolic models and the growing number of various “omics” datasets can help overcome the complexity of CHO cells and support design strategies to boost their production performance. Modular design approaches applied to engineer industrially relevant cell lines have evolved to reduce the time and effort needed for the generation of new producer cells and to allow the achievement of desired product titers and quality. Nevertheless, important steps to enable the design of a chassis platform similar to those in use in the microbial world are still missing. In this review, we highlight the importance of mammalian cellular platforms for the production of biopharmaceuticals and compare them to microbial platforms, with an emphasis on describing novel approaches and discussing still open questions that need to be resolved to reach the objective of designing enhanced modular chassis CHO cell lines.
Collapse
|
18
|
Zhao B, Chaturvedi P, Zimmerman DL, Belmont AS. Efficient and Reproducible Multigene Expression after Single-Step Transfection Using Improved BAC Transgenesis and Engineering Toolkit. ACS Synth Biol 2020; 9:1100-1116. [PMID: 32216371 DOI: 10.1021/acssynbio.9b00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Achieving stable expression of a single transgene in mammalian cells remains challenging; even more challenging is obtaining simultaneous stable expression of multiple transgenes at reproducible, relative expression levels. Previously, we attained copy-number-dependent, chromosome-position-independent expression of reporter minigenes by embedding them within a BAC "scaffold" containing the mouse Msh3-Dhfr locus (DHFR BAC). Here, we extend this "BAC TG-EMBED" approach. First, we report a toolkit of endogenous promoters capable of driving transgene expression over a 0.01- to 5-fold expression range relative to the CMV promoter, allowing fine-tuning of relative expression levels of multiple reporter genes. Second, we demonstrate little variation in expression level and long-term expression stability of a reporter gene embedded in BACs containing either transcriptionally active or inactive genomic regions, making the choice of BAC scaffolds more flexible. Third, we present a novel BAC assembly scheme, "BAC-MAGIC", for inserting multiple transgenes into BAC scaffolds, which is much more time-efficient than traditional galK-based methods. As a proof-of-principle for our improved BAC TG-EMBED toolkit, we simultaneously fluorescently labeled three nuclear compartments at reproducible, relative intensity levels in 94% of stable clones after a single transfection using a DHFR BAC scaffold containing 4 transgenes assembled with BAC-MAGIC. Our extended BAC TG-EMBED toolkit and BAC-MAGIC method provide an efficient, versatile platform for stable simultaneous expression of multiple transgenes at reproducible, relative levels.
Collapse
Affiliation(s)
- Binhui Zhao
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David L. Zimmerman
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Andrew S. Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Lobner E, Wachernig A, Gudipati V, Mayrhofer P, Salzer B, Lehner M, Huppa JB, Kunert R. Getting CD19 Into Shape: Expression of Natively Folded "Difficult-to- Express" CD19 for Staining and Stimulation of CAR-T Cells. Front Bioeng Biotechnol 2020; 8:49. [PMID: 32117929 PMCID: PMC7020774 DOI: 10.3389/fbioe.2020.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
The transmembrane protein CD19 is exclusively expressed on normal and malignant B cells and therefore constitutes the target of approved CAR-T cell-based cancer immunotherapies. Current efforts to assess CAR-T cell functionality in a quantitative fashion both in vitro and in vivo are hampered by the limited availability of the properly folded recombinant extracellular domain of CD19 (CD19-ECD) considered as "difficult-to-express" (DTE) protein. Here, we successfully expressed a novel fusion construct consisting of the full-length extracellular domain of CD19 and domain 2 of human serum albumin (CD19-AD2), which was integrated into the Rosa26 bacterial artificial chromosome vector backbone for generation of a recombinant CHO-K1 production cell line. Product titers could be further boosted using valproic acid as a chemical chaperone. Purified monomeric CD19-AD2 proved stable as shown by non-reduced SDS-PAGE and SEC-MALS measurements. Moreover, flow cytometric analysis revealed specific binding of CD19-AD2 to CD19-CAR-T cells. Finally, we demonstrate biological activity of our CD19-AD2 fusion construct as we succeeded in stimulating CD19-CAR-T cells effectively with the use of CD19-AD2-decorated planar supported lipid bilayers.
Collapse
Affiliation(s)
- Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna Wachernig
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Venugopal Gudipati
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patrick Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
20
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Pappenreiter M, Sissolak B, Sommeregger W, Striedner G. Oxygen Uptake Rate Soft-Sensing via Dynamic k L a Computation: Cell Volume and Metabolic Transition Prediction in Mammalian Bioprocesses. Front Bioeng Biotechnol 2019; 7:195. [PMID: 31497597 PMCID: PMC6712683 DOI: 10.3389/fbioe.2019.00195] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
In aerobic cell cultivation processes, dissolved oxygen is a key process parameter, and an optimal oxygen supply has to be ensured for proper process performance. To achieve optimal growth and/or product formation, the rate of oxygen transfer has to be in right balance with the consumption by cells. In this study, a 15 L mammalian cell culture bioreactor was characterized with respect to kLa under varying process conditions. The resulting dynamic kLa description combined with functions for the calculation of oxygen concentrations under prevailing process conditions led to an easy-to-apply model, that allows real-time calculation of the oxygen uptake rate (OUR) throughout the bioprocess without off-gas analyzers. Subsequently, the established OUR soft-sensor was applied in a series of 13 CHO fed-batch cultivations. The OUR was found to be directly associated with the amount of viable biomass in the system, and deploying of cell volumes instead of cell counts led to higher correlations. A two-segment linear model predicted the viable biomass in the system sufficiently. The segmented model was necessary due to a metabolic transition in which the specific consumption of oxygen changed. The aspartate to glutamate ratio was identified as an indicator of this metabolic shift. The detection of such transitions is enabled by a combination of the presented dynamic OUR method with another state-of-the-art viable biomass soft-sensor. In conclusion, this hyphenated technique is a robust and powerful tool for advanced bioprocess monitoring and control based exclusively on bioreactor characteristics.
Collapse
Affiliation(s)
| | | | | | - Gerald Striedner
- Department of Biotechnology (DBT), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
22
|
Wallner J, Sissolak B, Sommeregger W, Lingg N, Striedner G, Vorauer-Uhl K. Lectin bio-layer interferometry for assessing product quality of Fc- glycosylated immunoglobulin G. Biotechnol Prog 2019; 35:e2864. [PMID: 31180180 PMCID: PMC6852021 DOI: 10.1002/btpr.2864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 11/26/2022]
Abstract
Glycosylation, as the most prominent posttranslational modification, is recognized as an important quality attribute of monoclonal antibodies affected by various bioprocess parameters and cellular physiology. A method of lectin‐based bio‐layer interferometry (LBLI) to relatively rank galactosylation and fucosylation levels was developed. For this purpose, Fc‐glycosylated immunoglobulin G (IgG) was recombinantly produced with varying bioprocess conditions in 15 L bioreactor and accumulated IgG was harvested. The reliability, the robustness and the applicability of LBLI to different samples has been proven. Data obtained from LC–MS analysis served as reference and were compared to the LBLI results. The introduced method is based on non‐fluidic bio‐layer interferometry (BLI), which becomes recently a standard tool for determining biomolecular interactions in a label‐free, real‐time and high‐throughput manner. For the intended purpose, biotinylated lectins were immobilized on disposable optical fiber streptavidin (SA) biosensor tips. Aleuria aurantia lectin (AAL) was used to detect the core fucose and Ricinus communis agglutinin 120 (RCA120) to determine galactosylation levels. In our case study it could be shown that fucosylation was not affected by variations in glucose feed concentration and cultivation temperature. However, the galactosylation could be correlated with the ratio of mean specific productivity (qP) and ammonium (qNH4+) but was unrelated to the ratio of mean qP and the specific glucose consumption (qgluc). This presented method strengthens the applicability of the BLI platform, which already enables measurement of several product related characteristics, such as product quantity as well as kinetic rates (kd,kon) and affinity constants (kD) analysis.
Collapse
Affiliation(s)
- Jakob Wallner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bernhard Sissolak
- Research and Development, Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria
| | - Wolfgang Sommeregger
- Research and Development, Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria
| | - Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
23
|
Impact of mammalian cell culture conditions on monoclonal antibody charge heterogeneity: an accessory monitoring tool for process development. J Ind Microbiol Biotechnol 2019; 46:1167-1178. [PMID: 31175523 PMCID: PMC6697719 DOI: 10.1007/s10295-019-02202-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Recombinant monoclonal antibodies are predominantly produced in mammalian cell culture bioprocesses. Post-translational modifications affect the micro-heterogeneity of the product and thereby influence important quality attributes, such as stability, solubility, pharmacodynamics and pharmacokinetics. The analysis of the surface charge distribution of monoclonal antibodies provides aggregated information about these modifications. In this work, we established a direct injection pH gradient cation exchange chromatography method, which determines charge heterogeneity from cell culture supernatant without any purification steps. This tool was further applied to monitor processes that were performed under certain process conditions. Concretely, we were able to provide insights into charge variant formation during a fed-batch process of a Chinese hamster ovary cell culture, in turn producing a monoclonal antibody under varying temperatures and glucose feed strategies. Glucose concentration impacted the total emergence of acidic variants, whereas the variation of basic species was mainly dependent on process temperature. The formation rates of acidic species were described with a second-order reaction, where a temperature increase favored the conversion. This platform method will aid as a sophisticated optimization tool for mammalian cell culture processes. It provides a quality fingerprint for the produced mAb, which can be tested, compared to the desired target and confirmed early in the process chain.
Collapse
|
24
|
Rozov SM, Deineko EV. Strategies for Optimizing Recombinant Protein Synthesis in Plant Cells: Classical Approaches and New Directions. Mol Biol 2019. [DOI: 10.1134/s0026893319020146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Sissolak B, Zabik C, Saric N, Sommeregger W, Vorauer-Uhl K, Striedner G. Application of the Bradford Assay for Cell Lysis Quantification: Residual Protein Content in Cell Culture Supernatants. Biotechnol J 2019; 14:e1800714. [PMID: 30983130 DOI: 10.1002/biot.201800714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/07/2019] [Indexed: 11/10/2022]
Abstract
Frequently measured mammalian cell culture process indicators include viability and total cell concentration (TCC). Cell lysis, an additional important process characteristic that substantially contributes to the overall product purity profiles, is often not addressed in detail. In the present study, an inexpensive and simple application of the Bradford assay is developed to determine the residual protein content (RPC) in cell culture supernatants. The reliability and reproducibility of the method are tested in a long-term study and compared with lysis quantification via the DNA measurement. The results show that its performance is more robust and accurate over time and the respective concentration range. Additionally, both methods are used for cell lysis process monitoring in a recombinant Chinese hamster ovary fed-batch process. In the presented process, by applying the established assay, the lysis rate k DL is determined to be constant over time at 4.6 × 10 -4 lysed cell concentration (LCC) per TCC and time (LCC/TCC/h). In contrast, DNA data did not confirm the constant lysis rate due to variations of the content per cell during cultivation. Thus, information on the RPC can facilitate the determination of the optimal harvest time point with respect to purity and in improving process characterization.
Collapse
Affiliation(s)
- Bernhard Sissolak
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190, Vienna, Austria
| | - Christian Zabik
- Research and Development, Bilfinger Industrietechnik Salzburg GmbH, Mooslackengasse 17, A-1190, Vienna, Austria
| | - Natasa Saric
- Research and Development, Bilfinger Industrietechnik Salzburg GmbH, Mooslackengasse 17, A-1190, Vienna, Austria
| | - Wolfgang Sommeregger
- Research and Development, Bilfinger Industrietechnik Salzburg GmbH, Mooslackengasse 17, A-1190, Vienna, Austria
| | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190, Vienna, Austria
| |
Collapse
|
26
|
Pristovšek N, Nallapareddy S, Grav LM, Hefzi H, Lewis NE, Rugbjerg P, Hansen HG, Lee GM, Andersen MR, Kildegaard HF. Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering. ACS Synth Biol 2019; 8:758-774. [PMID: 30807689 DOI: 10.1021/acssynbio.8b00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many branches of biology depend on stable and predictable recombinant gene expression, which has been achieved in recent years through targeted integration of the recombinant gene into defined integration sites. However, transcriptional levels of recombinant genes in characterized integration sites are controlled by multiple components of the integrated expression cassette. Lack of readily available tools has inhibited meaningful experimental investigation of the interplay between the integration site and the expression cassette components. Here we show in a systematic manner how multiple components contribute to final net expression of recombinant genes in a characterized integration site. We develop a CRISPR/Cas9-based toolbox for construction of mammalian cell lines with targeted integration of a landing pad, containing a recombinant gene under defined 5' proximal regulatory elements. Generated site-specific recombinant cell lines can be used in a streamlined recombinase-mediated cassette exchange for fast screening of different expression cassettes. Using the developed toolbox, we show that different 5' proximal regulatory elements generate distinct and robust recombinant gene expression patterns in defined integration sites of CHO cells with a wide range of transcriptional outputs. This approach facilitates the generation of user-defined and product-specific gene expression patterns for programmable mammalian cell engineering.
Collapse
Affiliation(s)
- Nuša Pristovšek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Saranya Nallapareddy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Hooman Hefzi
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Peter Rugbjerg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Janoschek S, Schulze M, Zijlstra G, Greller G, Matuszczyk J. A protocol to transfer a fed-batch platform process into semi-perfusion mode: The benefit of automated small-scale bioreactors compared to shake flasks as scale-down model. Biotechnol Prog 2019; 35:e2757. [PMID: 30479066 PMCID: PMC6667907 DOI: 10.1002/btpr.2757] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Indexed: 01/05/2023]
Abstract
Continuous processes such as perfusion processes can offer advantages compared to fed-batch or batch processes in bio-processing: improved product quality (e.g. for labile products), increased product yield, and cost savings. In this work, a semi-perfusion process was established in shake flasks and transferred to an automated small-scale bioreactor by daily media exchange via centrifugation based on an existing fed-batch process platform. At first the development of a suitable medium and feed composition, the glucose concentration required by the cells and the cell-specific perfusion rate were investigated in shake flasks as the conventional scale-down system. This lead to an optimized process with a threefold higher titer of 10 g/L monoclonal antibody compared to the standard fed-batch. To proof the suitability and benefit as a small-scale model, the established semi-perfusion process was transferred to an automated small-scale bioreactor with improved pH and dissolved oxygen control. The average specific productivity improved from 24.16 pg/(c*d) in the fed-batch process and 36.04 pg/c*d in the semi-perfusion shake flask to 38.88 pg/(c*d) in the semi-perfusion process performed in the controlled small-scale bioreactor, thus illustrating the benefits resulting from the applied semi-perfusion approach, especially in combination with controlled DO and pH settings. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2757, 2019.
Collapse
Affiliation(s)
| | - Markus Schulze
- R&D BioProcessingSartorius Stedim Biotech GmbHGöttingenGermany
| | - Gerben Zijlstra
- Mab Segment MarketingSartorius Stedim Netherlands BVRotterdamNetherlands
| | - Gerhard Greller
- R&D BioProcessingSartorius Stedim Biotech GmbHGöttingenGermany
| | - Jens Matuszczyk
- R&D BioProcessingSartorius Stedim Biotech GmbHGöttingenGermany
| |
Collapse
|
28
|
Chaturvedi P, Zhao B, Zimmerman DL, Belmont AS. Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED. Gene Ther 2018; 25:376-391. [PMID: 29930343 PMCID: PMC6195848 DOI: 10.1038/s41434-018-0021-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/20/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Reproducible and stable transgene expression is an important goal in both basic research and biotechnology, with each application demanding a range of transgene expression. Problems in achieving stable transgene expression include multi-copy transgene silencing, chromosome-position effects, and loss of expression during long-term culture, induced cell quiescence, and/or cell differentiation. Previously, we described the “BAC TG-EMBED” method for copy-number dependent, chromosome position-independent expression of embedded transgenes within a BAC containing ~170 kb of the mouse Dhfr locus. Here we demonstrate wider applicability of the method by identifying a BAC and promoter combination that drives reproducible, copy-number dependent, position-independent transgene expression even after induced quiescence and/or cell differentiation into multiple cell types. Using a GAPDH BAC containing ~200 kb of the human GAPDH gene locus and a 1.2 kb human UBC promoter, we achieved stable GFP-ZeoR reporter expression in mouse NIH 3T3 cells after low-serum induced cell cycle arrest or differentiation into adipocytes. More notably, GFP-ZeoR expression remained stable and copy-number dependent even after differentiation of mouse ESCs into several distinct lineages. These results highlight the potential use of BAC TG-EMBED as an expression platform for high-level but stable, long-term expression of transgene independent of cell proliferative or differentiated state.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - Binhui Zhao
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - David L Zimmerman
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.,Biology Department, College of the Ozarks, Point Lookout, MO, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
29
|
Reinhart D, Damjanovic L, Kaisermayer C, Sommeregger W, Gili A, Gasselhuber B, Castan A, Mayrhofer P, Grünwald-Gruber C, Kunert R. Bioprocessing of Recombinant CHO-K1, CHO-DG44, and CHO-S: CHO Expression Hosts Favor Either mAb Production or Biomass Synthesis. Biotechnol J 2018; 14:e1700686. [PMID: 29701329 DOI: 10.1002/biot.201700686] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Chinese hamster ovary (CHO) cells comprise a variety of lineages including CHO-DXB11, CHO-K1, CHO-DG44, and CHO-S. Despite all CHO cell lines sharing a common ancestor, extensive mutagenesis, and clonal selection has resulted in substantial genetic heterogeneity among them. Data from sequencing show that different genes are missing in individual CHO cell lines and each cell line harbors a unique set of mutations with relevance to the bioprocess. However, not much literature is available about the influence of genetic differences of CHO on the performance of bioprocess operations. In this study, the host cell-specific differences among three widely used CHO cell lines (CHO-K1, CHO-S, and CHO-DG44) and recombinantly expressed the same monoclonal antibody (mAb) in an isogenic format by using bacterial artificial chromosomes (BACs) as transfer vector in all cell lines is examined. Cell-specific growth and product formation are studied in batch, fed-batch, and semi-continuous perfusion cultures. Further, two different cell culture media are used to investigate their effects. The authors find CHO cell line-specific preferences for mAb production or biomass synthesis that are determined by the host cell line. Additionally, quality attributes of the expressed mAb are influenced by the host cell line and media.
Collapse
Affiliation(s)
- David Reinhart
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Lukas Damjanovic
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | | | - Wolfgang Sommeregger
- Bilfinger Industrietechnik Salzburg GmbH, Urstein Nord 31, 5412 Puch bei Hallein, Austria
| | - Andreas Gili
- Polymun Scientific Immunbiologische Forschung GmbH, Donaustraße 99, 3400 Klosterneuburg, Austria
| | - Bernhard Gasselhuber
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Castan
- GE Healthcare Life Sciences AB, Björkgatan 30, 75184 Uppsala, Sweden
| | - Patrick Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
30
|
Non-blocking modulation contributes to sodium channel inhibition by a covalently attached photoreactive riluzole analog. Sci Rep 2018; 8:8110. [PMID: 29802266 PMCID: PMC5970139 DOI: 10.1038/s41598-018-26444-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/04/2018] [Indexed: 11/08/2022] Open
Abstract
Sodium channel inhibitor drugs decrease pathological hyperactivity in various diseases including pain syndromes, myotonia, arrhythmias, nerve injuries and epilepsies. Inhibiting pathological but not physiological activity, however, is a major challenge in drug development. Sodium channel inhibitors exert their effects by a dual action: they obstruct ion flow ("block"), and they alter the energetics of channel opening and closing ("modulation"). Ideal drugs would be modulators without blocking effect, because modulation is inherently activity-dependent, therefore selective for pathological hyperactivity. Can block and modulation be separated? It has been difficult to tell, because the effect of modulation is obscured by conformation-dependent association/dissociation of the drug. To eliminate dynamic association/dissociation, we used a photoreactive riluzole analog which could be covalently bound to the channel; and found, unexpectedly, that drug-bound channels could still conduct ions, although with modulated gating. The finding that non-blocking modulation is possible, may open a novel avenue for drug development because non-blocking modulators could be more specific in treating hyperactivity-linked diseases.
Collapse
|
31
|
Wang M, Sun Z, Yu T, Ding F, Li L, Wang X, Fu M, Wang H, Huang J, Li N, Dai Y. Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows. Sci Rep 2017; 7:10733. [PMID: 28878310 PMCID: PMC5587717 DOI: 10.1038/s41598-017-11462-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Human lactoferrin (hLF) is a valuable protein for pharmaceutical products and functional foods, and worldwide demand for this protein has steadily increased. However, large-scale recombinant human lactoferrin (rhLF) production using current animal bioreactor techniques is limited by the low expression of foreign proteins, the use of antibiotic resistance genes and the down-regulation of endogenous milk proteins. Here, we generated a herd of marker-free, hLF bacterial artificial chromosome (BAC) transgenic cloned cows, as confirmed by Polymerase chain reaction, Southern blot and Western blot analyses. These transgenic cloned cows produced rhLF in milk at concentrations of 4.5–13.6 g/L. Moreover, the total protein content of the milk was increased. Over two hundred transgenic cloned cows were propagated by multiple ovulation and embryo transfer (MOET). A total of 400–450 g of rhLF protein, which shows similar enzymatic activity to natural hLF in iron binding and release, can be purified on a large scale from >100 L of milk per day. Our results suggested that transgenic bovine mammary bioreactors have the potential for large-scale protein production.
Collapse
Affiliation(s)
- Ming Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaolin Sun
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tian Yu
- Kejienuo Biotechnology Company, Wuxi, China
| | - Fangrong Ding
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ling Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xi Wang
- Kejienuo Biotechnology Company, Wuxi, China
| | - Mingbo Fu
- Kejienuo Biotechnology Company, Wuxi, China
| | - Haiping Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinming Huang
- Dairy cattle Research Center, Academy of Agricultural Sciences, Shandong, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
32
|
Shen CC, Sung LY, Lin SY, Lin MW, Hu YC. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. ACS Synth Biol 2017; 6:1509-1519. [PMID: 28418635 DOI: 10.1021/acssynbio.7b00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are an important host for biopharmaceutical production. Generation of stable CHO cells typically requires cointegration of dhfr and a foreign gene into chromosomes and subsequent methotrexate (MTX) selection for coamplification of dhfr and foreign gene. CRISPR interference (CRISPRi) is an emerging system that effectively suppresses gene transcription through the coordination of dCas9 protein and guide RNA (gRNA). However, CRISPRi has yet to be exploited in CHO cells. Here we constructed vectors expressing the functional CRISPRi system and proved effective CRISPRi-mediated suppression of dhfr transcription in CHO cells. We next generated stable CHO cell clones coexpressing DHFR, the model protein (EGFP), dCas9 and gRNA targeting dhfr. Combined with MTX selection, CRISPRi-mediated repression of dhfr imparted extra selective pressure to force CHO cells to coamplify more copies of dhfr and egfp genes. Compared with the traditional method relying on MTX selection (up to 250 nM), the CRISPRi approach increased the dhfr copy number ∼3-fold, egfp copy number ∼3.6-fold and enhanced the EGFP expression ∼3.8-fold, without impeding the cell growth. Furthermore, we exploited the CRISPRi approach to enhance the productivity of granulocyte colony stimulating factor (G-CSF) ∼2.3-fold. Our data demonstrate, for the first time, the application of CRISPRi in CHO cells to enhance recombinant protein production and may pave a new avenue to CHO cell engineering.
Collapse
Affiliation(s)
- Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Yeh Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
33
|
Baumann M, Gludovacz E, Sealover N, Bahr S, George H, Lin N, Kayser K, Borth N. Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Biotechnol Bioeng 2017; 114:2616-2627. [DOI: 10.1002/bit.26388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/13/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB); Graz Austria
| | | | | | - Scott Bahr
- MilliporeSigma (SAFC); St. Louis Minnesota
| | | | - Nan Lin
- MilliporeSigma (SAFC); St. Louis Minnesota
| | | | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (ACIB); Graz Austria
- University of Natural Resources and Life Sciences (BOKU); Vienna Austria
| |
Collapse
|
34
|
Improving Pertuzumab production by gene optimization and proper signal peptide selection. Protein Expr Purif 2017; 135:24-32. [DOI: 10.1016/j.pep.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/12/2017] [Accepted: 04/24/2017] [Indexed: 12/23/2022]
|
35
|
Dorokhov YL, Sheshukova EV, Kosobokova EN, Shindyapina AV, Kosorukov VS, Komarova TV. Functional role of carbohydrate residues in human immunoglobulin G and therapeutic monoclonal antibodies. BIOCHEMISTRY (MOSCOW) 2016; 81:835-57. [DOI: 10.1134/s0006297916080058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Sommeregger W, Mayrhofer P, Steinfellner W, Reinhart D, Henry M, Clynes M, Meleady P, Kunert R. Proteomic differences in recombinant CHO cells producing two similar antibody fragments. Biotechnol Bioeng 2016; 113:1902-12. [PMID: 26913574 PMCID: PMC4985663 DOI: 10.1002/bit.25957] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/25/2015] [Accepted: 02/14/2016] [Indexed: 12/28/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the production of biopharmaceuticals. To overcome unfavorable features of CHO cells, a lot of effort is put into cell engineering to improve phenotype. “Omics” studies investigating elevated growth rate and specific productivities as well as extracellular stimulus have already revealed many interesting engineering targets. However, it remains largely unknown how physicochemical properties of the recombinant product itself influence the host cell. In this study, we used quantitative label‐free LC‐MS proteomic analyses to investigate product‐specific proteome differences in CHO cells producing two similar antibody fragments. We established recombinant CHO cells producing the two antibodies, 3D6 and 2F5, both as single‐chain Fv‐Fc homodimeric antibody fragments (scFv‐Fc). We applied three different vector strategies for transgene delivery (i.e., plasmid, bacterial artificial chromosome, recombinase‐mediated cassette exchange), selected two best performing clones from transgene variants and transgene delivery methods and investigated three consecutively passaged cell samples by label‐free proteomic analysis. LC‐MS‐MS profiles were compared in several sample combinations to gain insights into different aspects of proteomic changes caused by overexpression of two different heterologous proteins. This study suggests that not only the levels of specific product secretion but the product itself has a large impact on the proteome of the cell. Biotechnol. Bioeng. 2016;113: 1902–1912. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wolfgang Sommeregger
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria.,Polymun Scientific GmbH, Klosterneuburg, Austria.,Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria
| | - Patrick Mayrhofer
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria
| | - Willibald Steinfellner
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria
| | - David Reinhart
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria
| | - Michael Henry
- National Institute for Cellular Biotechnology (NICB), Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology (NICB), Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology (NICB), Dublin City University, Dublin 9, Ireland.
| | - Renate Kunert
- Vienna Institute of BioTechnology (VIBT), University of Natural Resources and Life Sciences, Muthgasse 18, B, 5th Floor, 1190 Vienna, Austria.
| |
Collapse
|
37
|
Sun Y, Guo T, Guo D, Guo L, Chen L, Zhang Y, Wang L. Establishment and characterization of an MDCK cell line stably-transfected with chicken Abcb1 encoding P-glycoprotein. Res Vet Sci 2016; 106:37-44. [PMID: 27234533 DOI: 10.1016/j.rvsc.2016.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 01/27/2023]
Abstract
Chicken P-glycoprotein (chP-gp), encoded by Abcb1, determines the bioavailability because of its effect on pharmacokinetics of various drugs. However, comprehensive studies on chP-gp are still limited. In this study, the chicken full-length cDNA was first successfully cloned and then stably expressed in MDCK cell line. The open reading frame of chicken Abcb1 consists of 3864 nucleotides, encoding for a 1287-amino acid protein. Sequence alignments analysis showed that chicken P-gp had high identities with the homologues of turkey (95%), human (72%), pig (72%), rat (71%) and cattle (68%). The efflux ratio of rhodamine123 (Rho123, a human P-gp substrate) in chAbcb1 transfected MDCK cells was significantly higher than that in the wild type MDCK cell (6.24 vs 1.64, P<0.05), suggesting a good transporting function of chicken P-gp overexpressed in the transfected cell. Importantly, MDCK-chAbcb1 cells, unlike Caco-2 cells, exhibited biphasic saturation kinetics in transporting Rho123. In conclusion, an MDCK cell line stably expressing chAbcb1 was successfully established, which could provide a new cell model to screen its substrates and inhibitors and study the drug-drug interaction medicated via chicken P-gp.
Collapse
Affiliation(s)
- Yong Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Tingting Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Dawei Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Li Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Li Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Yu Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Liping Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China.
| |
Collapse
|
38
|
Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 2016; 100:3451-61. [PMID: 26936774 PMCID: PMC4803805 DOI: 10.1007/s00253-016-7388-9] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.
Collapse
Affiliation(s)
- Renate Kunert
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - David Reinhart
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|