1
|
Chang YH, Lin YC, Liu HH. One-pot making of sequence-restricted DNA dumbbells. Heliyon 2023; 9:e16035. [PMID: 37215900 PMCID: PMC10196794 DOI: 10.1016/j.heliyon.2023.e16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
A method to build sequence-restricted DNA dumbbells was developed. 5'-exonuclease converts end sequences of DNA targets into sticky ends. Self-looping oligonucleotides with complementary 3'-overhangs are ligated to form dumbbells by DNA polymerase and ligase in a sequence-restricted manner. These reactions proceed in one pot at one temperature. We demonstrated one use of this method to 'tunnel' sequencing libraries into dumbbells for the Pacific Biosciences (PacBio) platform. Readouts of an Illumina P5/P7-ended 16S library from a standard microbial community confirmed successful tunneling. Twelve fecal samples additionally showed significant correlations between standard and tunneled 16S sequence variants on the PacBio platform. We further extended the method at a genomic scale to build a ∼0.45 Mbp giant dumbbell on chromosome 6. Sequences inside the dumbbells were successfully protected from a cocktail of exonucleases. Roughly 11-fold enrichment was achieved for the dumbbell-guarded region compared to the vicinity.
Collapse
Affiliation(s)
- Ya-Hui Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Yu-Cheng Lin
- Pediatrics, Far Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, 220216, Taiwan
- Electronic Engineering, Oriental Institute of Technology, Pan-Chiao District, New Taipei City, 220216, Taiwan
| | - Hong-Hsing Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, 35053, Taiwan
- Pediatrics, En Chu Kong Hospital, Sanxia District, New Taipei City, 237414, Taiwan
| |
Collapse
|
2
|
Non-Covalent Linkage of Helper Functions to Dumbbell-Shaped DNA Vectors for Targeted Delivery. Pharmaceutics 2023; 15:pharmaceutics15020370. [PMID: 36839697 PMCID: PMC9962178 DOI: 10.3390/pharmaceutics15020370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Covalently closed dumbbell-shaped DNA delivery vectors comprising the double-stranded gene(s) of interest and single-stranded hairpin loops on both ends represent a safe, stable and efficacious alternative to viral and other non-viral DNA-based vector systems. As opposed to plasmids and DNA minicircles, dumbbells can be conjugated via the loops with helper functions for targeted delivery or imaging. Here, we investigated the non-covalent linkage of tri-antennary N-acetylgalactosamine (GalNAc3) or a homodimer of a CD137/4-1BB-binding aptamer (aptCD137-2) to extended dumbbell vector loops via complementary oligonucleotides for targeted delivery into hepatocytes or nasopharyngeal cancer cells. Enlarging the dumbbell loop size from 4 to 71 nucleotides for conjugation did not impair gene expression. GalNAc3 and aptCD137-2 residues were successfully attached to the extended dumbbell loop via complementary oligonucleotides. DNA and RNA oligonucleotide-based dumbbell-GalNAc3 conjugates were taken up from the cell culture medium by hepatoblastoma-derived human tissue culture cells (HepG2) with comparable efficiency. RNA oligonucleotide-linked conjugates triggered slightly higher levels of gene expression, presumably due to the RNaseH-mediated linker cleavage, the release of the dumbbell from the GalNAc3 residue and more efficient nuclear targeting of the unconjugated dumbbell DNA. The RNaseH-triggered RNA linker cleavage was confirmed in vitro. Finally, we featured dumbbell vectors expressing liver cancer cell-specific RNA trans-splicing-based suicide RNAs with GalNAc3 residues. Dumbbells conjugated with two GalNAc3 residues triggered significant levels of cell death when added to the cell culture medium. Dumbbell vector conjugates can be explored for targeted delivery and gene therapeutic applications.
Collapse
|
3
|
Loh PS, Patzel V. Efficient Generation of Superior Dumbbell-Shaped Nonviral DNA Delivery Vectors Using 1-2-3 Gap-Primer PCR. Methods Mol Biol 2022; 2521:329-338. [PMID: 35733007 DOI: 10.1007/978-1-0716-2441-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonviral delivery vectors are highly sought after for gene therapeutic applications and genetic vaccination. Dumbbell-shaped DNA minimal vectors have important advantages as compared with plasmids and minicircle DNA. Here, we describe the rapid, cheap, and efficient production of superior dumbbell vectors at high purity using a process termed 1-2-3 gap-primer PCR. This process represents a 1-tube, 2-enzyme, 3 h procedure that comprises a PCR followed by a ligation. The resulting dumbbells harbor mismatches close to the loop structures, which facilitate nuclear diffusion and result in enhanced gene expression.
Collapse
Affiliation(s)
- Pei She Loh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Volker Patzel
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Gnanamony M, Demirkhanyan L, Ge L, Sojitra P, Bapana S, Norton JA, Gondi CS. Circular dumbbell miR-34a-3p and -5p suppresses pancreatic tumor cell-induced angiogenesis and activates macrophages. Oncol Lett 2021; 21:75. [PMID: 33365086 PMCID: PMC7716711 DOI: 10.3892/ol.2020.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a tightly regulated biological process by which new blood vessels are formed from pre-existing blood vessels. This process is also critical in diseases such as cancer. Therefore, angiogenesis has been explored as a drug target for cancer therapy. The future of effective anti-angiogenic therapy lies in the intelligent combination of multiple targeting agents with novel modes of delivery to maximize therapeutic effects. Therefore, a novel approach is proposed that utilizes dumbbell RNA (dbRNA) to target pathological angiogenesis by simultaneously targeting multiple molecules and processes that contribute to angiogenesis. In the present study, a plasmid expressing miR-34a-3p and -5p dbRNA (db34a) was constructed using the permuted intron-exon method. A simple protocol to purify dbRNA from bacterial culture with high purity was also developed by modification of the RNASwift method. To test the efficacy of db34a, pancreatic cancer cell lines PANC-1 and MIA PaCa-2 were used. Functional validation of the effect of db34a on angiogenesis was performed on human umbilical vein endothelial cells using a tube formation assay, in which cells transfected with db34a exhibited a significant reduction in tube formation compared with cells transfected with scrambled dbRNA. These results were further validated in vivo using a zebrafish angiogenesis model. In conclusion, the present study demonstrates an approach for blocking angiogenesis using db34a. The data also show that this approach may be used to targeting multiple molecules and pathways.
Collapse
Affiliation(s)
- Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Lusine Demirkhanyan
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Liang Ge
- University of Pittsburgh Medical Center, Presbyterian University Hospital, Pittsburgh, PA 15213, USA
| | - Paresh Sojitra
- Sanford Center for Digestive Health, Sioux Falls, SD 57105, USA
| | - Sneha Bapana
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Joseph A. Norton
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Christopher S. Gondi
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Department of Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Department of Pathology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Correspondence to: Dr Christopher S. Gondi, Department of Internal Medicine, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA, E-mail:
| |
Collapse
|
6
|
Cyrill SL, Ghosh A, Loh PS, Tan GSX, Patzel V. Universal Template-Assisted, Cloning-free Method for the Generation of Small RNA-Expressing Dumbbell-Shaped DNA Vectors. Mol Ther Methods Clin Dev 2019; 15:149-156. [PMID: 31660417 PMCID: PMC6807298 DOI: 10.1016/j.omtm.2019.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/23/2019] [Indexed: 11/02/2022]
Abstract
Dumbbell-shaped DNA minimal vectors represent genetic vectors solely composed of the gene expression cassette of interest and terminal closing loop structures. Dumbbell vectors for small hairpin RNA or microRNA expression are extremely small-sized, which is advantageous with regard to cellular delivery and nuclear diffusion. Conventional strategies for the generation of small RNA-expressing dumbbell vectors require cloning of a respective plasmid vector, which is subsequently used for dumbbell production. Here, we present a novel cloning-free method for the generation of small RNA-expressing dumbbell vectors that also does not require any restriction endonucleases. This new PCR-based method uses a universal DNA template comprising an inverted repeat of the minimal H1 promoter and the miR-30 stem. The sequences coding for small RNA expression are introduced by the PCR primers. Dumbbells are formed by denaturing and reannealing of the PCR product and are covalently closed using ssDNA ligase. The new protocol generates plus- and/or minus-strand dumbbells, both of which were shown to trigger efficient target gene knockdown. This method enables fast, cheap production of small RNA-expressing dumbbell vectors in a high throughput-compatible manner for functional genomics screens or, as dumbbells are not prone to transgene silencing, for knockdown studies in primary cells.
Collapse
Affiliation(s)
- Samantha Leeanne Cyrill
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117545, Singapore
| | - Avantika Ghosh
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117545, Singapore
| | - Pei She Loh
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117545, Singapore
| | - Genim Siu Xian Tan
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117545, Singapore
| | - Volker Patzel
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117545, Singapore
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
7
|
Yu H, Pan HM, Trau D, Patzel V. Capsule-like Safe Genetic Vectors-Cell-Penetrating Core-Shell Particles Selectively Release Functional Small RNA and Entrap Its Encoding DNA. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21113-21124. [PMID: 29869496 DOI: 10.1021/acsami.8b04294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The breakthrough of genetic therapy is set back by the lack of suitable genetic vector systems. We present the development of permeability-tunable, capsule-like, polymeric, micron-sized, core-shell particles for delivery of recombinant nucleic acids into target cells. These particles were demonstrated to effectively release rod-shaped small hairpin RNA and to selectively retain the RNA-encoding DNA template, which was designed to form a bulky tripartite structure. Thus, they can serve as delivery vectors preloaded with cargo RNA or alternatively as RNA-producing micro-bioreactors. The internalization of particles by human tissue culture cells inversely correlated with particle size and with the cell to particle ratio, although at a higher than stoichiometric excess of particles over cells, cell viability was impaired. Among primary human peripheral blood mononuclear cells, up to 50% of the monocytes displayed positive uptake of particles. Finally, these particles efficiently delivered siRNA into HEK293T cells triggering functional knockdown of the target gene lamin A/C. Particle-mediated knockdown was superior to that observed after conventional siRNA delivery via lipofection. Core-shell particles protect encapsulated nucleic acids from degradation and target cell genomes from direct contact with recombinant DNA, thus representing a promising delivery vector system that can be explored for genetic therapy and vaccination.
Collapse
Affiliation(s)
- Han Yu
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine , National University of Singapore , 5 Science Drive 2 , 117545 , Singapore
- School of Biological Sciences , Nanyang Technological University , 61 Biopolis Drive , 138673 , Singapore
| | - Houwen Matthew Pan
- Department of Biomedical Engineering , National University of Singapore , 4 Engineering Drive 3 , 117583 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Dieter Trau
- Department of Biomedical Engineering , National University of Singapore , 4 Engineering Drive 3 , 117583 , Singapore
| | - Volker Patzel
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine , National University of Singapore , 5 Science Drive 2 , 117545 , Singapore
- Department of Medicine , Addenbrooke's Hospital, University of Cambridge , Cambridge CB2 0QQ , U.K
| |
Collapse
|
8
|
Elshenawy OH, Abdelhamid G, Soshilov AA, Denison MS, El-Kadi AO. Down-regulation of cytochrome P450 1A1 by monomethylarsonous acid in human HepG2 cells. Toxicol Lett 2017; 270:34-50. [DOI: 10.1016/j.toxlet.2017.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 01/04/2023]
|
9
|
Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression. Mol Ther 2016; 24:1581-91. [PMID: 27357627 DOI: 10.1038/mt.2016.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/21/2016] [Indexed: 12/27/2022] Open
Abstract
Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.
Collapse
|
10
|
Abstract
INTRODUCTION This review presents recent developments in the use of nonviral vectors and transfer technologies in cancer gene therapy. Tremendous progress has been made in developing cancer gene therapy in ways that could be applicable to treatments. Numerous efforts are focused on methods of attacking known and novel targets more efficiently and specifically. In parallel to progress in nonviral vector design and delivery technologies, important achievements have been accomplished for suicide, gene replacement, gene suppression and immunostimulatory therapies. New nonviral cancer gene therapies have been developed based on emerging RNAi (si/shRNA-, miRNA) or ODN. AREAS COVERED This review provides an overview of recent gene therapeutic strategies in which nonviral vectors have been used experimentally and in clinical trials. Furthermore, we present current developments in nonviral vector systems in association with important chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION Nonviral gene therapy has maintained its position as an approach for treating cancer. This is reflected by the fact that more than 17% of all gene therapy trials employ nonviral approaches. Thus, nonviral vectors have emerged as a clinical alternative to viral vectors for the appropriate expression and delivery of therapeutic genes.
Collapse
Affiliation(s)
- Jessica Pahle
- a Experimental and Clinical Research Center , Charité University Medicine Berlin and Max-Delbrück-Center for Moelcular Medicine , Berlin , Germany
| | - Wolfgang Walther
- a Experimental and Clinical Research Center , Charité University Medicine Berlin and Max-Delbrück-Center for Moelcular Medicine , Berlin , Germany
| |
Collapse
|