1
|
Luo C, Bashir NH, Li Z, Liu C, Shi Y, Chu H. Plant microRNAs regulate the defense response against pathogens. Front Microbiol 2024; 15:1434798. [PMID: 39282567 PMCID: PMC11392801 DOI: 10.3389/fmicb.2024.1434798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically 20-25 nucleotides in length, that play a crucial role in regulating gene expression post-transcriptionally. They are involved in various biological processes such as plant growth, development, stress response, and hormone signaling pathways. Plants interact with microbes through multiple mechanisms, including mutually beneficial symbiotic relationships and complex defense strategies against pathogen invasions. These defense strategies encompass physical barriers, biochemical defenses, signal recognition and transduction, as well as systemic acquired resistance. MiRNAs play a central role in regulating the plant's innate immune response, activating or suppressing the transcription of specific genes that are directly involved in the plant's defense mechanisms against pathogens. Notably, miRNAs respond to pathogen attacks by modulating the balance of plant hormones such as salicylic acid, jasmonic acid, and ethylene, which are key in activating plant defense mechanisms. Moreover, miRNAs can cross boundaries into fungal and bacterial cells, performing cross-kingdom RNA silencing that enhances the plant's disease resistance. Despite the complex and diverse roles of miRNAs in plant defense, further research into their function in plant-pathogen interactions is essential. This review summarizes the critical role of miRNAs in plant defense against pathogens, which is crucial for elucidating how miRNAs control plant defense mechanisms.
Collapse
Affiliation(s)
- Changxin Luo
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Nawaz Haider Bashir
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Zhumei Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Yumei Shi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Honglong Chu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| |
Collapse
|
2
|
Zhou R, Wang Q, Zeng S, Liang Y, Wang D. METTL14-mediated N6-methyladenosine modification of Col17a1/Itgα6/Itgβ4 governs epidermal homeostasis. J Dermatol Sci 2023; 112:138-147. [PMID: 37951776 DOI: 10.1016/j.jdermsci.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant and reversible modification occurring in eukaryotic mRNAs, however, its functions in mammalian epidermal development are still not fully elucidated. OBJECTIVE To explore the role of METTL14 (Methyltransferase like 14), one of the m6A methyltransferases, in maintaining epidermal homeostasis. METHODS We constructed mice with Mettl14-inactivation in the epidermal basal cells. The phenotype was explored by H&E staining and immunofluorescence staining. To explore the underlying mechanisms, we performed RNA-seq, Ribosome profiling and MeRIP-seq on wild-type and Mettl14-inactivation epidermal keratinocytes. Moreover, HaCaT cells were used for in vitro validation. RESULTS Inactivation of Mettl14 in murine epidermis led to transient thicker epidermis and exhaustion of the epidermal stem cell pool. Interestingly, we found that the mRNA of type XVII collagen (Col17a1), integrin β4 (Itgβ4) and α6 (Itgα6) had m6A modifications, and the proteins expression were decreased in Mettl14-inactivated epidermis. Furthermore, in epidermis-specific Mettl4-inactivated mice, the epidermis was detached from the dermis and presented a phenotype similar to junctional epidermolysis bullosa (JEB), which may result from hemidesmosomes damage (decrease of COL17A1, ITGB4 and ITGA6). Knockdown of Mettl14 in HaCaT cells impaired the self-renewal and decreased the protein level of COL17A1, ITGB4 and ITGA6 and Itgβ4 knockdown inhibited colony formation. CONCLUSION Our study highlighted the role of METTL14 in the maintenance of epidermal homeostasis and identified its critical role through m6A-mediated translational inhibition of Col17a1, Itgβ4 and Itgα6. Our study suggested that METTL14 may be a potential therapeutic target for the treatment of hemidesmosomes-deficient diseases, such as JEB.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Novel Insights into miR-944 in Cancer. Cancers (Basel) 2022; 14:cancers14174232. [PMID: 36077769 PMCID: PMC9454979 DOI: 10.3390/cancers14174232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary miR-944 is localized in intron 4 of TP63. ΔNp63 in intron 3 of TP63 recruits the transcription factor AP-2 to promote miR-944 gene expression, which mediates epidermal differentiation induction by ΔNp63. miR-944 is dysregulated in various cancers. In squamous cell carcinoma. miR-944 can target and inhibit 27 protein-coding genes, thereby regulating cell cycle, proliferation, apoptosis, epithelial mesenchymal transition, cancer cell invasion and migration, and other cell behaviors. The genes targeted by miR-944 are involved in three signaling pathways, including the Wnt/β-catenin pathway, Jak/STAT3 pathway, and PI3K/AKT pathway. miR-944 was regulated by a total of 11 competing endogenous RNAs, including 6 circular RNAs and 5 long non-coding RNAs. Abnormally expressed miR-944 can act as an independent prognostic factor and is closely related to tumor invasion, lymph node metastasis, TNM staging, and drug resistance. miR-944 is expected to become a critical biomarker with great clinical application value in cancer. Abstract miRNA is a class of endogenous short-chain non-coding RNAs consisting of about 22 nucleotides. miR-944 is located in the fourth intron of the TP63 gene in the 3q28 region. miR-944 is abnormally expressed in cancers in multiple systems including neural, endocrine, respiratory, reproductive, and digestive systems. miR-944 can target at least 27 protein-coding genes. miR-944 can regulate a series of cell behaviors, such as cell cycle, proliferation, invasion and migration, EMT, apoptosis, etc. miR-944 participates in the networks of 11 ceRNAs, including six circRNAs and five lncRNAs. miR-944 is involved in three signaling pathways. The abnormal expression of miR-944 is closely related to the clinicopathological conditions of various cancer patients. Deregulated expression of miR-944 is significantly associated with clinicopathology and prognosis in cancer patients. In addition, miR-944 is also associated with the development of DDP, RAPA, DOX, and PTX resistance in cancer cells. miR-944 is involved in the anticancer molecular mechanisms of matrine and Rhenium-liposome drugs. In conclusion, this work systematically summarizes the related findings of miR-944, which will provide potential hints for follow-up research on miR-944.
Collapse
|
4
|
Li H, Lian K, Mao J, Huang F, Zhang C, Zang J. LncRNA LEMD1-AS1 relieves chondrocyte inflammation by targeting miR-944/PGAP1 in osteoarthritis. Cell Cycle 2022; 21:2038-2050. [PMID: 35686740 DOI: 10.1080/15384101.2022.2084294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease characterized by reducing articular chondrocytes and destruction of joint matrix, it's detailed pathogenesis remains unclear. Emerging evidences have demonstrated that long non-coding RNAs (lncRNAs) are closely related to the progression of OA. This study aims to explore the expression of long non-coding RNA LEMD1 antisense RNA 1 (LEMD1-AS1) in OA tissues and chondrocytes and investigate the possible mechanisms of LEMD1-AS1 in OA, which will provide a new target for the treatment of OA. In our study, LEMD1-AS1 and post-GPI attachment to protein (PGAP1) were lowly expressed, but miR-944 was highly expressed both in OA tissues and in Lipopolysaccharide (LPS) -treated chondrocytes detected by qRT-PCR. Over-expression of LEMD1-AS1 or down-regulation of miR-944 significantly promoted viability, proliferation and inhibited cell apoptosis, cell cycle arrest and inflammatory responses of chondrocytes treated with LPS by CCK-8, EdU, flow cytometry and an ELISA assay. Over-expression of LEMD1-AS1 or down-regulation of miR-944 remarkably increased the protein levels of PCNA, Ki-67, Cyclin A1, Cyclin B1, Cyclin D2 and Bcl-2, while decreasing the protein levels of p27, Bax, Cleaved-caspase-3 and Cleaved-caspase-9 in chondrocytes treated with LPS. LEMD1-AS1 bound to miR-944 and regulated its expression, and PGAP1 presented as a direct target gene of miR-944, which was confirmed by a dual-luciferase reporter assay. Inhibition of PGAP1 partially restored the effects of LEMD1-AS1/miR-944 on the proliferation, cell apoptosis, cell cycle distribution and inflammatory responses of LPS-treated chondrocytes. To conclude, the LEMD1-AS1/miR-944/PGAP1 axis may be a novel therapeutic candidate to target in OA treatment.
Collapse
Affiliation(s)
- Haitao Li
- Department of Joint Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Kaihua Lian
- Department of Hematology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Jianguang Mao
- Department of Orthopaedics, Gaoqing People's Hospital, Zibo, Shandong, China
| | - Fuguo Huang
- Department of Orthopaedics, Zhaoyuan People's Hospital, Yantai, Shandong, China
| | - Chunli Zhang
- Department of Ultrasound, Yucheng People's Hospital, Yucheng, Shandong, China
| | - Jianguo Zang
- The Orthopaedics Department of TCM (Traditional Chinese of Medicine), Beicheng New District Hospital of Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
5
|
Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines 2021; 9:biomedicines9091268. [PMID: 34572454 PMCID: PMC8465124 DOI: 10.3390/biomedicines9091268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Introns span only a quarter of the human genome, yet they host around 60% of all known microRNAs. Emerging evidence indicates the adaptive advantage of microRNAs residing within introns is attributed to their complex co-regulation with transcription and alternative splicing of their host genes. Intronic microRNAs are often co-expressed with their host genes, thereby providing functional synergism or antagonism that is exploited or decoupled in cancer. Additionally, intronic microRNA biogenesis and the alternative splicing of host transcript are co-regulated and intertwined. The importance of intronic microRNAs is under-recognized in relation to the pathogenesis of cancer.
Collapse
|
6
|
Lee AY. The Role of MicroRNAs in Epidermal Barrier. Int J Mol Sci 2020; 21:ijms21165781. [PMID: 32806619 PMCID: PMC7460865 DOI: 10.3390/ijms21165781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs), which mostly cause target gene silencing via transcriptional repression and degradation of target mRNAs, regulate a plethora of cellular activities, such as cell growth, differentiation, development, and apoptosis. In the case of skin keratinocytes, the role of miRNA in epidermal barrier integrity has been identified. Based on the impact of key genetic and environmental factors on the integrity and maintenance of skin barrier, the association of miRNAs within epidermal cell differentiation and proliferation, cell-cell adhesion, and skin lipids is reviewed. The critical role of miRNAs in the epidermal barrier extends the use of miRNAs for control of relevant skin diseases such as atopic dermatitis, ichthyoses, and psoriasis via miRNA-based technologies. Most of the relevant miRNAs have been associated with keratinocyte differentiation and proliferation. Few studies have investigated the association of miRNAs with structural proteins of corneocytes and cornified envelopes, cell-cell adhesion, and skin lipids. Further studies investigating the association between regulatory and structural components of epidermal barrier and miRNAs are needed to elucidate the role of miRNAs in epidermal barrier integrity and their clinical implications.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, College of Medicine, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-773, Korea
| |
Collapse
|
7
|
Kim J, Park S, Chang Y, Park KH, Lee H. Synergetic Effects of Intronic Mature miR-944 and ΔNp63 Isoforms on Tumorigenesis in a Cervical Cancer Cell Line. Int J Mol Sci 2020; 21:ijms21165612. [PMID: 32764455 PMCID: PMC7460632 DOI: 10.3390/ijms21165612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
miR-944 is located in an intron of the tumor protein p63 gene (TP63). miR-944 expression levels in cervical cancer tissues are significantly higher than in normal tissues and are associated with tumor size, International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and survival. However, associations of miR-944 with its host gene, TP63, which encodes TAp63 and ΔNp63, in cervical cancer have not been fully investigated. A positive correlation between miR-944 and ΔNp63 mRNA expression was identified in cervical cancer tissues. Furthermore, when the expression of miR-944 and ΔNp63 was simultaneously inhibited, cell proliferation-, differentiation- epithelial-mesenchymal transition (EMT)-, transcription-, and virus-associated gene clusters were shown to be significantly more active according to functional annotation analysis. Cell viability and migration were more reduced upon simultaneous inhibition with anti-miR-944 or ΔNp63 siRNA than with inhibition with anti-miR-944 or ΔNp63 siRNA alone, or scramble. In addition, Western blot analysis showed that the simultaneous inhibition of miR-944 and ΔNp63 reduced EMT by increasing the expression of epithelial markers such as claudin and by decreasing mesenchymal markers such as N-cadherin and vimentin. Slug, an EMT transcription factor, was also decreased by the simultaneous inhibition of miR-944 and ΔNp63. Thus, associations between miR-944 and ΔNp63 in cervical cancer could help to elucidate the function of this intronic microRNA and its role in carcinogenesis.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea;
| | - Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
- School of Mechanical Engineering, Yonsei University, Seoul 03772, Korea
| | - Yunhee Chang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
| | - Kwang Hwa Park
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju 26426, Korea;
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
- Correspondence: ; Tel.: +82-33-760-2740; Fax: +82-33-760-2561
| |
Collapse
|
8
|
Awuah D, Alobaid M, Latif A, Salazar F, Emes RD, Ghaemmaghami AM. The Cross-Talk between miR-511-3p and C-Type Lectin Receptors on Dendritic Cells Affects Dendritic Cell Function. THE JOURNAL OF IMMUNOLOGY 2019; 203:148-157. [PMID: 31118225 DOI: 10.4049/jimmunol.1801108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small, noncoding RNAs that function as posttranscriptional modulators of gene expression by binding target mRNAs and inhibiting translation. They are therefore crucial regulators of several biological as well as immunological events. Recently, miR-511-3p has been implicated in the development and differentiation of APCs, such as dendritic cells (DCs), and regulating several human diseases. Interestingly, miR-511-3p is embedded within the human MRC1 gene that encodes the mannose receptor. In this study, we sought to examine the impact of miR-511-3p up- or downregulation on human DC surface phenotype, cytokine profile, immunogenicity (using IDO activity as a surrogate), and downstream T cell polarization. Using gene silencing and a selection of microRNA mimics, we could successfully suppress or induce the expression of miR-511-3p in DCs. Consequently, we show for the first time, to our knowledge, that inhibition and/or overexpression of miR-511-3p has opposing effects on the expression levels of two key C-type lectin receptors, namely the mannose receptor and DC-specific ICAM 3 nonintegrin at protein and mRNA levels, thereby affecting C-type lectin receptor-induced modulation of IDO activity in DCs. Furthermore, we show that downregulation of miR-511-3p drives an anti-inflammatory DC response characterized by IL-10 production. Interestingly, the miR-511-3plow DCs also promoted IL-4 secretion and suppressed IL-17 in cocultures with autologous T cells. Together, our data highlight the potential role of miR-511 in regulating DC function and downstream events leading to Th polarization and immune modulation.
Collapse
Affiliation(s)
- Dennis Awuah
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Meshal Alobaid
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Arsalan Latif
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Fabián Salazar
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5NT, United Kingdom; and.,Advanced Data Analysis Centre, University of Nottingham, Leicestershire LE12 5NT, United Kingdom
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| |
Collapse
|
9
|
Kim YJ, Lee JH, Jin S, Kim JH, Kim SH. Primate-specific miR-944 activates p53-dependent tumor suppression in human colorectal cancers. Cancer Lett 2018; 440-441:168-179. [PMID: 30393117 DOI: 10.1016/j.canlet.2018.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/04/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
Abstract
As cancers with a high incidence rate, colorectal cancers are a main cause of cancer-related death. MicroRNAs are often deregulated in cancers. The primate-specific miR-944, located in a p63 intron, is known to be highly expressed in patients exhibiting low colorectal cancer recurrence rates. However, the biological functions of miR-944 in colorectal cancers remain unclear. In this study, we found that miR-944 was downregulated in colorectal cancer tissues, and inhibited cancer cell growth in a xenograft mouse model. The overexpression of miR-944 caused G1 phase arrest and increased p53 expression in cancer cells. p53 stability was enhanced by miR-944s targeting E3 ligases COP1 and MDM2. Overexpression of COP1 and MDM2 restored cell growth inhibition caused by miR-944. Taken together, our results suggest that miR-944 acts as a potential tumor suppressor in colorectal cancers through the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yoon-Jin Kim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong Hwa Lee
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soll Jin
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
10
|
Powrózek T, Mlak R, Dziedzic M, Małecka-Massalska T, Sagan D. Investigation of relationship between precursor of miRNA-944 and its mature form in lung squamous-cell carcinoma - the diagnostic value. Pathol Res Pract 2018; 214:368-373. [PMID: 29496309 DOI: 10.1016/j.prp.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION MicroRNA (miRNA) are attractive markers of lung cancer, due to their regulatory role in cell cycle. However, we know more about function of miRNA in cancer development, there is still little known about role of their precursors (primary miRNA; pri-miRNA) in tumorgenesis. In present study we investigated potential role of miRNA-944 and its precursor pri-miRNA-944 in development of squamous-cell lung cancer (SCC) and explored interdependence between miRNA precursor and its mature form. This is a first available literature report analyzing pri-miRNA as a cancer diagnostic marker. MATERIAL AND METHODS Expression of miRNA-944 and its precursor was analyzed in 58 fresh-frozen tissues of non-small cell lung cancer and corresponding adjacent non-cancerous tissues using qRT-PCR. Expression of pri-miRNA-944 was correlated with TP63 and miRNA-944. Using ROC analysis diagnostic accuracy of studied markers was evaluated. RESULTS miRNA-944 and its precursor were significantly overexspressed in SCC compared to adenocarcinoma (AC) and non-cancerous tissue. pri-miRNA-944 strongly and positively correlated with TP63 (r = 0.739, p < 0.001) and with mature miRNA-944 expression (r = 0.691, p < 0.001). Also, TP63 expression significantly correlated with mature miRNA (r = 0.785, p < 0.001). Combined analysis of pri-miRNA-944 and mature miRNA-944 allowed to distinguish SCC tissue form AC with sensitivity of 93.3% and specificity of 100% (AUC = 0.978), and SCC from non-cancerous tissue with 92.9% sensitivity and 100% specificity (AUC = 0.992). CONCLUSION We assumed that pri-miRNA-944 and miRNA-944 may be involved in early squamous-type differentiation of lung tumors. Moreover, analysis of both markers provided high diagnostic accuracy for SCC detection.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Poland.
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, Poland.
| | - Marcin Dziedzic
- Department of Laboratory Diagnostic, Medical University of Lublin, Poland.
| | | | - Dariusz Sagan
- Department of Thoracic Surgery, Medical University of Lublin, Poland.
| |
Collapse
|
11
|
MicroRNAs expression profile in solid and unicystic ameloblastomas. PLoS One 2017; 12:e0186841. [PMID: 29053755 PMCID: PMC5650163 DOI: 10.1371/journal.pone.0186841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Odontogenic tumors (OT) represent a specific pathological category that includes some lesions with unpredictable biological behavior. Although most of these lesions are benign, some, such as the ameloblastoma, exhibit local aggressiveness and high recurrence rates. The most common types of ameloblastoma are the solid/multicystic (SA) and the unicystic ameloblastoma (UA); the latter considered a much less aggressive entity as compared to the SA. The microRNA system regulates the expression of many human genes while its deregulation has been associated with neoplastic development. The aim of the current study was to determine the expression profiles of microRNAs present in the two most common types of ameloblastomas. MATERIAL & METHODS MicroRNA expression profiles were assessed using TaqMan® Low Density Arrays (TLDAs) in 24 samples (8 SA, 8 UA and 8 control samples). The findings were validated using quantitative RTqPCR in an independent cohort of 19 SA, 8 UA and 19 dentigerous cysts as controls. RESULTS We identified 40 microRNAs differentially regulated in ameloblastomas, which are related to neoplastic development and differentiation, and with the osteogenic process. Further validation of the top ranked microRNAs revealed significant differences in the expression of 6 of them in relation to UA, 7 in relation to SA and 1 (miR-489) that was related to both types. CONCLUSION We identified a new microRNA signature for the ameloblastoma and for its main types, which may be useful to better understand the etiopathogenesis of this neoplasm. In addition, we identified a microRNA (miR-489) that is suggestive of differentiating among solid from unicystic ameloblastoma.
Collapse
|
12
|
Comparative transcriptomes of adenocarcinomas and squamous cell carcinomas reveal molecular similarities that span classical anatomic boundaries. PLoS Genet 2017; 13:e1006938. [PMID: 28787442 PMCID: PMC5560753 DOI: 10.1371/journal.pgen.1006938] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/17/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022] Open
Abstract
Advances in genomics in recent years have provided key insights into defining cancer subtypes “within-a-tissue”—that is, respecting traditional anatomically driven divisions of medicine. However, there remains a dearth of data regarding molecular profiles that are shared across tissues, an understanding of which could lead to the development of highly versatile, broadly applicable therapies. Using data acquired from The Cancer Genome Atlas (TCGA), we performed a transcriptomics-centered analysis on 1494 patient samples, comparing the two major histological subtypes of solid tumors (adenocarcinomas and squamous cell carcinomas) across organs, with a focus on tissues in which both subtypes arise: esophagus, lung, and uterine cervix. Via principal component and hierarchical clustering analysis, we discovered that histology-driven differences accounted for a greater degree of inherent molecular variation in the tumors than did tissue of origin. We then analyzed differential gene expression, DNA methylation, and non-coding RNA expression between adenocarcinomas and squamous cell carcinomas and found 1733 genes, 346 CpG sites, and 42 microRNAs in common between organ sites, indicating specific adenocarcinoma-associated and squamous cell carcinoma-associated molecular patterns that were conserved across tissues. We then identified specific pathways that may be critical to the development of adenocarcinomas and squamous cell carcinomas, including Liver X receptor activation, which was upregulated in adenocarcinomas but downregulated in squamous cell carcinomas, possibly indicating important differences in cancer cell metabolism between these two histological subtypes of cancer. In addition, we highlighted genes that may be common drivers of adenocarcinomas specifically, such as IGF2BP1, which suggests a possible link between embryonic development and tumor subtype. Altogether, we demonstrate the need to consider biological similarities that transcend anatomical boundaries to inform the development of novel therapeutic strategies. All data sets from our analysis are available as a resource for further investigation. In clinical practice, the organ in which a cancer arises typically classifies it. However, developments in our understanding of cancer have revealed that this method overlooks key aspects of cancer biology relevant to both disease prevention and treatment. In fact, work characterizing the genetic make-up of cancers arising in a single organ has revealed that a shared organ of origin does not necessarily imply biological similarity (i.e. not all lung cancers share similar biological and molecular properties). While this approach, known as “within-a-tissue subtyping,” identifies key differences between cancers that arise in a single organ, a broader perspective may highlight important biological similarities between cancers across organs. Here we utilize this second approach, or “across-tissue subtyping,” to gain insight into similarities between cancers (of different organs) that share the same histology—or appear similarly under a microscope. Using publicly available data from The Cancer Genome Atlas (TCGA), we compare gene expression of two major classes of solid tumors—adenocarcinomas (which arise from cells that form glands) and squamous cell carcinomas (which arise from flattened cells that form physical barriers). We identify several genes and biological pathways that may be common to adenocarcinomas and serve as targets for highly versatile therapies.
Collapse
|
13
|
Shivakumar M, Lee Y, Bang L, Garg T, Sohn KA, Kim D. Identification of epigenetic interactions between miRNA and DNA methylation associated with gene expression as potential prognostic markers in bladder cancer. BMC Med Genomics 2017; 10:30. [PMID: 28589857 PMCID: PMC5461531 DOI: 10.1186/s12920-017-0269-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background One of the fundamental challenges in cancer is to detect the regulators of gene expression changes during cancer progression. Through transcriptional silencing of critical cancer-related genes, epigenetic change such as DNA methylation plays a crucial role in cancer. In addition, miRNA, another major component of epigenome, is also a regulator at the post-transcriptional levels that modulate transcriptome changes. However, a mechanistic role of synergistic interactions between DNA methylation and miRNA as epigenetic regulators on transcriptomic changes and its association with clinical outcomes such as survival have remained largely unexplored in cancer. Methods In this study, we propose an integrative framework to identify epigenetic interactions between methylation and miRNA associated with transcriptomic changes. To test the utility of the proposed framework, the bladder cancer data set, including DNA methylation, miRNA expression, and gene expression data, from The Cancer Genome Atlas (TCGA) was analyzed for this study. Results First, we found 120 genes associated with interactions between the two epigenomic components. Then, 11 significant epigenetic interactions between miRNA and methylation, which target E2F3, CCND1, UTP6, CDADC1, SLC35E3, METRNL, TPCN2, NACC2, VGLL4, and PTEN, were found to be associated with survival. To this end, exploration of TCGA bladder cancer data identified epigenetic interactions that are associated with survival as potential prognostic markers in bladder cancer. Conclusions Given the importance and prevalence of these interactions of epigenetic events in bladder cancer it is timely to understand further how different epigenetic components interact and influence each other. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0269-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manu Shivakumar
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lisa Bang
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA
| | - Tullika Garg
- Mowad Urology Department, Geisinger Health System, Danville, PA, USA
| | - Kyung-Ah Sohn
- Department of Software and Computer Engineering, Ajou University, Suwon, South Korea.
| | - Dokyoon Kim
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA. .,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|