1
|
Song J, Zheng A, Li S, Zhang W, Zhang M, Li X, Jin F, Ji Z. Clinical significance and prognostic value of small nucleolar RNA SNORA38 in breast cancer. Front Oncol 2022; 12:930024. [PMID: 36158687 PMCID: PMC9500313 DOI: 10.3389/fonc.2022.930024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundBreast cancer is the most common malignant tumor among women worldwide, and breast cancer stem cells (BCSCs) are believed to be the source of tumorigenesis. New findings suggest that small nucleolar RNAs (snoRNAs) play a significant role in tumor development.MethodsThe Cancer Genome Atlas (TCGA) and Kaplan–Meier survival analysis were used to demonstrate expression and survival of SNORA38 signature. In situ hybridization (ISH) and immunohistochemical (IHC) were conducted to analyze the correlation between SNORA38 and stemness biomarker in 77 BC samples. Gene Set Enrichment Analysis (GSEA) was performed to investigate the mechanisms related to SNORA38 expression in BC. Real-time qPCR was employed to evaluate the expression of SNORA38 in breast cancer cell lines.ResultsIn the public database and patients’ biopsies, SNORA38 was significantly up-regulated in breast cancer. Furthermore, the expression of SNORA38 was significantly correlated with tumor size, lymph node metastasis, and TNM stage, among which tumor size was an independent factor for SNORA38 expression. Higher SNORA38 expression was associated with shorter overall survival (OS). Meanwhile, SNORA38 was positively associated with the stem cell marker OCT-4, which suggested that SNORA38 might be related to breast cancer stemness.ConclusionsSNORA38 is an important carcinogenic snoRNA in breast cancer and might be a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Jian Song
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenrong Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Meilin Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xingzhe Li
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Feng Jin, ; Ziyao Ji,
| | - Ziyao Ji
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Feng Jin, ; Ziyao Ji,
| |
Collapse
|
2
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
3
|
Sun Y, Chen E, Li Y, Ye D, Cai Y, Wang Q, Li Q, Zhang X. H/ACA box small nucleolar RNA 7B acts as an oncogene and a potential prognostic biomarker in breast cancer. Cancer Cell Int 2019; 19:125. [PMID: 31168298 PMCID: PMC6509762 DOI: 10.1186/s12935-019-0830-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/20/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most frequent malignancy occurring in women worldwide. Emerging evidence indicates that small nucleolar RNAs (snoRNAs) play a role in tumor development. In the current study, we evaluated expression profiles and functions of snoRNAs associated with BC. METHODS We analyzed the expression levels of snoRNAs between breast cancer and normal tissues in TCGA database and found that SNORA7B is upregulated in BC. We confirmed this result in clinical cancer tissues and BC cell lines via qRT-PCR. Then, we investigated clinical significance in public datasets and biological function of SNORA7B using a series of in vitro gain- and loss-of-function experiments. RESULTS SNORA7B expression was significantly upregulated in samples from patients with BC in both public database and our clinical tissues compared to its expression in normal tissues. Meanwhile, patients with high SNORA7B expression have worse prognosis. Inhibition of SNORA7B expression impaired cell growth, proliferation, migration, and invasion via inducing apoptosis. CONCLUSIONS SNORA7B functions as an important oncogenic snoRNA in BC and may serve as a potential prognosis biomarker for BC.
Collapse
Affiliation(s)
- Yihan Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Endong Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Yuefeng Li
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Danrong Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Yefeng Cai
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Qingxuan Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Quan Li
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| |
Collapse
|
4
|
Zhang Y, Xu C, Gu D, Wu M, Yan B, Xu Z, Wang Y, Liu H. H/ACA Box Small Nucleolar RNA 7A Promotes the Self-Renewal of Human Umbilical Cord Mesenchymal Stem Cells. Stem Cells 2016; 35:222-235. [PMID: 27573912 DOI: 10.1002/stem.2490] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/12/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023]
Abstract
Human umbilical cord blood derived mesenchymal stem cells (uMSC) are pluripotent cells that have been now considered as a promising candidate for various cell-based therapies. However, their limited in vitro proliferation ability and the gradual loss of pluripotency set barricades for further usages. Emerging evidence suggests that small nucleolar RNAs (snoRNA) are actively involved in cell proliferation especially in tumor cells, but their roles in stem cells are largely unknown. In this study, we demonstrated that H/ACA box small nucleolar RNA 7A (SNORA7A) is inversely correlated to the decreased proliferation rate during in vitro passaging of uMSC. Further investigations indicate that SNORA7A overexpression can promote uMSC proliferation and self-renewal. The inhibition of SNORA7A using antisense oligonucleotides significantly reduces the expression and the binding of SNORA7A to DKC1, core protein that essential to form small nucleolar ribonucleo-particles (snoRNP) complex and catalyze pseudouridines in 28S RNA. And the inhibition also significantly suppresses uMSC proliferation and self-renewal. Moreover, overexpression of SNORA7A transcripts with mutations of binding regions for snoRNP core proteins and 28S RNA did not induce proliferation and self-renewal. Besides, SNORA7A also suppresses both the osteogenic and adipogenic differentiation, strengthening its self-renewal maintaining roles in uMSC. Taken together, our study for the first time showed that H/ACA box snoRNAs are actively involved in MSC proliferation as well as pluripotency control, and we identify SNORA7A as one of the critical snoRNAs that regulate the proliferation and self-renewal of uMSC through snoRNP recruiting. Stem Cells 2017;35:222-235.
Collapse
Affiliation(s)
- Yan Zhang
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Chen Xu
- Department of Spinal Surgery, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, People's Republic of China
| | - Daolan Gu
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Minjuan Wu
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Binghao Yan
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhenyu Xu
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Yue Wang
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Houqi Liu
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|