1
|
Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M. Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system. FEMS Microbiol Rev 2023; 47:fuad052. [PMID: 37715317 PMCID: PMC10532202 DOI: 10.1093/femsre/fuad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, C/Albert Einstein 22, PCTCAN, 39011 Santander, Spain
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine
, Universiti Sultan Zainal Abidin, Jalan Sultan Mahumd, 20400 Kuala Terengganu, Malaysia
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
2
|
Moreno-Del Álamo M, Tabone M, Muñoz-Martínez J, Valverde JR, Alonso JC. Toxin ζ Reduces the ATP and Modulates the Uridine Diphosphate-N-acetylglucosamine Pool. Toxins (Basel) 2019; 11:E29. [PMID: 30634431 PMCID: PMC6356619 DOI: 10.3390/toxins11010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 11/20/2022] Open
Abstract
Toxin ζ expression triggers a reversible state of dormancy, diminishes the pool of purine nucleotides, promotes (p)ppGpp synthesis, phosphorylates a fraction of the peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG), leading to unreactive UNAG-P, induces persistence in a reduced subpopulation, and sensitizes cells to different antibiotics. Here, we combined computational analyses with biochemical experiments to examine the mechanism of toxin ζ action. Free ζ toxin showed low affinity for UNAG. Toxin ζ bound to UNAG hydrolyzed ATP·Mg2+, with the accumulation of ADP, Pi, and produced low levels of phosphorylated UNAG (UNAG-P). Toxin ζ, which has a large ATP binding pocket, may temporally favor ATP binding in a position that is distant from UNAG, hindering UNAG phosphorylation upon ATP hydrolysis. The residues D67, E116, R158 and R171, involved in the interaction with metal, ATP, and UNAG, were essential for the toxic and ATPase activities of toxin ζ; whereas the E100 and T128 residues were partially dispensable. The results indicate that ζ bound to UNAG reduces the ATP concentration, which indirectly induces a reversible dormant state, and modulates the pool of UNAG.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Mariangela Tabone
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Juan Muñoz-Martínez
- Scientific Computing Service, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - José R Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str., 28049 Madrid, Spain.
| |
Collapse
|
3
|
Misra HS, Maurya GK, Kota S, Charaka VK. Maintenance of multipartite genome system and its functional significance in bacteria. J Genet 2018; 97:1013-1038. [PMID: 30262715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacteria are unicellular organisms that do not show compartmentalization of the genetic material and other cellular organelles as seen in higher organisms. Earlier, bacterial genomes were defined as single circular chromosome and extrachromosomal plasmids. Recently, many bacteria were found harbouringmultipartite genome system and the numbers of copies of genome elements including chromosomes vary from one to several per cell. Interestingly, it is noticed that majority of multipartite genome-harbouring bacteria are either stress tolerant or pathogens. Further, it is observed that the secondary genomes in these bacteria encode proteins that are involved in bacterial genome maintenance and also contribute to higher stress tolerance, and pathogenicity in pathogenic bacteria. Surprisingly, in some bacteria the genes encoding the proteins of classical homologous recombination pathways are present only on the secondary chromosomes, and some do not have either of the classical homologous recombination pathways. This review highlights the presence of ploidy and multipartite genomes in bacterial system, the underlying mechanisms of genome maintenance and the possibilities of these features contributing to higher abiotic and biotic stress tolerance in these bacteria.
Collapse
Affiliation(s)
- Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | | | |
Collapse
|
4
|
Misra HS, Maurya GK, Kota S, Charaka VK. Maintenance of multipartite genome system and its functional significance in bacteria. J Genet 2018. [DOI: 10.1007/s12041-018-0969-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Dmowski M, Kern-Zdanowicz I. Omega (ParB) binding sites together with the RNA polymerase-recognized sequence are essential for centromeric functions of the Pωregion in the partition system of pSM19035. MICROBIOLOGY-SGM 2016; 162:1114-1124. [PMID: 27177883 DOI: 10.1099/mic.0.000308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Partition systems contribute to stable plasmid inheritance in bacteria through the active separation of DNA molecules to daughter cells, and the centromeric sequence located either upstream or downstream of canonical partition operons plays an important role in this process. A specific DNA-binding protein binds to this sequence and interacts with the motor NTPase protein to form a nucleoprotein complex. The inc18-family plasmid pSM19035 is partitioned by products of δ and ω genes, with δ encoding a Walker-type ATPase and ω encoding a DNA-binding protein. As the two genes are transcribed separately, this system differs from others in its organization; nonetheless, expression of these genes is regulated by Omega, which also regulates the copy number of the plasmid (by controlling copS gene expression). Protein Omega specifically recognizes WATCACW heptad repeats. In this study, we constructed a synthetic δω operon to enable an analysis of the centromeric functions of Omega-binding sites Pδ, Pω and PcopS, discrete from their promoter functions. Our results show that these three regions do not support plasmid stabilization equally. We demonstrate that the Pω site alone can simultaneously drive the expression of partition genes from the synthetic δω operon and act as a unique centromeric sequence to promote the most efficient plasmid partitioning. Moreover, Pω can support the centromeric function in concert with the synthetic δω operon expressed from a heterologous promoter demonstrating that Pω is the main centromeric sequence of the δ-ω partition system. Additionally, the RNA polymerase-recognized sequence in Pω is essential for its centromeric function.
Collapse
Affiliation(s)
- Michał Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Izabela Kern-Zdanowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
7
|
Carrasco B, Serrano E, Sánchez H, Wyman C, Alonso JC. Chromosomal transformation in Bacillus subtilis is a non-polar recombination reaction. Nucleic Acids Res 2016; 44:2754-68. [PMID: 26786319 PMCID: PMC4824099 DOI: 10.1093/nar/gkv1546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/29/2015] [Indexed: 11/13/2022] Open
Abstract
Natural chromosomal transformation is one of the primary driving forces of bacterial evolution. This reaction involves the recombination of the internalized linear single-stranded (ss) DNA with the homologous resident duplex via RecA-mediated integration in concert with SsbA and DprA or RecO. We show that sequence divergence prevents Bacillus subtilis chromosomal transformation in a log-linear fashion, but it exerts a minor effect when the divergence is localized at a discrete end. In the nucleotide bound form, RecA shows no apparent preference to initiate recombination at the 3′- or 5′-complementary end of the linear duplex with circular ssDNA, but nucleotide hydrolysis is required when heterology is present at both ends. RecA·dATP initiates pairing of the linear 5′ and 3′ complementary ends, but only initiation at the 5′-end remains stably paired in the absence of SsbA. Our results suggest that during gene transfer RecA·ATP, in concert with SsbA and DprA or RecO, shows a moderate preference for the 3′-end of the duplex. We show that RecA-mediated recombination initiated at the 3′- or 5′-complementary end might have significant implication on the ecological diversification of bacterial species with natural transformation.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Humberto Sánchez
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| |
Collapse
|