1
|
Zhao T, Fang Y, Wang X, Wang L, Chu Y, Wang W. Biomarker-triggered, spatiotemporal controlled DNA nanodevice simultaneous assembly and disassembly. NANOSCALE 2024; 16:11290-11295. [PMID: 38787656 DOI: 10.1039/d4nr01745e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Despite many advances in the use of DNA nanodevices as assembly or disassembly modules to build various complex structures, the simultaneous assembly and disassembly of DNA structures in living cells remains a challenge. In this study, we present a modular engineering approach for assembling and disassembling DNA nanodevices in response to endogenous biomarkers. As a result of pairwise prehybridization of original DNA strands, the DNA nanodevice is initially inert. In an effort to bind one of the paired strands and release its complement, nucleolin competes. Assembly of the DNA nanodevice is initiated when the released complement binds to it, and disassembly is initiated when APE1 shears the assembled binding site of the DNA nanodevice. Spatial-temporal logic control is achieved through our approach during the assembly and disassembly of DNA nanodevices. Furthermore, by means of this assembly and disassembly procedure, the sequential detection and imaging of two tumor markers can be achieved, thereby effectively reducing false-positive signal results and accelerating the detection time. This study emphasizes the simultaneous assembly and disassembly of DNA nanodevices controlled by biomarkers in a simple and versatile manner; it has the potential to expand the application scope of DNA nanotechnology and offers an idea for the implementation of precision medicine testing.
Collapse
Affiliation(s)
- Tingting Zhao
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Yi Fang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Xuyang Wang
- Biomedical Science College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, P. R. China
| | - Lei Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Yujuan Chu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Wenxiao Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| |
Collapse
|
2
|
Xi Q, Wang SY, Deng XB, Zhang CH. Catalytic Hairpin Assembly-Based Self-Ratiometric Gel Electrophoresis Detection Platform for Reliable Nucleic Acid Analysis. BIOSENSORS 2024; 14:232. [PMID: 38785706 PMCID: PMC11118829 DOI: 10.3390/bios14050232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
The development of gel electrophoresis-based biodetection assays for point-of-care analysis are highly demanding. In this work, we proposed a ratiometric gel electrophoresis-based biosensing platform by employing catalytic hairpin assembly (CHA) process functions as both the signal output and the signal amplification module. Two types of nucleic acids, DNA and miRNA, are chosen for demonstration. The proposed strategy indeed provides a new paradigm for the design of a portable detection platform and may hold great potential for sensitive diagnoses.
Collapse
Affiliation(s)
- Qiang Xi
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; (Q.X.); (S.-Y.W.)
| | - Si-Yi Wang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; (Q.X.); (S.-Y.W.)
| | - Xiao-Bing Deng
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Changsha 410007, China; (Q.X.); (S.-Y.W.)
| | - Chong-Hua Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
3
|
Zhao T, Fang Y, Wang X, Wang J, Meng L, Wang W. Biomarker-Driven DNA-Functionalized Colloidal Programmed Simultaneous Assembly and Disassembly in Cells. Anal Chem 2024; 96:6609-6617. [PMID: 38639728 DOI: 10.1021/acs.analchem.3c05765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Complex structures and devices, both natural and artificial, can often undergo assembly and disassembly. Assembly and disassembly allow multiple stimuli to initiate, for example, the assembly and disassembly of primary cilia under the control of E3 ubiquitin ligases and deubiquitinases. Although biology relies on such schemes, they are rarely available in materials science. Here, we demonstrate a DNA-functionalized colloidal Au response to endogenous biomarkers to trigger simultaneous assembly and disassembly techniques. Colloidal Au is initially inert because the starting DNA strands are paired and prehybridized. TK1 mRNA competes to bind one of the paired strands and release its complement. The released complement binds to the next colloidal Au to initiate assembly, and APE1 can shear the colloidal Au assembly binding site to initiate disassembly. Our strategy provides temporal and spatial logic control during colloidal Au assembly and disassembly, and this simultaneous assembly and disassembly process can be used for sequential detection and cellular imaging of two biomarkers, effectively reducing signal false-positive results and shortening detection time. This work highlights biomarker-controlled colloidal Au simultaneous assembly and disassembly in ways that are simple and versatile, with the potential to enrich the application scope of DNA nanotechnology and provide an idea for the application of precision medicine testing.
Collapse
Affiliation(s)
- Tingting Zhao
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yi Fang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xuyang Wang
- Biomedical Science College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, P. R. China
| | - Jiajia Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Lingxia Meng
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Wenxiao Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
4
|
Sun LZ, Ying YJ. Moving dynamics of a nanorobot with three DNA legs on nanopore-based tracks. NANOSCALE 2023; 15:15794-15809. [PMID: 37740362 DOI: 10.1039/d3nr03747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
DNA nanorobots have garnered increasing attention in recent years due to their unique advantages of modularity and algorithm simplicity. To accomplish specific tasks in complex environments, various walking strategies are required for the DNA legs of the nanorobot. In this paper, we employ computational simulations to investigate a well-designed DNA-legged nanorobot moving along a nanopore-based track on a planar membrane. The nanorobot consists of a large nanoparticle as the robot core and three single-stranded DNAs (ssDNAs) as the robot legs. The nanopores linearly embedded in the membrane serve as the toeholds for the robot legs. A charge gradient along the pore distribution mainly powers the activation of the nanorobot. The nanorobot can move in two modes: a walking mode, where the robot legs sequentially enter the nanopores, and a jumping mode, where the robot legs may skip a nanopore to reach the next one. Moreover, we observe that the moving dynamics of the nanorobot on the nanopore-based tracks depends on pore-pore distance, pore charge gradient, external voltage, and leg length.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Yao-Jun Ying
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| |
Collapse
|
5
|
Guo M, Yang G, Meng X, Zhang T, Li C, Bai S, Zhao X. Illuminating plant-microbe interaction: How photoperiod affects rhizosphere and pollutant removal in constructed wetland? ENVIRONMENT INTERNATIONAL 2023; 179:108144. [PMID: 37586276 DOI: 10.1016/j.envint.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Rhizosphere is a crucial area in comprehending the interaction between plants and microorganisms in constructed wetlands (CWs). However, influence of photoperiod, a key factor that regulates photosynthesis and rhizosphere microbial activity, remains largely unknown. This study investigated the effect of photoperiod (9, 12, 15 h/day) on pollutant removal and underlying mechanisms. Results showed that 15-hour photoperiod treatment exhibited the highest removal efficiencies for COD (87.26%), TN (63.32%), and NO3--N (97.79%). This treatment enhanced photosynthetic pigmentation and root activity, which increased transport of oxygen and soluble organic carbon to rhizosphere, thus promoting microbial nitrification and denitrification. Microbial community analysis revealed a more stable co-occurrence network due to increased complexity and aggregation in the 15-hour photoperiod treatment. Phaselicystis was identified as a key connector, which was responsible for transferring necessary carbon sources, ATP, and electron donors that supported and optimized nitrogen metabolism in the CWs. Structural equation model analysis emphasized the importance of plant-microbe interactions in pollutant removal through increased substance, information, and energy exchange. These findings offer valuable insights for CWs design and operation in various latitudes and rural areas for small-scale decentralized systems.
Collapse
Affiliation(s)
- Mengran Guo
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Genji Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Ding Y, Xie Y, Li AZ, Huang PJJ, Liu J. Cross-Binding of Four Adenosine/ATP Aptamers to Caffeine, Theophylline, and Other Methylxanthines. Biochemistry 2023; 62:2280-2288. [PMID: 37433121 DOI: 10.1021/acs.biochem.3c00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The classical DNA aptamer for adenosine and ATP was selected twice using ATP as the target in 1995 and 2005, respectively. In 2022, this motif appeared four more times from selections using adenosine, ATP, theophylline, and caffeine as targets, suggesting that this aptamer can also bind methylxanthines. In this work, using thioflavin T fluorescence spectroscopy, this classical DNA aptamer showed Kd values for adenosine, theophylline, and caffeine of 9.5, 101, and 131 μM, respectively, and similar Kd values were obtained using isothermal titration calorimetry. Binding to the methylxanthines was also observed for the newly selected Ade1301 aptamer but not for the Ade1304 aptamer. The RNA aptamer for ATP also had no binding to the methylxanthines. Molecular dynamics simulations were performed using the classical DNA and RNA aptamers based on their NMR structures, and the simulation results were consistent with the experimental observations, explaining the selectivity profiles. This study suggests that a broader range of target analogues need to be tested for aptamers. For the detection of adenosine and ATP, the Ade1304 aptamer is a better choice due to its better selectivity.
Collapse
Affiliation(s)
- Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yachen Xie
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Albert Zehan Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
7
|
Zhu J, Tivony R, Bošković F, Pereira-Dias J, Sandler SE, Baker S, Keyser UF. Multiplexed Nanopore-Based Nucleic Acid Sensing and Bacterial Identification Using DNA Dumbbell Nanoswitches. J Am Chem Soc 2023. [PMID: 37220424 DOI: 10.1021/jacs.3c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multiplexed nucleic acid sensing methods with high specificity are vital for clinical diagnostics and infectious disease control, especially in the postpandemic era. Nanopore sensing techniques have developed in the past two decades, offering versatile tools for biosensing while enabling highly sensitive analyte measurements at the single-molecule level. Here, we establish a nanopore sensor based on DNA dumbbell nanoswitches for multiplexed nucleic acid detection and bacterial identification. The DNA nanotechnology-based sensor switches from an "open" into a "closed" state when a target strand hybridizes to two sequence-specific sensing overhangs. The loop in the DNA pulls two groups of dumbbells together. The change in topology results in an easily recognized peak in the current trace. Simultaneous detection of four different sequences was achieved by assembling four DNA dumbbell nanoswitches on one carrier. The high specificity of the dumbbell nanoswitch was verified by distinguishing single base variants in DNA and RNA targets using four barcoded carriers in multiplexed measurements. By combining multiple dumbbell nanoswitches with barcoded DNA carriers, we identified different bacterial species even with high sequence similarity by detecting strain specific 16S ribosomal RNA (rRNA) fragments.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Ran Tivony
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Filip Bošković
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
8
|
Zarubiieva I, Spaccasassi C, Kulkarni V, Phillips A. Automated Leak Analysis of Nucleic Acid Circuits. ACS Synth Biol 2022; 11:1931-1948. [PMID: 35544754 DOI: 10.1021/acssynbio.2c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acids are a powerful engineering material that can be used to implement a broad range of computational circuits at the nanoscale, with potential applications in high-precision biosensing, diagnostics, and therapeutics. However, nucleic acid circuits are prone to leaks, which result from unintended displacement interactions between nucleic acid strands. Such leaks can grow combinatorially with circuit size, are challenging to mitigate, and can significantly compromise circuit behavior. While several techniques have been proposed to partially mitigate leaks, computational methods for designing new leak mitigation strategies and comparing their effectiveness on circuit behavior are limited. Here we present a general method for the automated leak analysis of nucleic acid circuits, referred to as DSD Leaks. Our method extends the logic programming functionality of the Visual DSD language, developed for the design and analysis of nucleic acid circuits, with predicates for leak generation, a leak reaction enumeration algorithm, and predicates to exclude low probability leak reactions. We use our method to identify the critical leak reactions affecting the performance of control circuits, and to analyze leak mitigation strategies by automatically generating leak reactions. Finally, we design new control circuits with substantially reduced leakage including a sophisticated proportional-integral controller circuit, which can in turn serve as building blocks for future circuits. By integrating our method within an open-source nucleic acid circuit design tool, we enable the leak analysis of a broad range of circuits, as an important step toward facilitating robust and scalable nucleic acid circuit design.
Collapse
|
9
|
Li X, Yang H, He J, Yang B, Zhao Y, Wu P. Full liberation of 2-Aminopurine with nucleases digestion for highly sensitive biosensing. Biosens Bioelectron 2022; 196:113721. [PMID: 34673482 DOI: 10.1016/j.bios.2021.113721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023]
Abstract
2-Aminopurine (2-AP), a fluorescent isomer of adenine, is a popular fluorescent tag for DNA-based biosensors. The fluorescence of 2-AP is highly dependent on its microenvironment, i.e., almost non-fluorescent and merely fluorescent in dsDNA and ssDNA, respectively, but can be greatly brightened as mononucleotide. In most 2-AP-based biosensors, DNA transformation from dsDNA to ssDNA was employed, while selective digestion of 2-AP-labeled DNA with nucleases represents an appealing approach for improving the biosensor sensitivity. However, some detailed fundamental information, such as the reason for nuclease digestion, the influence of the labeling site, neighboring bases, or the label number of 2-AP for final signal output, are still largely unknown, which greatly limits the utility of 2-AP-based biosensors. In this work, using both steady- and excited-state fluorescence (lifetime), we demonstrated that nuclease digestion resulted in almost full liberation of 2-AP mononucleotides, and was free from labeling site and neighboring bases. Furthermore, we also found that nuclease digestion could lead to multiplexed sensitivity from increasing number of 2-AP labelling, but was not achievable for the conventional biosensors without full liberation of 2-AP. Considering the popularity of 2-AP in biosensing and other related applications, the above obtained information in sensitivity boosting is fundamentally important for future design of 2-AP-based biosensors.
Collapse
Affiliation(s)
- Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jialun He
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Wu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
10
|
Kachwala MJ, Smith CW, Nandu N, Yigit MV. Reprogrammable Gel Electrophoresis Detection Assay Using CRISPR-Cas12a and Hybridization Chain Reaction. Anal Chem 2021; 93:1934-1938. [PMID: 33404234 PMCID: PMC8177748 DOI: 10.1021/acs.analchem.0c04949] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybridization chain reaction (HCR) is a DNA-based target-induced cascade reaction. Due to its unique enzyme-free amplification feature, HCR is often employed for sensing applications. Much like DNA nanostructures that have been designed to respond to a specific stimulus, HCR employs nucleic acids that reconfigure and assemble in the presence of a specific trigger. Despite its standalone capabilities, HCR is highly modular; therefore, it can be advanced and repurposed when coupled with latest discoveries. To this effect, we have developed a gel electrophoresis-based detection approach which combines the signal amplification feature of HCR with the programmability and sensitivity of the CRISPR-Cas12a system. By incorporating CRISPR-Cas12a, we have achieved greater sensitivity and reversed the signal output from TURN OFF to TURN ON. CRISPR-Cas12a also enabled us to rapidly reprogram the assay for the detection of both ssDNA and dsDNA target sequences by replacing a single reaction component in the detection kit. Detection of conserved, both ssDNA and dsDNA, regions of tobacco curly shoot virus (TCSV) and hepatitis B virus (HepBV) genomes is demonstrated with this methodology. This low-cost gel electrophoresis assay can detect as little as 1.5 fmol of the target without any additional target amplification steps and is about 100-fold more sensitive than HCR-alone approach.
Collapse
Affiliation(s)
- Mahera J Kachwala
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Christopher W Smith
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Nidhi Nandu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
11
|
Rangel AE, Hariri AA, Eisenstein M, Soh HT. Engineering Aptamer Switches for Multifunctional Stimulus-Responsive Nanosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003704. [PMID: 33165999 DOI: 10.1002/adma.202003704] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/19/2020] [Indexed: 05/15/2023]
Abstract
Although RNA and DNA are best known for their capacity to encode biological information, it has become increasingly clear over the past few decades that these biomolecules are also capable of performing other complex functions, such as molecular recognition (e.g., aptamers) and catalysis (e.g., ribozymes). Building on these foundations, researchers have begun to exploit the predictable base-pairing properties of RNA and DNA in order to utilize nucleic acids as functional materials that can undergo a molecular "switching" process, performing complex functions such as signaling or controlled payload release in response to external stimuli including light, pH, ligand-binding and other microenvironmental cues. Although this field is still in its infancy, these efforts offer exciting potential for the development of biologically based "smart materials". Herein, ongoing progress in the use of nucleic acids as an externally controllable switching material is reviewed. The diverse range of mechanisms that can trigger a stimulus response, and strategies for engineering those functionalities into nucleic acid materials are explored. Finally, recent progress is discussed in incorporating aptamer switches into more complex synthetic nucleic acid-based nanostructures and functionalized smart materials.
Collapse
Affiliation(s)
- Alexandra E Rangel
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Amani A Hariri
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
12
|
Chen M, Wu D, Tu S, Yang C, Chen D, Xu Y. CRISPR/Cas9 cleavage triggered ESDR for circulating tumor DNA detection based on a 3D graphene/AuPtPd nanoflower biosensor. Biosens Bioelectron 2020; 173:112821. [PMID: 33221510 DOI: 10.1016/j.bios.2020.112821] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
Circulating tumor DNA (ctDNA) plays an important role in the early diagnosis and prognosis of several cancers and is a credible biomarker for predicting the response to therapy. Additionally, the fact that the strategy used to detect ctDNA is non-invasive also adds to the advantages of using ctDNA for predicting disease diagnosis and prognosis. However, low abundance in peripheral blood and the high background of wild-type DNA impair the precise and specific measurement of ctDNA. In this study, we developed a novel 3D GR/AuPtPd nanoflower sensing platform based on CRISPR/Cas9 cleavage-triggered entropy-driven strand displacement reaction (ESDR) for the effective detection of ctDNA. Low levels of ctDNA could be detected using this method as the ESDR amplification does require complicated operation procedures and stringent reaction conditions. By combining the advantages of the site-specific cleavage by "gene magic scissors," Cas9/sgRNA, with those of the rapid amplification kinetics of entropy-driven strand displacement, our method resulted in amplification efficiency as well as high specificity for discriminating single-nucleotide mismatches. The 3D GR/AuPtPd nanoflower-based electrochemical biosensor displayed high specificity and worthy performance in assays with human serum. Therefore, this pioneered method provides a new paradigm for efficient ctDNA detection and shows great potential for use in clinical and diagnostic applications.
Collapse
Affiliation(s)
- Mei Chen
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Dongming Wu
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Shihua Tu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Chaoyin Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - DeJie Chen
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Ying Xu
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China.
| |
Collapse
|
13
|
A molecular device: A DNA molecular lock driven by the nicking enzymes. Comput Struct Biotechnol J 2020; 18:2107-2116. [PMID: 32913580 PMCID: PMC7451616 DOI: 10.1016/j.csbj.2020.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022] Open
Abstract
As people are placing more and more importance on information security, how to realize the protection of information has become a hotspot of current research. As a security device, DNA molecular locks have great potential to realize information protection at the molecular level. However, building a highly secure molecular lock is still a serious challenge. Therefore, taking advantage of the DNA strand displacement and enzyme control technology, we constructed a molecular lock with a self-destructive mechanism. This molecular lock is mainly composed of logic circuits and takes nicking enzymes as inputs. To build this molecular lock, we first constructed a series of cascade circuits, including a YES–YES cascade circuit and a YES–AND cascade circuit. Then, an Inhibit logic gate was constructed to explore the inhibitory properties between different combinations of two nicking enzymes. Finally, using the characteristics of mutual inhibition between several enzymes, a DNA molecular lock driven by three nicking enzymes was constructed. In this molecular device, only the correct sequence of nicking enzymes can be input to ensure the normal operation of the molecular lock. Once the wrong password is entered, the device will be destroyed and cannot be recovered, which effectively prevents intruders from cracking the lock through exhaustive methods. The molecular lock has the function of simulating an electronic keyboard, which can realize the protection of information at the molecular level, and provides a new implementation method for building more advanced and complex molecular devices.
Collapse
|
14
|
Shi L, Peng P, Zheng J, Wang Q, Tian Z, Wang H, Li T. I-Motif/miniduplex hybrid structures bind benzothiazole dyes with unprecedented efficiencies: a generic light-up system for label-free DNA nanoassemblies and bioimaging. Nucleic Acids Res 2020; 48:1681-1690. [PMID: 31950160 PMCID: PMC7039006 DOI: 10.1093/nar/gkaa020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
I-motif DNAs have been widely employed as robust modulating components to construct reconfigurable DNA nanodevices that function well in acidic cellular environments. However, they generally display poor interactivity with fluorescent ligands under these complex conditions, illustrating a major difficulty in utilizing i-motifs as the light-up system for label-free DNA nanoassemblies and bioimaging. Towards addressing this challenge, here we devise new types of i-motif/miniduplex hybrid structures that display an unprecedentedly high interactivity with commonly-used benzothiazole dyes (e.g. thioflavin T). A well-chosen tetranucleotide, whose optimal sequence depends on the used ligand, is appended to the 5′-terminals of diverse i-motifs and forms a minimal parallel duplex thereby creating a preferential site for binding ligands, verified by molecular dynamics simulation. In this way, the fluorescence of ligands can be dramatically enhanced by the i-motif/miniduplex hybrids under complex physiological conditions. This provides a generic light-up system with a high signal-to-background ratio for programmable DNA nanoassemblies, illustrated through utilizing it for a pH-driven framework nucleic acid nanodevice manipulated in acidic cellular membrane microenvironments. It enables label-free fluorescence bioimaging in response to extracellular pH change.
Collapse
Affiliation(s)
- Lili Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhijin Tian
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Huihui Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- To whom correspondence should be addressed. Tel: +86 551 63601813;
| |
Collapse
|
15
|
Sun X, Zheng X, Zhao S, Liu Y, Wang B. DNA circuits driven by conformational changes in DNAzyme recognition arms. RSC Adv 2020; 10:7956-7966. [PMID: 35492184 PMCID: PMC9049901 DOI: 10.1039/d0ra00115e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
DNA computing plays an important role in nanotechnology due to the unique programmability and parallelism of DNA molecules. As an important tool to realize DNA computation, various logic computing devices have great application potential. The application of DNAzyme makes the achievements in the field of logical computing more diverse. In order to improve the efficiency of the logical units run by DNAzyme, we proposed a strategy to regulate the DNA circuit by the conformational change of the E6-type DNAzyme recognition arms driven by Mg2+. This strategy changes the single mode of DNAzyme signal transmission, extends the functions of E6-type DNAzyme, and saves the time of signal transmission in the molecular scale. To verify the feasibility of this strategy, first, we constructed DNA logic gates (YES, OR, and AND). Second, we cascade different logic gates (YES-YES, YES-AND) to prove the scalability. Finally, a self-catalytic DNA circuit is established. Through the experimental results, we verified that this DNAzyme regulation strategy relatively reduces the cost of logic circuits to some extent and significantly increases the reaction rate, and can also be used to indicate the range of Mg2+ concentrations. This research strategy provides new thinking for logical computing and explores new directions for detection and biosensors.
Collapse
Affiliation(s)
- Xinyi Sun
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University Shenyang 110136 China
| | - Sue Zhao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Yuan Liu
- School of Computer Scicence and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| |
Collapse
|
16
|
Fu X, Peng F, Lee J, Yang Q, Zhang F, Xiong M, Kong G, Meng HM, Ke G, Zhang XB. Aptamer-Functionalized DNA Nanostructures for Biological Applications. Top Curr Chem (Cham) 2020; 378:21. [PMID: 32030541 DOI: 10.1007/s41061-020-0283-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
Abstract
DNA nanostructures hold great promise for various applications due to their remarkable properties, including programmable assembly, nanometric positional precision, and dynamic structural control. The past few decades have seen the development of various kinds of DNA nanostructures that can be employed as useful tools in fields such as chemistry, materials, biology, and medicine. Aptamers are short single-stranded nucleic acids that bind to specific targets with excellent selectivity and high affinity and play critical roles in molecular recognition. Recently, many attempts have been made to integrate aptamers with DNA nanostructures for a range of biological applications. This review starts with an introduction to the features of aptamer-functionalized DNA nanostructures. The discussion then focuses on recent progress (particularly during the last five years) in the applications of these nanostructures in areas such as biosensing, bioimaging, cancer therapy, and biophysics. Finally, challenges involved in the practical application of aptamer-functionalized DNA nanostructures are discussed, and perspectives on future directions for research into and applications of aptamer-functionalized DNA nanostructures are provided.
Collapse
Affiliation(s)
- Xiaoyi Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jungyeon Lee
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Qi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Mengyi Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gezhi Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hong-Min Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
17
|
Zheng J, Du Y, Wang H, Peng P, Shi L, Li T. Ultrastable Bimolecular G-Quadruplexes Programmed DNA Nanoassemblies for Reconfigurable Biomimetic DNAzymes. ACS NANO 2019; 13:11947-11954. [PMID: 31589020 DOI: 10.1021/acsnano.9b06029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The relatively low stability and polymorphism of bimolecular G-quadruplexes (bi-G4s) are big difficulties that are faced in employing them to guide DNA assembly, as they are usually subject to a transformation into more stable tetramolecular or G-wire structures favored by K+ or Mg2+. Although bi-G4s benefit by additional duplex handles, a challenge remains in tailoring their intrinsic properties to resolve the above difficulties. Toward this challenge, here we engineer several ultrastable bi-G4s via replacing their nucleotide loops with special mini-hairpins, which consist of a GAA loop and a short GC-paired stem. Such a structural alteration favors the formation of G:C:G:C tetrads in the head-to-head folding topologies of bi-G4s and improves their thermal stability, with an increase in the melting temperature by up to 25 °C. It dramatically reduces their structural conversion into G-wires, verified by atomic force microscopy. These features enable the utilization of two well-chosen bi-G4s to shape a DNA nanotriangle into the desired framework nucleic acid (FNA) architectures such as "bowknot" and "butterfly" that are reversibly switched by the bi-G4s. On this basis, we further build a reconfigurable DNAzyme device to mimic the activation of human telomerase that is modulated by the G4 dimerization. Our designed ultrastable bi-G4s will offer a promising tool for dynamically manipulating intracellular DNA nanoassemblies with endogenous K+ and exploring the relationship between dimerization and function in some physiological processes.
Collapse
Affiliation(s)
- Jiao Zheng
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Yi Du
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Huihui Wang
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Pai Peng
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Lili Shi
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Tao Li
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| |
Collapse
|
18
|
Li Q, Liu Z, Zhou D, Pan J, Liu C, Chen J. A cascade toehold-mediated strand displacement strategy for label-free and sensitive non-enzymatic recycling amplification detection of the HIV-1 gene. Analyst 2019; 144:2173-2178. [PMID: 30768078 DOI: 10.1039/c8an02340a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work, a label-free fluorescence biosensor for simple detection of the HIV-1 gene was proposed by using toehold-mediated strand displacement reactions (TMSDRs) combined with a non-enzymatic target recycling amplification strategy. In this system, two TMSDRs were used. In the presence of the HIV-1 gene, an autocatalytic DNA machine can be activated. This leads to the generation of numerous free G-rich sequences, which can associate with a fluorescent dye N-methylmesoporphyrin IX (NMM) to yield an amplified fluorescence signal for the target detection. This sensing platform showed a high sensitivity towards the HIV-1 gene with a detection limit as low as 1.9 pM without any labelling, immobilization, or washing steps. The designed sensing system also exhibits an excellent selectivity for the HIV-1 gene compared with other interference DNA sequences. Furthermore, the presented biosensor is robust and has been successfully applied for the detection of the HIV-1 gene in a real biological sample with satisfactory results, suggesting that this method is promising for simple and early clinical diagnosis of HIV infection. Thanks to its simplicity, cost-effectiveness and ultrasensitivity, our proposed sensing strategy provides a universal platform for the detection of other genes by substituting the target-recognition element.
Collapse
Affiliation(s)
- Qiong Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | | | | | | | | | | |
Collapse
|
19
|
Du Y, Peng P, Li T. DNA Logic Operations in Living Cells Utilizing Lysosome-Recognizing Framework Nucleic Acid Nanodevices for Subcellular Imaging. ACS NANO 2019; 13:5778-5784. [PMID: 30978283 DOI: 10.1021/acsnano.9b01324] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA logic nanodevices that in situ operate within living cells have attracted increasing interest and shown great promise for gene regulation and target recognition. A challenge remains how to control their activation inside specific cellular compartments. Toward this goal, here we report a lysosome-recognizing framework nucleic acid (FNA) nanodevice using an i-motif and an ATP-binding aptamer (ABA) incorporated into a DNA triangular prism (DTP) as the logic-controlling units. Once entering the lysosomal compartments, the FNA device responds to lysosomal pH and ATP via the folding of i-motif and ABA, which triggers a structural change of FNA and the release of a reporter structure for subcellular imaging. With endogenous proton and ATP as two inputs, an AND logic gate is built and in situ operated within living lysosomes by pH and ATP modulation with external drug stimuli. Given the abnormal levels of pH and ATP within some cancer cells or dysfunctional lysosomal cells, in this context our designed FNA logic device may find extended applications in controllable drug release and disease treatment.
Collapse
Affiliation(s)
- Yi Du
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Pai Peng
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Tao Li
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| |
Collapse
|
20
|
Zheng X, Yang J, Zhou C, Zhang C, Zhang Q, Wei X. Allosteric DNAzyme-based DNA logic circuit: operations and dynamic analysis. Nucleic Acids Res 2019; 47:1097-1109. [PMID: 30541100 PMCID: PMC6379719 DOI: 10.1093/nar/gky1245] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
Recently, due to the dual roles of DNA and enzyme, DNAzyme has been widely used in the field of DNA circuit, which has a wide range of applications in bio-engineered system, information processing and biocomputing. In fact, the activity of DNAzymes was regulated by subunits assembly, pH control and metal ions triggers. However, those regulations required to change the sequences of whole DNAzyme, as separating parts and inserting extra DNA sequence. Inspired by the allosteric regulation of proteins in nature, a new allosteric strategy is proposed to regulate the activity of DNAzyme without DNA sequences changes. In this strategy, DNA strand displacement was used to regulate the DNAzyme structure, through which the activity of DNAzyme was well controlled. The strategy was applied to E6-type DNAzymes, and the operations of DNA logic circuit (YES, OR, AND, cascading and feedback) were established and simulated with the dynamic analyses. The allosteric regulation has potential to construct more complicated molecular systems, which can be applied to bio-sensing and detection.
Collapse
Affiliation(s)
- Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Changjun Zhou
- College of Mathematics and Computer sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Zhang
- School of Electronics Engineering and Computer Science, Peking University, Key laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Scicence and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaopeng Wei
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Scicence and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Simmel FC, Yurke B, Singh HR. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem Rev 2019; 119:6326-6369. [PMID: 30714375 DOI: 10.1021/acs.chemrev.8b00580] [Citation(s) in RCA: 381] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic DNA nanotechnology, a subfield of DNA nanotechnology, is concerned with the study and application of nucleic acid strand-displacement reactions. Strand-displacement reactions generally proceed by three-way or four-way branch migration and initially were investigated for their relevance to genetic recombination. Through the use of toeholds, which are single-stranded segments of DNA to which an invader strand can bind to initiate branch migration, the rate with which strand displacement reactions proceed can be varied by more than 6 orders of magnitude. In addition, the use of toeholds enables the construction of enzyme-free DNA reaction networks exhibiting complex dynamical behavior. A demonstration of this was provided in the year 2000, in which strand displacement reactions were employed to drive a DNA-based nanomachine (Yurke, B.; et al. Nature 2000, 406, 605-608). Since then, toehold-mediated strand displacement reactions have been used with ever increasing sophistication and the field of dynamic DNA nanotechnology has grown exponentially. Besides molecular machines, the field has produced enzyme-free catalytic systems, all DNA chemical oscillators and the most complex molecular computers yet devised. Enzyme-free catalytic systems can function as chemical amplifiers and as such have received considerable attention for sensing and detection applications in chemistry and medical diagnostics. Strand-displacement reactions have been combined with other enzymatically driven processes and have also been employed within living cells (Groves, B.; et al. Nat. Nanotechnol. 2015, 11, 287-294). Strand-displacement principles have also been applied in synthetic biology to enable artificial gene regulation and computation in bacteria. Given the enormous progress of dynamic DNA nanotechnology over the past years, the field now seems poised for practical application.
Collapse
Affiliation(s)
| | - Bernard Yurke
- Micron School of Materials Science and Engineering , Boise State University , Boise , ID 83725 , United States
| | - Hari R Singh
- Physics Department , TU München , 85748 Garching , Germany
| |
Collapse
|
22
|
Du H, Yang P, Hou X, Zhou R, Hou X, Chen J. Expanding DNA nanomachine functionality through binding-induced DNA output for application in clinical diagnosis. Chem Commun (Camb) 2019; 55:3610-3613. [PMID: 30843913 DOI: 10.1039/c9cc01228a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Herein, we describe two homogeneous conversion systems that can convert protein recognition into the release of predesigned output DNA for the activation of DNA nanomachines.
Collapse
Affiliation(s)
- Huan Du
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Peng Yang
- Analytical & Testing Centre
- Sichuan University
- Chengdu
- China
| | - Xin Hou
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Rongxing Zhou
- Biliary Surgical Department
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xiandeng Hou
- College of Chemistry
- Sichuan University
- Chengdu
- China
- Analytical & Testing Centre
| | - Junbo Chen
- Analytical & Testing Centre
- Sichuan University
- Chengdu
- China
| |
Collapse
|
23
|
Du Y, Peng P, Li T. Logic circuit controlled multi-responsive branched DNA scaffolds. Chem Commun (Camb) 2018; 54:6132-6135. [PMID: 29808870 DOI: 10.1039/c8cc03387k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A logic circuit controlled multi-responsive sensing platform built on a three-way DNA junction (TWJ) is reported. It enabled the construction of novel fluorescent sensing platforms responsive to any target out of HIV gene, ATP and pH value, and furthermore were logically regulated by two other targets and then behaved as different logic circuits, which consist of two tandem AND gates or cascaded NAND and INH gates by varying the positions of the fluorescent tags.
Collapse
Affiliation(s)
- Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | | | | |
Collapse
|
24
|
Zhu J, Yan Z, Zhou W, Liu C, Wang J, Wang E. Lighting Up the Thioflavin T by Parallel-Stranded TG(GA) n DNA Homoduplexes. ACS Sens 2018; 3:1118-1125. [PMID: 29749724 DOI: 10.1021/acssensors.8b00141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thioflavin T (ThT) was once regarded to be a specific fluorescent probe for the human telomeric G-quadruplex, but more other kinds of DNA were found that can also bind to ThT in recent years. Herein, we focus on G-rich parallel-stranded DNA and utilize fluorescence, absorbance, circular dichroism, and surface plasmon resonance spectroscopy to investigate its interaction with ThT. Pyrene label and molecular modeling are applied to unveil the binding mechanism. We find a new class of non-G-quadruplex G-rich parallel-stranded ( ps) DNA with the sequence of TG(GA) n can bind to ThT and increase the fluorescence with an enhancement ability superior to G-quadruplex. The optimal binding specificity for ThT is conferred by two parts. The first part is composed of two bases TG at the 5' end, which is a critical domain and plays an important role in the formation of the binding site for ThT. The second part is the rest alternative d(GA) bases, which forms the ps homoduplex and cooperates with the TG bases at the 5' end to bind the ThT.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiqiang Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Weijun Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanbo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- College of Physics, Jilin University, Changchun 130022, P. R. China
- Department of Chemistry and of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
25
|
Chen J, Shang B, Zhang H, Zhu Z, Chen L, Wang H, Ran F, Chen Q, Chen J. Enzyme-free ultrasensitive fluorescence detection of epithelial cell adhesion molecules based on a toehold-aided DNA recycling amplification strategy. RSC Adv 2018; 8:14798-14805. [PMID: 35541343 PMCID: PMC9079946 DOI: 10.1039/c8ra01362d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/04/2018] [Indexed: 01/13/2023] Open
Abstract
Epithelial cell adhesion molecules (EpCAMs) play a significant role in tumorigenesis and tumor development. EpCAMs are considered to be tumor signaling molecules for cancer diagnosis, prognosis and therapy. Herein, an enzyme-free and highly sensitive fluorescent biosensor, with a combined aptamer-based EpCAM recognition and toehold-aided DNA recycling amplification strategy, was developed for sensitive and specific fluorescence detection of EpCAMs. Due to highly specific binding between EpCAMs and corresponding aptamers, strand a, which is released from the complex of aptamer/strand a in the presence of EpCAMs which is bound to the corresponding aptamer, triggered the toehold-mediated strand displacement process. An amplified fluorescent signal was achieved by recycling strand a for ultrasensitive EpCAM detection with a detection limit as low as 0.1 ng mL-1, which was comparable or superior to that of reported immunoassays and biosensor strategies. In addition, high selectivity towards EpCAMs was exhibited when other proteins were selected as control proteins. Finally, this strategy was successfully used for the ultrasensitive fluorescence detection of EpCAMs in human serum samples with satisfactory results. Importantly, the present strategy may be also expanded for the detection of other targets using the corresponding aptamers.
Collapse
Affiliation(s)
- Jishun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Bing Shang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hua Zhang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Zhengpeng Zhu
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Long Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hongmei Wang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Fengying Ran
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Jun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| |
Collapse
|
26
|
Ke Y, Castro C, Choi JH. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research. Annu Rev Biomed Eng 2018; 20:375-401. [PMID: 29618223 DOI: 10.1146/annurev-bioeng-062117-120904] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery.
Collapse
Affiliation(s)
- Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Carlos Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43214, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
27
|
Angell C, Kai M, Xie S, Dong X, Chen Y. Bioderived DNA Nanomachines for Potential Uses in Biosensing, Diagnostics, and Therapeutic Applications. Adv Healthc Mater 2018; 7:e1701189. [PMID: 29350489 DOI: 10.1002/adhm.201701189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/23/2017] [Indexed: 12/28/2022]
Abstract
Beside its genomic properties, DNA is also recognized as a novel material in the field of nanoengineering. The specific bonding of base pairs can be used to direct the assembly of highly structured materials with specific nanoscale features such as periodic 2D arrays, 3D nanostructures, assembly of nanomaterials, and DNA nanomachines. In recent years, a variety of DNA nanomachines are developed because of their many potential applications in biosensing, diagnostics, and therapeutic applications. In this review, the fuel-powered motors and secondary structure motors, whose working mechanisms are inspired or derived from natural phenomena and nanomachines, are discussed. The combination of DNA motors with other platforms is then discussed. In each section of these motors, their mechanisms and their usage in the biomedical field are described. Finally, it is believed that these DNA-based nanomachines and hybrid motifs will become an integral point-of-care diagnostics and smart, site-specific therapeutic delivery.
Collapse
Affiliation(s)
- Chava Angell
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| | - Mingxuan Kai
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| | - Sibai Xie
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| | - Xiangyi Dong
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| | - Yi Chen
- Department of NanoengineeringUniversity of California San Diego, La Jolla CA 92093 USA
| |
Collapse
|
28
|
Peng P, Du Y, Li T. DNA nanodevices monitored with fluorogenic looped-out 2-aminopurine. Analyst 2018; 143:1268-1273. [PMID: 29445799 DOI: 10.1039/c7an01953j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report several DNA nanodevices monitored with fluorogenic looped-out 2-aminopurine. It is found that looped-out 2-AP, an analogue of adenine, in split parallel G-quadruplexes, triplexes and duplexes always shows much higher fluorescence intensity than that in single- or double-stranded DNAs, due to the weaker quenching effects derived from the reduced base stacking environments. Taking advantage of these traits, we introduce a new strategy to monitor the behaviours of DNA nanodevices via the fluorescence signal output by utilizing changes in the base stacking environment of 2-AP. As proof-of-principle experiments, two nanoplatforms for detecting disease genes, as well as a triplex nanoswitch, are constructed and monitored by fluorogenic looped-out 2-AP, illustrating that fluorogenic looped-out 2-AP holds great promise for reading the behaviours of diverse DNA nanodevices. Compared with conventional fluorescence labelling, looped-out 2-AP as a reporter shows good photostability and can be quenched by base-pairing, thereby providing an efficient quencher-free methodology for monitoring DNA nanodevices.
Collapse
Affiliation(s)
- Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China.
| | | | | |
Collapse
|
29
|
Peng P, Du Y, Sun Y, Liu S, Mi L, Li T. Probing the propeller-like loops of DNA G-quadruplexes with looped-out 2-aminopurine for label-free switchable molecular sensing. Analyst 2018; 143:3814-3820. [DOI: 10.1039/c8an00914g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel ligand-free signal readout mechanism for probing the propeller-like loops of DNA G-quadruplexes with looped-out 2-aminopurine.
Collapse
Affiliation(s)
- Pai Peng
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Yi Du
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Yudie Sun
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Shuangna Liu
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Lan Mi
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Tao Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| |
Collapse
|
30
|
Copp W, Denisov AY, Xie J, Noronha AM, Liczner C, Safaee N, Wilds CJ, Gehring K. Influence of nucleotide modifications at the C2' position on the Hoogsteen base-paired parallel-stranded duplex of poly(A) RNA. Nucleic Acids Res 2017; 45:10321-10331. [PMID: 28973475 PMCID: PMC5737284 DOI: 10.1093/nar/gkx713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Polyadenylate (poly(A)) has the ability to form a parallel duplex with Hoogsteen adenine:adenine base pairs at low pH or in the presence of ammonium ions. In order to evaluate the potential of this structural motif for nucleic acid-based nanodevices, we characterized the effects on duplex stability of substitutions of the ribose sugar with 2'-deoxyribose, 2'-O-methyl-ribose, 2'-deoxy-2'-fluoro-ribose, arabinose and 2'-deoxy-2'-fluoro-arabinose. Deoxyribose substitutions destabilized the poly(A) duplex both at low pH and in the presence of ammonium ions: no duplex formation could be detected with poly(A) DNA oligomers. Other sugar C2' modifications gave a variety of effects. Arabinose and 2'-deoxy-2'-fluoro-arabinose nucleotides strongly destabilized poly(A) duplex formation. In contrast, 2'-O-methyl and 2'-deoxy-2'-fluoro-ribo modifications were stabilizing either at pH 4 or in the presence of ammonium ions. The differential effect suggests they could be used to design molecules selectively responsive to pH or ammonium ions. To understand the destabilization by deoxyribose, we determined the structures of poly(A) duplexes with a single DNA residue by nuclear magnetic resonance spectroscopy and X-ray crystallography. The structures revealed minor structural perturbations suggesting that the combination of sugar pucker propensity, hydrogen bonding, pKa shifts and changes in hydration determine duplex stability.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Alexey Y Denisov
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Jingwei Xie
- Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Anne M Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Nozhat Safaee
- Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.,Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada
| | - Kalle Gehring
- Groupe de recherché axé sur la structure des protéines, Montréal, Québec H3G 0B1, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
31
|
Shi L, Peng P, Du Y, Li T. Programmable i-motif DNA folding topology for a pH-switched reversible molecular sensing device. Nucleic Acids Res 2017; 45:4306-4314. [PMID: 28369541 PMCID: PMC5416763 DOI: 10.1093/nar/gkx202] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/18/2017] [Indexed: 01/24/2023] Open
Abstract
Four-stranded DNAs including G-quadruplexes and i-motifs are formed from four stretches of identical bases (G or C). A challenge remains in controlling the intermolecular folding of different G-rich or C-rich strands due to the self-association of each component. Here, we introduce a well-designed bimolecular i-motif that does not allow the dimerization of the same strand, and illustrate its usefulness in a pH-switched ATP-sensing DNA molecular device. We analyze two groups of i-motif DNAs containing two stretches of different C-residues (Cn-1TmCn and CnTmCn-1; n = 3−6, m = 1, 3) and show that their bimolecular folding patterns (L- and H-form) noticeably differs in the thermal stability. The L-form structures generally display a relatively low stability, with a bigger difference from that of conventional i-motifs formed by CnTmCn. It inspires us to at utmost improving the structural stability by extending the core of L-form bimolecular i-motifs with a few flanking noncanonical base pairs, and therefore to avoid the dimeric association of each component. This meaningful bimolecular i-motif is then incorporated into a three-way junction (3WJ) and a four-way junction (4WJ) functionalized with two components of a ATP-binding split DNA aptamer, allowing the pH-triggered directional assembly of 3WJ and 4WJ into the desired (3+4)WJ structure that is verified by gel electrophoresis. It therefore enables the ATP-induced association of the split aptamer within the (3+4)WJ structure, as monitored by fluorescence quenching. In this way, the designed DNA system behaves as a pH-switched reversible molecular device, showing a high sensitivity and selectivity for fluorescent ATP analysis. The i-motif folding topology-programmed DNA nanoassembly may find more applications in the context of larger 2D/3D DNA nanostructures like lattices and polyhedra.
Collapse
Affiliation(s)
- Lili Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Cascade toehold-mediated strand displacement along with non-enzymatic target recycling amplification for the electrochemical determination of the HIV-1 related gene. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2368-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|