1
|
Law S, Park H, Shany E, Sandhu S, Vallabhaneni M, Meyer D. Expression of human BRCA2 in Saccharomyces cerevisiae complements the loss of RAD52 in double-strand break repair. Curr Genet 2023; 69:301-308. [PMID: 37934232 DOI: 10.1007/s00294-023-01278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
BRCA2 is a tumor-suppressor gene that is normally expressed in the breast and ovarian tissue of mammals. The BRCA2 protein mediates the repair of double-strand breaks (DSBs) using homologous recombination, which is a conserved pathway in eukaryotes. Women who express missense mutations in the BRCA2 gene are predisposed to an elevated lifetime risk for both breast cancer and ovarian cancer. In the present study, the efficiency of human BRCA2 (hBRCA2) in DSB repair was investigated in the budding yeast Saccharomyces cerevisiae. While budding yeast does not possess a true BRCA2 homolog, they have a potential functional homolog known as Rad52, which is an essential repair protein involved in mediating homologous recombination using the same mechanism as BRCA2 in humans. Therefore, to examine the functional overlap between Rad52 in yeast and hBRCA2, we expressed the wild-type hBRCA2 gene in budding yeast with or without Rad52 and monitored ionizing radiation resistance and DSB repair efficiency. We found that the expression of hBRCA2 in rad52 mutants increases both radiation resistance and DSB repair frequency compared to cells not expressing BRCA2. Specifically, BRCA2 improved the protection against ionizing radiation by at least 1.93-fold and the repair frequency by 6.1-fold. In addition, our results show that homology length influences repair efficiency in rad52 mutant cells, which impacts BRCA2 mediated repair of DSBs. This study provides evidence that S. cerevisiae could be used to monitor BRCA2 function, which can help in understanding the genetic consequences of BRCA2 variants and how they may contribute to cancer progression.
Collapse
Affiliation(s)
- Sherrice Law
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | - Hannah Park
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | - Eyar Shany
- Columbia University, New York, NY, 10027, USA
| | - Sumer Sandhu
- University of Tennessee College of Medicine, Memphis, TN, 38163, USA
| | - Mayukha Vallabhaneni
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, 95670, USA
| | - Damon Meyer
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, 95670, USA.
| |
Collapse
|
2
|
Bhat DS, Spies MA, Spies M. A moving target for drug discovery: Structure activity relationship and many genome (de)stabilizing functions of the RAD52 protein. DNA Repair (Amst) 2022; 120:103421. [PMID: 36327799 PMCID: PMC9888176 DOI: 10.1016/j.dnarep.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
BRCA-ness phenotype, a signature of many breast and ovarian cancers, manifests as deficiency in homologous recombination, and as defects in protection and repair of damaged DNA replication forks. A dependence of such cancers on DNA repair factors less important for survival of BRCA-proficient cells, offers opportunities for development of novel chemotherapeutic interventions. The first drugs targeting BRCA-deficient cancers, poly-ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of advanced, chemotherapy resistant cancers in patients with BRCA1/2 germline mutations. Nine additional proteins that can be targeted to selectively kill BRCA-deficient cancer cells have been identified. Among them, a DNA repair protein RAD52 is an especially attractive target due to general tolerance of the RAD52 loss of function, and protective role of an inactivating mutation. Yet, the effective pharmacological inhibitors of RAD52 have not been forthcoming. In this review, we discuss advances in the state of our knowledge of the RAD52 structure, activities and cellular functions, with a specific focus on the features that make RAD52 an attractive, but difficult drug target.
Collapse
Affiliation(s)
- Divya S Bhat
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA; Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Pan-cancer analysis of co-occurring mutations in RAD52 and the BRCA1-BRCA2-PALB2 axis in human cancers. PLoS One 2022; 17:e0273736. [PMID: 36107942 PMCID: PMC9477347 DOI: 10.1371/journal.pone.0273736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
In human cells homologous recombination (HR) is critical for repair of DNA double strand breaks (DSBs) and rescue of stalled or collapsed replication forks. HR is facilitated by RAD51 which is loaded onto DNA by either BRCA2-BRCA1-PALB2 or RAD52. In human culture cells, double-knockdowns of RAD52 and genes in the BRCA1-BRCA2-PALB2 axis are lethal. Mutations in BRCA2, BRCA1 or PALB2 significantly impairs error free HR as RAD51 loading relies on RAD52 which is not as proficient as BRCA2-BRCA1-PALB2. RAD52 also facilitates Single Strand Annealing (SSA) that produces intra-chromosomal deletions. Some RAD52 mutations that affect the SSA function or decrease RAD52 association with DNA can suppress certain BRCA2 associated phenotypes in breast cancers. In this report we did a pan-cancer analysis using data reported on the Catalogue of Somatic Mutations in Cancers (COSMIC) to identify double mutants between RAD52 and BRCA1, BRCA2 or PALB2 that occur in cancer cells. We find that co-occurring mutations are likely in certain cancer tissues but not others. However, all mutations occur in a heterozygous state. Further, using computational and machine learning tools we identified only a handful of pathogenic or driver mutations predicted to significantly affect the function of the proteins. This supports previous findings that co-inactivation of RAD52 with any members of the BRCA2-BRCA1-PALB2 axis is lethal. Molecular modeling also revealed that pathogenic RAD52 mutations co-occurring with mutations in BRCA2-BRCA1-PALB2 axis are either expected to attenuate its SSA function or its interaction with DNA. This study extends previous breast cancer findings to other cancer types and shows that co-occurring mutations likely destabilize HR by similar mechanisms as in breast cancers.
Collapse
|
4
|
OUP accepted manuscript. FEMS Yeast Res 2022; 22:6574410. [DOI: 10.1093/femsyr/foac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
|
5
|
Carver A, Zhang X. Rad51 filament dynamics and its antagonistic modulators. Semin Cell Dev Biol 2021; 113:3-13. [PMID: 32631783 DOI: 10.1016/j.semcdb.2020.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023]
Abstract
Rad51 recombinase is the central player in homologous recombination, the faithful repair pathway for double-strand breaks and key event during meiosis. Rad51 forms nucleoprotein filaments on single-stranded DNA, exposed by a double-strand break. These filaments are responsible for homology search and strand invasion, which lead to homology-directed repair. Due to its central roles in DNA repair and genome stability, Rad51 is modulated by multiple factors and post-translational modifications. In this review, we summarize our current understanding of the dynamics of Rad51 filaments, the roles of other factors and their modes of action in modulating key stages of Rad51 filaments: formation, stability and disassembly.
Collapse
Affiliation(s)
- Alexander Carver
- Section of Structural Biology, Department of Infectious Diseases, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Diseases, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Clear AD, Manthey GM, Lewis O, Lopez IY, Rico R, Owens S, Negritto MC, Wolf EW, Xu J, Kenjić N, Perry JJP, Adamson AW, Neuhausen SL, Bailis AM. Variants of the human RAD52 gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast. ACTA ACUST UNITED AC 2020; 7:270-285. [PMID: 33015141 PMCID: PMC7517009 DOI: 10.15698/mic2020.10.732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, HsRAD52 in rad52 mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that HsRAD52 supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery. In this study we report that naturally occurring variants of HsRAD52, one of which suppresses the pathogenicity of BRCA2 mutations, were unable to suppress the IR sensitivity and HRR defects of rad52 mutant yeast cells, but fully suppressed a defect in DSB repair by single-strand annealing (SSA). This failure to suppress both IR sensitivity and the HRR defect correlated with an inability of HsRAD52 protein to associate with and drive an interaction between genomic sequences during DSB repair by HRR. These results suggest that HsRAD52 supports multiple, distinct DSB repair apparatuses in budding yeast cells and help further define its mechanism of action in HRR. They also imply that disruption of HsRAD52-dependent HRR in BRCA2-defective human cells may contribute to protection against tumorigenesis and provide a target for killing BRCA2-defective cancers.
Collapse
Affiliation(s)
- Alissa D Clear
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.,bioStrategies Group, Chicago, IL, USA
| | - Glenn M Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Olivia Lewis
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,Barbara Bush Houston Literacy Foundation, Houston, TX, USA
| | - Isabelle Y Lopez
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,California State Polytechnic University at Pomona, Pomona, CA, USA
| | - Rossana Rico
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,Henry Samueli School of Engineering and Applied Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Shannon Owens
- Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA, USA
| | | | - Elise W Wolf
- Molecular Biology Program, Pomona College, Claremont, CA, USA.,Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - Jason Xu
- Molecular Biology Program, Pomona College, Claremont, CA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikola Kenjić
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - J Jefferson P Perry
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Adam M Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.,College of Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Owens JL, Beketova E, Liu S, Tinsley SL, Asberry AM, Deng X, Huang J, Li C, Wan J, Hu CD. PRMT5 Cooperates with pICln to Function as a Master Epigenetic Activator of DNA Double-Strand Break Repair Genes. iScience 2019; 23:100750. [PMID: 31884170 PMCID: PMC6941881 DOI: 10.1016/j.isci.2019.100750] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand break (DSB) repair is critical for cell survival and genome integrity. Upon recognition of DSBs, repair proteins are transiently upregulated to facilitate repair through homologous recombination (HR) or non-homologous end joining (NHEJ). We present evidence that PRMT5 cooperates with pICln to function as a master epigenetic activator of DNA damage response (DDR) genes involved in HR, NHEJ, and G2 arrest (including RAD51, BRCA1, and BRCA2) to upregulate gene expression upon DNA damage. Contrary to the predominant role of PRMT5 as an epigenetic repressor, our results demonstrate that PRMT5 and pICln can activate gene expression, potentially independent of PRMT5's obligate cofactor MEP50. Targeting PRMT5 or pICln hinders repair of DSBs in multiple cancer cell lines, and both PRMT5 and pICln expression positively correlates with DDR genes across 32 clinical cancer datasets. Thus, targeting PRMT5 or pICln may be explored in combination with radiation or chemotherapy for cancer treatment. PRMT5 activates transcription of DSB repair genes upon DNA damage pICln cooperates with PRMT5 to activate transcription of DSB repair genes Targeting PRMT5 is effective to sensitize multiple cancer types to radiation PRMT5 expression positively correlates with DSB repair genes in cancer tissues
Collapse
Affiliation(s)
- Jake L Owens
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Elena Beketova
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; The Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Samantha L Tinsley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew M Asberry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907, USA
| | - Xuehong Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; The Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA; The Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Cox RL, Hofley CM, Tatapudy P, Patel RK, Dayani Y, Betcher M, LaRocque JR. Functional conservation of RecQ helicase BLM between humans and Drosophila melanogaster. Sci Rep 2019; 9:17527. [PMID: 31772289 PMCID: PMC6879748 DOI: 10.1038/s41598-019-54101-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/09/2019] [Indexed: 12/02/2022] Open
Abstract
RecQ helicases are a family of proteins involved in maintaining genome integrity with functions in DNA repair, recombination, and replication. The human RecQ helicase family consists of five helicases: BLM, WRN, RECQL, RECQL4, and RECQL5. Inherited mutations in RecQ helicases result in Bloom Syndrome (BLM mutation), Werner Syndrome (WRN mutation), Rothmund-Thomson Syndrome (RECQL4 mutation), and other genetic diseases, including cancer. The RecQ helicase family is evolutionarily conserved, as Drosophila melanogaster have three family members: DmBlm, DmRecQL4, and DmRecQL5 and DmWRNexo, which contains a conserved exonuclease domain. DmBlm has functional similarities to human BLM (hBLM) as mutants demonstrate increased sensitivity to ionizing radiation (IR) and a decrease in DNA double-strand break (DSB) repair. To determine the extent of functional conservation of RecQ helicases, hBLM was expressed in Drosophila using the GAL4 > UASp system to determine if GAL4 > UASp::hBLM can rescue DmBlm mutant sensitivity to IR. hBLM was able to rescue female DmBlm mutant sensitivity to IR, supporting functional conservation. This functional conservation is specific to BLM, as human GAL4 > UASp::RECQL was not able to rescue DmBlm mutant sensitivity to IR. These results demonstrate the conserved role of BLM in maintaining the genome while reinforcing the applicability of using Drosophila as a model system to study Bloom Syndrome.
Collapse
Affiliation(s)
- Rebecca L Cox
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Carolyn M Hofley
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Pallavi Tatapudy
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Romil K Patel
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Yaron Dayani
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Madison Betcher
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Jeannine R LaRocque
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
9
|
Li P, Xu Y, Zhang Q, Li Y, Jia W, Wang X, Xie Z, Liu J, Zhao D, Shao M, Chen S, Mo N, Jiang Z, Li L, Liu R, Huang W, Chang L, Chen S, Li H, Zuo W, Li J, Zhang R, Yang X. Evaluating the role of RAD52 and its interactors as novel potential molecular targets for hepatocellular carcinoma. Cancer Cell Int 2019; 19:279. [PMID: 31719794 PMCID: PMC6836504 DOI: 10.1186/s12935-019-0996-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Radiation sensitive 52 (RAD52) is an important protein that mediates DNA repair in tumors. However, little is known about the impact of RAD52 on hepatocellular carcinoma (HCC). We investigated the expression of RAD52 and its values in HCC. Some proteins that might be coordinated with RAD52 in HCC were also analyzed. Methods Global RAD52 mRNA levels in HCC were assessed using The Cancer Genome Atlas (TCGA) database. RAD52 expression was analyzed in 70 HCC tissues and adjacent tissues by quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemistry. The effect of over-expressed RAD52 in Huh7 HCC cells was investigated. The String database was then used to perform enrichment and functional analysis of RAD52 and its interactome. Cytoscape software was used to create a protein–protein interaction network. Molecular interaction studies with RAD52 and its interactome were performed using the molecular docking tools in Hex8.0.0. Finally, these DNA repair proteins, which interact with RAD52, were also analyzed using the TCGA dataset and were detected by qRT-PCR. Based on the TCGA database, algorithms combining ROC between RAD52 and RAD52 interactors were used to diagnose HCC by binary logistic regression. Results In TCGA, upregulated RAD52 related to gender was obtained in HCC. The area under the receiver operating characteristic curve (AUC) of RAD52 was 0.704. The results of overall survival (OS) and recurrence-free survival (RFS) indicated no difference in the prognosis between patients with high and low RAD52 gene expression. We validated that RAD52 expression was increased at the mRNA and protein levels in Chinese HCC tissues compared with adjacent tissues. Higher RAD52 was associated with older age, without correlation with other clinicopathological factors. In vitro, over-expressed RAD52 significantly promoted the proliferation and migration of Huh7 cells. Furthermore, RAD52 interactors (radiation sensitive 51, RAD51; X-ray repair cross complementing 6, XRCC6; Cofilin, CFL1) were also increased in HCC and participated in some biological processes with RAD52. Protein structure analysis showed that RAD52–RAD51 had the firmest binding structure with the lowest E-total energy (− 1120.5 kcal/mol) among the RAD52–RAD51, RAD52–CFL1, and RAD52–XRCC6 complexes. An algorithm combining ROC between RAD52 and its interactome indicated a greater specificity and sensitivity for HCC screening. Conclusions Overall, our study suggested that RAD52 plays a vital role in HCC pathogenesis and serves as a potential molecular target for HCC diagnosis and treatment. This study’s findings regarding the multigene prediction and diagnosis of HCC are valuable.
Collapse
Affiliation(s)
- Ping Li
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,4College & Hospital of Stomatology Guangxi Medical University, Nanning, Guangxi China.,5Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - YanZhen Xu
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,8Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, The Maternal and Children Health Hospital of Guangxi, Guangxi, China
| | - Yu Li
- Medical Science Laboratory at Liuzhou Worker's Hospital, Liuzhou, Guangxi China
| | - Wenxian Jia
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,6College of Pharmacy, Guangxi Medical University, Nanning, Guangxi China
| | - Xiao Wang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Zhibin Xie
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China
| | - Jiayi Liu
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,4College & Hospital of Stomatology Guangxi Medical University, Nanning, Guangxi China.,5Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Dong Zhao
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China
| | - Mengnan Shao
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China
| | - Suixia Chen
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,8Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi China
| | - Nanfang Mo
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Zhiwen Jiang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Liuyan Li
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Run Liu
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Wanying Huang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Li Chang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Siyu Chen
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Hongtao Li
- 2Scientific Research Center, Guilin Medical University, Guilin, Guangxi China
| | - Wenpu Zuo
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Jiaquan Li
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | | | - Xiaoli Yang
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,2Scientific Research Center, Guilin Medical University, Guilin, Guangxi China
| |
Collapse
|
10
|
Saito S, Kurosawa A, Adachi N. Mechanistic basis for increased human gene targeting by promoterless vectors-roles of homology arms and Rad54 paralogs. FEBS J 2017. [DOI: 10.1111/febs.14137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shinta Saito
- Graduate School of Nanobioscience; Yokohama City University; Japan
| | - Aya Kurosawa
- Graduate School of Nanobioscience; Yokohama City University; Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience; Yokohama City University; Japan
- Advanced Medical Research Center; Yokohama City University; Japan
| |
Collapse
|