1
|
Walker-Gibbons R, Zhu X, Behjatian A, Bennett TJD, Krishnan M. Sensing the structural and conformational properties of single-stranded nucleic acids using electrometry and molecular simulations. Sci Rep 2024; 14:20582. [PMID: 39232063 PMCID: PMC11375218 DOI: 10.1038/s41598-024-70641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Inferring the 3D structure and conformation of disordered biomolecules, e.g., single stranded nucleic acids (ssNAs), remains challenging due to their conformational heterogeneity in solution. Here, we use escape-time electrometry (ETe) to measure with sub elementary-charge precision the effective electrical charge in solution of short to medium chain length ssNAs in the range of 5-60 bases. We compare measurements of molecular effective charge with theoretically calculated values for simulated molecular conformations obtained from Molecular Dynamics simulations using a variety of forcefield descriptions. We demonstrate that the measured effective charge captures subtle differences in molecular structure in various nucleic acid homopolymers of identical length, and also that the experimental measurements can find agreement with computed values derived from coarse-grained molecular structure descriptions such as oxDNA, as well next generation ssNA force fields. We further show that comparing the measured effective charge with calculations for a rigid, charged rod-the simplest model of a nucleic acid-yields estimates of molecular structural dimensions such as linear charge spacings that capture molecular structural trends observed using high resolution structural analysis methods such as X-ray scattering. By sensitively probing the effective charge of a molecule, electrometry provides a powerful dimension supporting inferences of molecular structural and conformational properties, as well as the validation of biomolecular structural models. The overall approach holds promise for a high throughput, microscopy-based biomolecular analytical approach offering rapid screening and inference of molecular 3D conformation, and operating at the single molecule level in solution.
Collapse
Affiliation(s)
- Rowan Walker-Gibbons
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Xin Zhu
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Ali Behjatian
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Timothy J D Bennett
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
- The Kavli Institute for Nanoscience Discovery, Sherrington Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Nüesch MF, Pietrek L, Holmstrom ED, Nettels D, von Roten V, Kronenberg-Tenga R, Medalia O, Hummer G, Schuler B. Nanosecond chain dynamics of single-stranded nucleic acids. Nat Commun 2024; 15:6010. [PMID: 39019880 PMCID: PMC11255343 DOI: 10.1038/s41467-024-50092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
The conformational dynamics of single-stranded nucleic acids are fundamental for nucleic acid folding and function. However, their elementary chain dynamics have been difficult to resolve experimentally. Here we employ a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and nanophotonic enhancement to determine the conformational ensembles and rapid chain dynamics of short single-stranded nucleic acids in solution. To interpret the experimental results in terms of end-to-end distance dynamics, we utilize the hierarchical chain growth approach, simple polymer models, and refinement with Bayesian inference to generate structural ensembles that closely align with the experimental data. The resulting chain reconfiguration times are exceedingly rapid, in the 10-ns range. Solvent viscosity-dependent measurements indicate that these dynamics of single-stranded nucleic acids exhibit negligible internal friction and are thus dominated by solvent friction. Our results provide a detailed view of the conformational distributions and rapid dynamics of single-stranded nucleic acids.
Collapse
Affiliation(s)
- Mark F Nüesch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lisa Pietrek
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Erik D Holmstrom
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Valentin von Roten
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rafael Kronenberg-Tenga
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany.
- Institute for Biophysics, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Hanessian S. My 50-Plus Years of Academic Research Collaborations with Industry. A Retrospective. J Org Chem 2024; 89:9147-9186. [PMID: 38865159 DOI: 10.1021/acs.joc.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A retrospective is presented highlighting the synthesis of selected "first-in-kind" natural products, their synthetic analogues, structure elucidations, and rationally designed bioactive synthetic compounds that were accomplished because of collaborations with past and present pharmaceutical and agrochemical companies. Medicinal chemistry projects involving structure-based design exploiting cocrystal structures of small molecules with biologically relevant enzymes, receptors, and bacterial ribosomes with synthetic small molecules leading to marketed products, clinical candidates, and novel drug prototypes were realized in collaboration. Personal reflections, historical insights, behind the scenes stories from various long-term projects are shared in this retrospective article.
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
- Department of Pharmaceutical Sciences, University of California, Irvine, California 91266, United States
| |
Collapse
|
4
|
Mondal B, Chakraborty D, Hori N, Nguyen HT, Thirumalai D. Competition between Stacking and Divalent Cation-Mediated Electrostatic Interactions Determines the Conformations of Short DNA Sequences. J Chem Theory Comput 2024; 20:2934-2946. [PMID: 38498914 DOI: 10.1021/acs.jctc.3c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Interplay between divalent cations (Mg2+ and Ca2+) and single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), as well as stacking interactions, is important in nucleosome stability and phase separation in nucleic acids. Quantitative techniques accounting for ion-DNA interactions are needed to obtain insights into these and related problems. Toward this end, we created a sequence-dependent computational TIS-ION model that explicitly accounts for monovalent and divalent ions. Simulations of the rigid 24 base-pair (bp) dsDNA and flexible ssDNA sequences, dT30 and dA30, with varying amounts of the divalent cations show that the calculated excess number of ions around the dsDNA and ssDNA agree quantitatively with ion-counting experiments. Using an ensemble of all-atom structures generated from coarse-grained simulations, we calculated the small-angle X-ray scattering profiles, which are in excellent agreement with experiments. Although ion-counting experiments mask the differences between Mg2+ and Ca2+, we find that Mg2+ binds to the minor grooves and phosphate groups, whereas Ca2+ binds specifically to the minor groove. Both Mg2+ and Ca2+ exhibit a tendency to bind to the minor groove of DNA as opposed to the major groove. The dA30 conformations are dominated by stacking interactions, resulting in structures with considerable helical order. The near cancellation of the favorable stacking and unfavorable electrostatic interactions leads to dT30 populating an ensemble of heterogeneous conformations. The successful applications of the TIS-ION model are poised to confront many problems in DNA biophysics.
Collapse
Affiliation(s)
- Balaka Mondal
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Naoto Hori
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Hung T Nguyen
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
- Department of Physics, The University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Pietrek LM, Stelzl LS, Hummer G. Hierarchical Assembly of Single-Stranded RNA. J Chem Theory Comput 2024; 20:2246-2260. [PMID: 38361440 PMCID: PMC10938505 DOI: 10.1021/acs.jctc.3c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Single-stranded RNA (ssRNA) plays a major role in the flow of genetic information-most notably, in the form of messenger RNA (mRNA)-and in the regulation of biological processes. The highly dynamic nature of chains of unpaired nucleobases challenges structural characterizations of ssRNA by experiments or molecular dynamics (MD) simulations alike. Here, we use hierarchical chain growth (HCG) to construct ensembles of ssRNA chains. HCG assembles the structures of protein and nucleic acid chains from fragment libraries created by MD simulations. Applied to homo- and heteropolymeric ssRNAs of different lengths, we find that HCG produces structural ensembles that overall are in good agreement with diverse experiments, including nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET). The agreement can be further improved by ensemble refinement using Bayesian inference of ensembles (BioEn). HCG can also be used to assemble RNA structures that combine base-paired and base-unpaired regions, as illustrated for the 5' untranslated region (UTR) of SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Lisa M. Pietrek
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Lukas S. Stelzl
- Faculty
of Biology, Johannes Gutenberg University
Mainz, Gresemundweg 2, 55128 Mainz, Germany
- KOMET
1, Institute of Physics, Johannes Gutenberg
University Mainz, 55099 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Maurer J, Albrecht CS, Herbert P, Heussman D, Chang A, von Hippel PH, Marcus AH. Studies of DNA 'Breathing' by Polarization-Sweep Single-Molecule Fluorescence Microscopy of Exciton-Coupled (iCy3) 2 Dimer-Labeled DNA Fork Constructs. J Phys Chem B 2023; 127:10730-10748. [PMID: 38060691 PMCID: PMC10754251 DOI: 10.1021/acs.jpcb.3c06463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Local fluctuations of the sugar-phosphate backbones and bases of DNA (often called DNA 'breathing') play a variety of critical roles in controlling the functional interactions of the DNA genome with the protein complexes that regulate it. Here, we present a single-molecule fluorescence method that we have used to measure and characterize such conformational fluctuations at and near biologically important positions in model DNA replication fork constructs labeled with exciton-coupled cyanine [(iCy3)2] dimer probes. Previous work has shown that the constructs that we tested here exhibit a broad range of spectral properties at the ensemble level, and these differences can be structurally and dynamically interpreted using our present methodology at the single-molecule level. The (iCy3)2 dimer has one symmetric (+) and one antisymmetric (-) exciton, with the respective transition dipole moments oriented perpendicular to one another. We excite single-molecule samples using a continuous-wave linearly polarized laser, with the polarization direction continuously rotated at the frequency of 1 MHz. The ensuing fluorescence signal is modulated as the laser polarization alternately excites the symmetric and antisymmetric excitons of the (iCy3)2 dimer probe. Phase-sensitive detection of the modulated signal provides information about the distribution of local conformations and the conformational interconversion dynamics of the (iCy3)2 probe. We find that at most construct positions that we examined, the (iCy3)2 dimer-labeled DNA fork constructs can adopt four topologically distinct conformational macrostates. These results suggest that in addition to observing DNA breathing at and near ss-dsDNA junctions, our new methodology should be useful to determine which of these pre-existing macrostates are recognized by, bind to, and are stabilized by various genome-regulatory proteins.
Collapse
Affiliation(s)
- Jack Maurer
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Claire S. Albrecht
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Physics, University of Oregon, Eugene, Oregon 97403
| | - Patrick Herbert
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Dylan Heussman
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Anabel Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Peter H. von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Andrew H. Marcus
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
7
|
Rajasekaran T, Freestone GC, Galindo-Murillo R, Lugato B, Gaus H, Migawa MT, Swayze EE, Cheatham TE, Seth PP, Hanessian S. Systematic Investigation of Tether Length and Phosphorus Configuration in Backbone Constrained Macrocyclic Nucleic Acids to Modulate Binding Kinetics for RNA. J Org Chem 2023; 88:3599-3614. [PMID: 36857642 DOI: 10.1021/acs.joc.2c02796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
We recently described a chemical strategy to pre-organize a trinucleotide subunit in a conformation suitable for Watson-Crick base pairing for modulating the binding kinetics of single-stranded oligonucleotides (ONs) using bis-phosphonate esters bridging hydrocarbon tethers to provide 11- and 15-membered macrocyclic analogues. In this manuscript, we describe the synthesis of all eight P-stereoisomers of macrocyclic 12-, 13-, 14-, and 16-membered hydrocarbon-bridged nucleotide trimers, their incorporation into ONs, and biophysical characterization of the modified ONs. The size of the macrocyclic tether and configuration at phosphorus had profound effects on hybridization kinetics. ONs containing 12- and 13-membered rings exhibited faster on-rates (up to 5-fold) and off-rates (up to 161-fold). In contrast, ONs using the larger ring size macrocycles generally exhibited smaller changes in binding kinetics relative to unmodified DNA. Interestingly, several of the analogues retained significant binding affinity for RNA based on their dissociation constants, despite being modestly destabilizing in the thermal denaturation experiments, highlighting the potential utility of measuring dissociation constants versus duplex thermal stability when evaluating novel nucleic acid analogues. Overall, our results provide additional insights into the ability of backbone-constrained macrocyclic nucleic acid analogues to modulate hybridization kinetics of modified ONs with RNA.
Collapse
Affiliation(s)
| | - Graeme C Freestone
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Barbara Lugato
- Department of Chemistry, Université de Montréal, Quebec H3C 3J7, Canada
| | - Hans Gaus
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Michael T Migawa
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Eric E Swayze
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 201, Salt Lake City, Utah 84112, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Quebec H3C 3J7, Canada.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
8
|
Oberemok VV, Andreeva OA, Laikova KV, Novikov IA, Kubyshkin AV. Post-genomic platform for development of oligonucleotide vaccines against RNA viruses: diamond cuts diamond. Inflamm Res 2022; 71:729-739. [PMID: 35523969 PMCID: PMC9075145 DOI: 10.1007/s00011-022-01582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 12/02/2022] Open
Abstract
The coronavirus pandemic has starkly demonstrated the need to create highly effective vaccines against various viral diseases. The emerging new platforms for vaccine creation (adenovirus vectors and mRNA vaccines) have shown their worth in the fight against the prevention of coronavirus infection. However, adenovirus vectors and mRNA vaccines have a serious disadvantage: as a rule, only the S protein of the coronavirus is presented as an antigen. This tactic for preventing infection allows the ever-mutating virus to escape quickly from the immunity protection provided by such vaccines. Today, viral genomic databases are well-developed, which makes it possible to create new vaccines on a fundamentally new post-genomic platform. In addition, the technology for the synthesis of nucleic acids is currently experiencing an upsurge in demand in various fields of molecular biology. The accumulated experience suggests that the unique genomic sequences of viruses can act as antigens that trigger powerful humoral and cellular immunity. To achieve this effect, the following conditions must be created: the structure of the nucleic acid must be single-stranded, have a permanent 3D nanostructure, and have a unique sequence absent in the vaccinated organism. Oligonucleotide vaccines are able to resist the rapidly changing genomic sequences of RNA viruses by using conserved regions of their genomes to generate a long-term immune response, acting according to the adage that a diamond cuts a diamond. In addition, oligonucleotide vaccines will not contribute to antibody-dependent enhanced infection, since the nucleic acid of the coronavirus is inside the viral particle. It is obvious that new epidemics and pandemics caused by RNA viruses will continue to arise periodically in the human population. The creation of new, safe, and effective platforms for the production of vaccines that can flexibly change and adapt to new subtypes of viruses is very urgent and at this moment should be considered as a strategically necessary task.
Collapse
Affiliation(s)
- V V Oberemok
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea.
- Engineering Center 'Genetic and Cell Biotechnologies', V.I. Vernadsky Crimean Federal University, Simferopol, Crimea.
| | - O A Andreeva
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- Engineering Center 'Genetic and Cell Biotechnologies', V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - K V Laikova
- Biochemistry Department, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - I A Novikov
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - A V Kubyshkin
- Engineering Center 'Genetic and Cell Biotechnologies', V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| |
Collapse
|
9
|
Tucker MR, Piana S, Tan D, LeVine MV, Shaw DE. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. J Phys Chem B 2022; 126:4442-4457. [PMID: 35694853 PMCID: PMC9234960 DOI: 10.1021/acs.jpcb.1c10971] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although molecular
dynamics (MD) simulations have been used extensively
to study the structural dynamics of proteins, the role of MD simulation
in studies of nucleic acid based systems has been more limited. One
contributing factor to this disparity is the historically lower level
of accuracy of the physical models used in such simulations to describe
interactions involving nucleic acids. By modifying nonbonded and torsion
parameters of a force field from the Amber family of models, we recently
developed force field parameters for RNA that achieve a level of accuracy
comparable to that of state-of-the-art protein force fields. Here
we report force field parameters for DNA, which we developed by transferring
nonbonded parameters from our recently reported RNA force field and
making subsequent adjustments to torsion parameters. We have also
modified the backbone charges in both the RNA and DNA parameter sets
to make the treatment of electrostatics compatible with our recently
developed variant of the Amber protein and ion force field. We name
the force field resulting from the union of these three parameter
sets (the new DNA parameters, the revised RNA parameters, and the
existing protein and ion parameters) DES-Amber. Extensive
testing of DES-Amber indicates that it can describe the thermal stability
and conformational flexibility of single- and double-stranded DNA
systems with a level of accuracy comparable to or, especially for
disordered systems, exceeding that of state-of-the-art nucleic acid
force fields. Finally, we show that, in certain favorable cases, DES-Amber
can be used for long-timescale simulations of protein–nucleic
acid complexes.
Collapse
Affiliation(s)
| | - Stefano Piana
- D. E. Shaw Research, New York, New York 10036, United States
| | - Dazhi Tan
- D. E. Shaw Research, New York, New York 10036, United States
| | | | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
10
|
Wei X, Chen C, Zhao Y, Harazinska E, Bathe M, Hernandez R. Molecular Structure of Single-Stranded DNA on the ZnS Surface of Quantum Dots. ACS NANO 2022; 16:6666-6675. [PMID: 35405067 PMCID: PMC9048700 DOI: 10.1021/acsnano.2c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
DNA-based nanoparticle assemblies have emerged as leading candidates in the development of bioimaging materials, photonic devices, and computing materials. Here, we combine atomistic simulations and experiments to characterize the wrapping mechanism of chimeric single-stranded DNA (ssDNA) on CdSe-ZnS (core-shell) quantum dots (QDs) at different ratios of the phosphorothioate (PS) modification of the bases. We use an implicit solvent, all-atom ssDNA model to match the experimentally calculated ssDNA conformation at low salt concentrations. Through simulation, we find that 3-mercaptopropionic acid (MPA) induces electrostatic repulsion and O-(2-mercaptoethyl)-Ó-methyl-hexa (ethylene glycol) (mPEG) induces steric exclusion, and both reduce the binding affinity of ssDNA. In both simulation and experiment, we find that ssDNA is closer to the QD surface when the QD size is larger. The effect of the PS-base ratio on the conformation of ssDNA is also elaborated in this work. We found through MD simulations, and confirmed by transmission electron microscopy, that the maximum valence numbers are 1, 2, and 3 on QDs of 6, 9, and 14 nm in diameter, respectively. We conclude that the maximum ssDNA valence number is linearly related to the QD size, n ∝ R, and justify this finding through an electrostatic repulsion mechanism.
Collapse
Affiliation(s)
- Xingfei Wei
- Department
of Chemistry, Chemical & Biomolecular Engineering and Materials Science
& Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chi Chen
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yinong Zhao
- Department
of Chemistry, Chemical & Biomolecular Engineering and Materials Science
& Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ewa Harazinska
- Department
of Chemistry, Chemical & Biomolecular Engineering and Materials Science
& Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mark Bathe
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rigoberto Hernandez
- Department
of Chemistry, Chemical & Biomolecular Engineering and Materials Science
& Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
He W, Naleem N, Kleiman D, Kirmizialtin S. Refining the RNA Force Field with Small-Angle X-ray Scattering of Helix-Junction-Helix RNA. J Phys Chem Lett 2022; 13:3400-3408. [PMID: 35404614 PMCID: PMC9036580 DOI: 10.1021/acs.jpclett.2c00359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The growing recognition of the functional and therapeutic roles played by RNA and the difficulties in gaining atomic-level insights by experiments are paving the way for all-atom simulations of RNA. One of the main impediments to the use of all-atom simulations is the imbalance between the energy terms of the RNA force fields. Through exhaustive sampling of an RNA helix-junction-helix (HJH) model using enhanced sampling, we critically assessed the select Amber force fields against small-angle X-ray scattering (SAXS) experiments. The tested AMBER99SB, DES-AMBER, and CUFIX force fields show deviations from measured profiles. First, we identified parameters leading to inconsistencies. Then, as a way to balance the forces governing RNA folding, we adopted strategies to refine hydrogen bonding, backbone, and base-stacking parameters. We validated the modified force field (HB-CUFIX) against SAXS data of the HJH model in different ionic strengths. Moreover, we tested a set of independent RNA systems to cross-validate the force field. Overall, HB-CUFIX demonstrates improved performance in studying thermodynamics and structural properties of realistic RNA motifs.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10003United States
| | - Nawavi Naleem
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Diego Kleiman
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Crooke ST, Seth PP, Vickers TA, Liang XH. The Interaction of Phosphorothioate-Containing RNA Targeted Drugs with Proteins Is a Critical Determinant of the Therapeutic Effects of These Agents. J Am Chem Soc 2020; 142:14754-14771. [PMID: 32786803 DOI: 10.1021/jacs.0c04928] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent progress in understanding phosphorothioate antisense oligonucleotide (PS-ASO) interactions with proteins has revealed that proteins play deterministic roles in the absorption, distribution, cellular uptake, subcellular distribution, molecular mechanisms of action, and toxicity of PS-ASOs. Similarly, such interactions can alter the fates of many intracellular proteins. These and other advances have opened new avenues for the medicinal chemistry of PS-ASOs and research on all elements of the molecular pharmacology of these molecules. These advances have recently been reviewed. In this Perspective article, we summarize some of those learnings, the general principles that have emerged, and a few of the exciting new questions that can now be addressed.
Collapse
Affiliation(s)
- Stanley T Crooke
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| | - Punit P Seth
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| | - Timothy A Vickers
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| | - Xue-Hai Liang
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| |
Collapse
|
13
|
Plumridge A, Andresen K, Pollack L. Visualizing Disordered Single-Stranded RNA: Connecting Sequence, Structure, and Electrostatics. J Am Chem Soc 2019; 142:109-119. [PMID: 31804813 DOI: 10.1021/jacs.9b04461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disordered homopolymeric regions of single-stranded RNA, such as U or A tracts, are found within functional RNAs where they play distinct roles in defining molecular structure and facilitating recognition by partners. Despite this prominence, details of conformational and biophysical properties of these regions have not yet been resolved. We apply a number of experimental techniques to investigate the conformations of these biologically important motifs and provide quantitative measurements of their ion atmospheres. Single strands of RNA display pronounced sequence-dependent conformations that relate to the unique ion atmospheres each attracts. Chains of rU bases are relatively unstructured under all conditions, while chains of rA bases display distinct ordering through stacking or clustering motifs, depending on the composition of the surrounding solution. These dramatic structural differences are consistent with the measured disparity in ion composition and atmospheres around each homopolymer, revealing a complex interplay of base, ion, and single-strand ordering. The unique structural and ionic signatures of homopolymer ssRNAs explains their role(s) in folding structured RNAs and may explain their distinct recognition by protein partners.
Collapse
Affiliation(s)
- Alex Plumridge
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| | - Kurt Andresen
- Department of Physics , Gettysburg College , Gettysburg , Pennsylvania 17325 , United States
| | - Lois Pollack
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
14
|
Abstract
The biological functions of RNA range from gene regulation through catalysis and depend critically on its structure and flexibility. Conformational variations of flexible, non-base-paired components, including RNA hinges, bulges, or single-stranded tails, are well documented. Recent work has also identified variations in the structure of ubiquitous, base-paired duplexes found in almost all functional RNAs. Duplexes anchor the structures of folded RNAs, and their surface features are recognized by partner molecules. To date, no consistent picture has been obtained that describes the range of conformations assumed by RNA duplexes. Here, we apply wide angle, solution X-ray scattering (WAXS) to quantify these variations, by sampling length scales characteristic of helical geometries under different solution conditions. To identify the radius, helical rise, twist, and length of dsRNA helices, we exploit molecular dynamics generated structures, explicit solvent models, and ensemble optimization methods. Our results quantify the substantial and salt-dependent deviations of double-stranded (ds) RNA duplexes from the assumed canonical A-form conformation. Recent experiments underscore the need to properly describe the structures of RNA duplexes when interpreting the salt dependence of RNA conformations.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
15
|
Chien CC, Shekar S, Niedzwiecki DJ, Shepard KL, Drndic M. Single-Stranded DNA Translocation Recordings through Solid-State Nanopores on Glass Chips at 10 MHz Measurement Bandwidth. ACS NANO 2019; 13:10545-10554. [PMID: 31449393 PMCID: PMC6904932 DOI: 10.1021/acsnano.9b04626] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accurate and low-cost analysis of biomolecules is important for many applications. This work seeks to further improve the measurement bandwidths achievable with solid-state nanopores, which have emerged as an important platform for this analysis. We report single-stranded DNA translocation recordings at a bandwidth of 10 MHz copolymers of 80 (C20A20C20A20), 90 (C30A30C30), and 200 (C50A50C50A50) nucleotides through Si nanopores with effective diameters of 1.4-2.1 nm and effective membrane thicknesses 0.5-8.9 nm. By optimizing glass chips with thin nanopores and by integrating them with custom-designed amplifiers based on complementary metal-oxide-semiconductor technology, this work demonstrates detection of translocation events as brief as 100 ns with a signal-to-noise ratio exceeding seven at a measurement bandwidth of 10 MHz. We also report data robustness and variability across 13 pores of similar size and thickness, yielding a current blockade between 30 and 60% with a mean ionic current blockade (ΔI) of ∼3-9 nA and a characteristic dwell time of ∼2-21 ns per nucleotide. These measurements show that characteristic translocation rates are at least 10 times faster than previously recorded. We detect transient intraevent fluctuations, multiple current levels within translocation events, and variability of DNA translocation event signatures and durations.
Collapse
Affiliation(s)
- Chen-Chi Chien
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siddharth Shekar
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - David J. Niedzwiecki
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Goeppert LLC, Pennovation Works, 3401 Grays Ferry Avenue, Philadelphia PA 19146, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Marija Drndic
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Address correspondence to
| |
Collapse
|
16
|
Pal A, Levy Y. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins. PLoS Comput Biol 2019; 15:e1006768. [PMID: 30933978 PMCID: PMC6467422 DOI: 10.1371/journal.pcbi.1006768] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/16/2019] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
Recognition of single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) is important for many fundamental cellular functions. A variety of single-stranded DNA-binding proteins (ssDBPs) and single-stranded RNA-binding proteins (ssRBPs) have evolved that bind ssDNA and ssRNA, respectively, with varying degree of affinities and specificities to form complexes. Structural studies of these complexes provide key insights into their recognition mechanism. However, computational modeling of the specific recognition process and to predict the structure of the complex is challenging, primarily due to the heterogeneity of their binding energy landscape and the greater flexibility of ssDNA or ssRNA compared with double-stranded nucleic acids. Consequently, considerably fewer computational studies have explored interactions between proteins and single-stranded nucleic acids compared with protein interactions with double-stranded nucleic acids. Here, we report a newly developed energy-based coarse-grained model to predict the structure of ssDNA–ssDBP and ssRNA–ssRBP complexes and to assess their sequence-specific interactions and stabilities. We tuned two factors that can modulate specific recognition: base–aromatic stacking strength and the flexibility of the single-stranded nucleic acid. The model was successfully applied to predict the binding conformations of 12 distinct ssDBP and ssRBP structures with their cognate ssDNA and ssRNA partners having various sequences. Estimated binding energies agreed well with the corresponding experimental binding affinities. Bound conformations from the simulation showed a funnel-shaped binding energy distribution where the native-like conformations corresponded to the energy minima. The various ssDNA–protein and ssRNA–protein complexes differed in the balance of electrostatic and aromatic energies. The lower affinity of the ssRNA–ssRBP complexes compared with the ssDNA–ssDBP complexes stems from lower flexibility of ssRNA compared to ssDNA, which results in higher rate constants for the dissociation of the complex (koff) for complexes involving the former. Quantifying bimolecular self-assembly is pivotal to understanding cellular function. In recent years, a large progress has been made in understanding the structure and biophysics of protein-protein interactions. Particularly, various computational tools are available for predicting these structures and to estimate their stability and the driving forces of their formation. The understating of the interactions between proteins and nucleic acids, however, is still limited, presumably due to the involvement of non-specific interactions as well as the high conformational plasticity that may demand an induced-fit mechanism. In particular, the interactions between proteins and single-stranded nucleic acids (i.e., single-stranded DNA and RNA) is very challenging due to their high flexibility. Furthermore, the interface between proteins and single-stranded nucleic acids is often chemically more heterogeneous than the interface between proteins and double-stranded DNA. In this study, we developed a coarse-grained computational model to predict the structure of complexes between proteins and single-stranded nucleic acids. The model was applied to estimate binding affinities and the estimated binding energies agreed well with the corresponding experimental binding affinities. The kinetics of association as well as the specificity of the complexes between proteins and ssDNA are different than those with ssRNA, mostly due to differences in their conformational flexibility.
Collapse
Affiliation(s)
- Arumay Pal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
17
|
Abstract
The adeno-associated viral vector (AAV) platform has developed into a primary modality for efficient in vivo, and in more limited settings, in vitro or ex vivo gene transfer. Its applications range from a tool for experimental purposes to preclinical and clinical gene therapy. The ability to accurately and reproducibly quantify vector concentration is critical for any of these applications. While several quantification assays are available, here we outline a detailed protocol for the quantification of DNase-I protected vector genomes reliant on the polymerase chain reaction (PCR) as a measure of the active component of the vector, namely its transgene cargo. With the emergence of droplet digital PCR (ddPCR), we provide side-by-side protocols for traditional TaqMan™ real-time, quantitative PCR (qPCR) and ddPCR, as well as comparative data generated with both methods. Lastly, we discuss the importance of the use of surfactant (here, Pluronic® F-68) in the execution of the assay to limit DNA and AAV adherence to various carriers during the titration, particularly at low concentrations. We believe these protocols can lead to reduced variability and increased comparability between AAV studies.
Collapse
|
18
|
Chen YL, Lee T, Elber R, Pollack L. Conformations of an RNA Helix-Junction-Helix Construct Revealed by SAXS Refinement of MD Simulations. Biophys J 2018; 116:19-30. [PMID: 30558889 DOI: 10.1016/j.bpj.2018.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022] Open
Abstract
RNA is involved in a broad range of biological processes that extend far beyond translation. Many of RNA's recently discovered functions rely on folding to a specific conformation or transitioning between conformations. The RNA structure contains rigid, short basepaired regions connected by more flexible linkers. Studies of model constructs such as small helix-junction-helix (HJH) motifs are useful in understanding how these elements work together to determine RNA conformation. Here, we reveal the full ensemble of solution structures assumed by a model RNA HJH. We apply small-angle x-ray scattering and an ensemble optimization method to selectively refine models generated by all-atom molecular dynamics simulations. The expectation of a broad distribution of helix orientations, at and above physiological ionic strength, is not met. Instead, this analysis shows that the HJH structures are dominated by two distinct conformations at moderate to high ionic strength. Atomic structures, selected from the molecular dynamics simulations, reveal strong base-base interactions in the junction that critically constrain the conformational space available to the HJH molecule and lead to a surprising re-extension at high salt. These results are corroborated by comparison with previous single-molecule fluorescence resonance energy transfer experiments on the same constructs.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Tongsik Lee
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas
| | - Ron Elber
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas; Institute of Computational Sciences and Engineering, University of Texas at Austin, Austin, Texas
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York.
| |
Collapse
|
19
|
Grotz KK, Nueesch MF, Holmstrom ED, Heinz M, Stelzl LS, Schuler B, Hummer G. Dispersion Correction Alleviates Dye Stacking of Single-Stranded DNA and RNA in Simulations of Single-Molecule Fluorescence Experiments. J Phys Chem B 2018; 122:11626-11639. [PMID: 30285443 DOI: 10.1021/acs.jpcb.8b07537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We combine single-molecule Förster resonance energy transfer (single-molecule FRET) experiments with extensive all-atom molecular dynamics (MD) simulations (>100 μs) to characterize the conformational ensembles of single-stranded (ss) DNA and RNA in solution. From MD simulations with explicit dyes attached to single-stranded nucleic acids via flexible linkers, we calculate FRET efficiencies and fluorescence anisotropy decays. We find that dispersion-corrected water models alleviate the problem of overly abundant interactions between fluorescent dyes and the aromatic ring systems of nucleobases. To model dye motions in a computationally efficient and conformationally exhaustive manner, we introduce a dye-conformer library, built from simulations of dinucleotides with covalently attached dye molecules. We use this library to calculate FRET efficiencies for dT19, dA19, and rA19 simulated without explicit labels over a wide range of salt concentrations. For end-labeled homopolymeric pyrimidine ssDNA, MD simulations with the parmBSC1 force field capture the overall trend in salt-dependence of single-molecule FRET based distance measurements. For homopolymeric purine ssRNA and ssDNA, the DESRES and parmBSC1 force fields, respectively, provide useful starting points, even though our comparison also identifies clear deviations from experiment.
Collapse
Affiliation(s)
- Kara K Grotz
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , 60438 Frankfurt am Main , Germany
| | - Mark F Nueesch
- Department of Biochemistry , University of Zurich , 8057 Zurich , Switzerland
| | - Erik D Holmstrom
- Department of Biochemistry , University of Zurich , 8057 Zurich , Switzerland
| | - Marcel Heinz
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , 60438 Frankfurt am Main , Germany
| | - Lukas S Stelzl
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , 60438 Frankfurt am Main , Germany
| | - Benjamin Schuler
- Department of Biochemistry , University of Zurich , 8057 Zurich , Switzerland.,Department of Physics , University of Zurich , 8057 Zurich , Switzerland
| | - Gerhard Hummer
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , 60438 Frankfurt am Main , Germany.,Institute of Biophysics , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| |
Collapse
|
20
|
Plumridge A, Meisburger SP, Andresen K, Pollack L. The impact of base stacking on the conformations and electrostatics of single-stranded DNA. Nucleic Acids Res 2017; 45:3932-3943. [PMID: 28334825 PMCID: PMC5397193 DOI: 10.1093/nar/gkx140] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy are employed to determine the composition of the ion atmosphere at physiological ionic strength. Applying this combined approach to poly dA and poly dT, we find that the global properties of these sequences are very similar, despite having vastly different propensities for single-stranded helical stacking. These results suggest that a relatively simple mechanism for the binding of ssDNA to non-specific SSBs may be at play, which explains the disparity in binding affinities observed for these systems.
Collapse
Affiliation(s)
- Alex Plumridge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | - Kurt Andresen
- Department of Physics, Gettysburg College, Gettysburg, PA 17325, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Andrews CT, Campbell BA, Elcock AH. Direct Comparison of Amino Acid and Salt Interactions with Double-Stranded and Single-Stranded DNA from Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:1794-1811. [PMID: 28288277 DOI: 10.1021/acs.jctc.6b00883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.
Collapse
Affiliation(s)
- Casey T Andrews
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Brady A Campbell
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|