1
|
Sharma AK. Translational autoregulation of RF2 protein in E. coli through programmed frameshifting. Phys Rev E 2021; 103:062412. [PMID: 34271674 DOI: 10.1103/physreve.103.062412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2021] [Indexed: 11/07/2022]
Abstract
Various feedback mechanisms regulate the expression of different genes to ensure the required protein levels inside a cell. In this paper, we develop a kinetic model for one such mechanism that autoregulates RF2 protein synthesis in E. coli through programmed frameshifting. The model finds that the programmed frameshifting autoregulates RF2 protein synthesis by two independent mechanisms. First, it increases the rate of RF2 synthesis from each mRNA transcript at low RF2 concentration. Second, programmed frameshifting can dramatically increase the lifetime of RF2 transcripts when RF2 protein levels are lower than a threshold. This sharp increase in mRNA lifetime is caused by a first-order phase transition from a low to a high ribosome density on an RF2 transcript. The high ribosome density prevents the transcript's degradation by shielding it from nucleases, which increases its average lifetime and hence RF2 protein levels. Our study identifies this quality control mechanism that regulates the cellular protein levels by breaking the hierarchy of processes involved in gene expression.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu 181221, India
| |
Collapse
|
2
|
Fernandez‐Pozo N, Metz T, Chandler JO, Gramzow L, Mérai Z, Maumus F, Mittelsten Scheid O, Theißen G, Schranz ME, Leubner‐Metzger G, Rensing SA. Aethionema arabicum genome annotation using PacBio full-length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:275-293. [PMID: 33453123 PMCID: PMC8641386 DOI: 10.1111/tpj.15161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 05/06/2023]
Abstract
Aethionema arabicum is an important model plant for Brassicaceae trait evolution, particularly of seed (development, regulation, germination, dormancy) and fruit (development, dehiscence mechanisms) characters. Its genome assembly was recently improved but the gene annotation was not updated. Here, we improved the Ae. arabicum gene annotation using 294 RNA-seq libraries and 136 307 full-length PacBio Iso-seq transcripts, increasing BUSCO completeness by 11.6% and featuring 5606 additional genes. Analysis of orthologs showed a lower number of genes in Ae. arabicum than in other Brassicaceae, which could be partially explained by loss of homeologs derived from the At-α polyploidization event and by a lower occurrence of tandem duplications after divergence of Aethionema from the other Brassicaceae. Benchmarking of MADS-box genes identified orthologs of FUL and AGL79 not found in previous versions. Analysis of full-length transcripts related to ABA-mediated seed dormancy discovered a conserved isoform of PIF6-β and antisense transcripts in ABI3, ABI4 and DOG1, among other cases found of different alternative splicing between Turkey and Cyprus ecotypes. The presented data allow alternative splicing mining and proposition of numerous hypotheses to research evolution and functional genomics. Annotation data and sequences are available at the Ae. arabicum DB (https://plantcode.online.uni-marburg.de/aetar_db).
Collapse
Affiliation(s)
- Noe Fernandez‐Pozo
- Plant Cell BiologyDepartment of BiologyUniversity of MarburgMarburgGermany
| | - Timo Metz
- Plant Cell BiologyDepartment of BiologyUniversity of MarburgMarburgGermany
| | - Jake O. Chandler
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
| | - Lydia Gramzow
- Matthias Schleiden Institute/GeneticsFriedrich Schiller University JenaJenaGermany
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant BiologyAustrian Academy of SciencesVienna BioCenter (VBC)ViennaAustria
| | | | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant BiologyAustrian Academy of SciencesVienna BioCenter (VBC)ViennaAustria
| | - Günter Theißen
- Matthias Schleiden Institute/GeneticsFriedrich Schiller University JenaJenaGermany
| | - M. Eric Schranz
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
| | - Gerhard Leubner‐Metzger
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
- Laboratory of Growth RegulatorsCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University and Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicOlomoucCzech Republic
| | - Stefan A. Rensing
- Plant Cell BiologyDepartment of BiologyUniversity of MarburgMarburgGermany
- BIOSS Centre for Biological Signaling StudiesUniversity of FreiburgFreiburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)University of MarburgMarburgGermany
| |
Collapse
|
3
|
May JP, Johnson PZ, Ilyas M, Gao F, Simon AE. The Multifunctional Long-Distance Movement Protein of Pea Enation Mosaic Virus 2 Protects Viral and Host Transcripts from Nonsense-Mediated Decay. mBio 2020; 11:e00204-20. [PMID: 32156817 PMCID: PMC7064760 DOI: 10.1128/mbio.00204-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The nonsense-mediated decay (NMD) pathway presents a challenge for RNA viruses with termination codons that precede extended 3' untranslated regions (UTRs). The umbravirus Pea enation mosaic virus 2 (PEMV2) is a nonsegmented, positive-sense RNA virus with an unusually long 3' UTR that is susceptible to NMD. To establish a systemic infection, the PEMV2 long-distance movement protein p26 was previously shown to both stabilize viral RNAs and bind them for transport through the plant's vascular system. The current study demonstrated that p26 protects both viral and nonviral messenger RNAs from NMD. Although p26 localizes to both the cytoplasm and nucleolus, p26 exerts its anti-NMD effects exclusively in the cytoplasm independently of long-distance movement. Using a transcriptome-wide approach in the model plant Nicotiana benthamiana, p26 protected a subset of cellular NMD target transcripts, particularly those containing long, structured, GC-rich 3' UTRs. Furthermore, transcriptome sequencing (RNA-seq) revealed that the NMD pathway is highly dysfunctional during PEMV2 infection, with 1,820 (48%) of NMD targets increasing in abundance. Widespread changes in the host transcriptome are common during plant RNA virus infections, and these results suggest that, in at least some instances, virus-mediated NMD inhibition may be a major contributing factor.IMPORTANCE Nonsense-mediated decay (NMD) represents an RNA regulatory pathway that degrades both natural and faulty messenger RNAs with long 3' untranslated regions. NMD targets diverse families of RNA viruses, requiring that viruses counteract the NMD pathway for successful amplification in host cells. A protein required for long-distance movement of Pea enation mosaic virus 2 (PEMV2) is shown to also protect both viral and host mRNAs from NMD. RNA-seq analyses of the Nicotiana benthamiana transcriptome revealed that PEMV2 infection significantly impairs the host NMD pathway. RNA viruses routinely induce large-scale changes in host gene expression, and, like PEMV2, may use NMD inhibition to alter the host transcriptome in an effort to increase virus amplification.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Muhammad Ilyas
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| |
Collapse
|
4
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
5
|
Huang L, Aghajan M, Quesenberry T, Low A, Murray SF, Monia BP, Guo S. Targeting Translation Termination Machinery with Antisense Oligonucleotides for Diseases Caused by Nonsense Mutations. Nucleic Acid Ther 2019; 29:175-186. [PMID: 31070517 PMCID: PMC6686700 DOI: 10.1089/nat.2019.0779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Efforts to develop treatments for diseases caused by nonsense mutations have focused on identification of small molecules that promote translational read-through of messenger RNAs (mRNAs) harboring nonsense stop codons to produce full-length proteins. However, to date, no small molecule read-through drug has received FDA approval, probably because of a lack of balance between efficacy and safety. Depletion of translation termination factors eukaryotic release factor (eRF) 1 and eRF3a in cells was shown to promote translational read-through of a luciferase reporter gene harboring a nonsense mutation. In this study, we identified antisense oligonucleotides (ASOs) targeting translation termination factors and determined if ASO-mediated depletion of these factors could be a potentially effective and safe therapeutic approach for diseases caused by nonsense mutations. We found that ASO-mediated reduction of either eRF1 or eRF3a to 30%–40% of normal levels in the mouse liver is well tolerated. Hemophilia mice that express a mutant allele of human coagulation factor IX (FIX) containing nonsense mutation R338X were treated with eRF1- or eRF3a-ASO. We found that although eRF1- or eRF3a-ASO alone only elicited a moderate read-through effect on hFIX-R338X mRNA, both worked in synergy with geneticin, a small molecule read-through drug, demonstrating significantly increased production of functional full-length hFIX protein to levels that would rescue disease phenotypes in these mice. Overall our results indicate that modulating the translation termination pathway in the liver by ASOs may provide a novel approach to improving the efficacy of small molecule read-through drugs to treat human genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Lulu Huang
- Ionis Pharmaceuticals, Carlsbad, California
| | | | | | - Audrey Low
- Ionis Pharmaceuticals, Carlsbad, California
| | | | | | | |
Collapse
|
6
|
Sieburth LE, Vincent JN. Beyond transcription factors: roles of mRNA decay in regulating gene expression in plants. F1000Res 2018; 7. [PMID: 30613385 PMCID: PMC6305221 DOI: 10.12688/f1000research.16203.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Gene expression is typically quantified as RNA abundance, which is influenced by both synthesis (transcription) and decay. Cytoplasmic decay typically initiates by deadenylation, after which decay can occur through any of three cytoplasmic decay pathways. Recent advances reveal several mechanisms by which RNA decay is regulated to control RNA abundance. mRNA can be post-transcriptionally modified, either indirectly through secondary structure or through direct modifications to the transcript itself, sometimes resulting in subsequent changes in mRNA decay rates. mRNA abundances can also be modified by tapping into pathways normally used for RNA quality control. Regulated mRNA decay can also come about through post-translational modification of decapping complex subunits. Likewise, mRNAs can undergo changes in subcellular localization (for example, the deposition of specific mRNAs into processing bodies, or P-bodies, where stabilization and destabilization occur in a transcript- and context-dependent manner). Additionally, specialized functions of mRNA decay pathways were implicated in a genome-wide mRNA decay analysis in Arabidopsis. Advances made using plants are emphasized in this review, but relevant studies from other model systems that highlight RNA decay mechanisms that may also be conserved in plants are discussed.
Collapse
Affiliation(s)
- Leslie E Sieburth
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jessica N Vincent
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
'Stop' in protein synthesis is modulated with exquisite subtlety by an extended RNA translation signal. Biochem Soc Trans 2018; 46:1615-1625. [PMID: 30420414 DOI: 10.1042/bst20180190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Translational stop codons, UAA, UAG, and UGA, form an integral part of the universal genetic code. They are of significant interest today for their underlying fundamental role in terminating protein synthesis, but also for their potential utilisation for programmed alternative translation events. In diverse organisms, UAA has wide usage, but it is puzzling that the high fidelity UAG is selected against and yet UGA, vulnerable to suppression, is widely used, particularly in those archaeal and bacterial genomes with a high GC content. In canonical protein synthesis, stop codons are interpreted by protein release factors that structurally and functionally mimic decoding tRNAs and occupy the decoding site on the ribosome. The release factors make close contact with the decoding complex through multiple interactions. Correct interactions cause conformational changes resulting in new and enhanced contacts with the ribosome, particularly between specific bases in the mRNA and rRNA. The base following the stop codon (fourth or +4 base) may strongly influence decoding efficiency, facilitating alternative non-canonical events like frameshifting or selenocysteine incorporation. The fourth base is drawn into the decoding site with a compacted stop codon in the eukaryotic termination complex. Surprisingly, mRNA sequences upstream and downstream of this core tetranucleotide signal have a significant influence on the strength of the signal. Since nine bases downstream of the stop codon are within the mRNA channel, their interactions with rRNA, and r-proteins may affect efficiency. With this understanding, it is now possible to design stop signals of desired strength for specific applied purposes.
Collapse
|
8
|
May JP, Yuan X, Sawicki E, Simon AE. RNA virus evasion of nonsense-mediated decay. PLoS Pathog 2018; 14:e1007459. [PMID: 30452463 PMCID: PMC6277124 DOI: 10.1371/journal.ppat.1007459] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated decay (NMD) is a host RNA control pathway that removes aberrant transcripts with long 3' untranslated regions (UTRs) due to premature termination codons (PTCs) that arise through mutation or defective splicing. To maximize coding potential, RNA viruses often contain internally located stop codons that should also be prime targets for NMD. Using an agroinfiltration-based NMD assay in Nicotiana benthamiana, we identified two segments conferring NMD-resistance in the carmovirus Turnip crinkle virus (TCV) genome. The ribosome readthrough structure just downstream of the TCV p28 termination codon stabilized an NMD-sensitive reporter as did a frameshifting element from umbravirus Pea enation mosaic virus. In addition, a 51-nt unstructured region (USR) at the beginning of the TCV 3' UTR increased NMD-resistance 3-fold when inserted into an unrelated NMD-sensitive 3' UTR. Several additional carmovirus 3' UTRs also conferred varying levels of NMD resistance depending on the construct despite no sequence similarity in the analogous region. Instead, these regions displayed a marked lack of RNA structure immediately following the NMD-targeted stop codon. NMD-resistance was only slightly reduced by conversion of 19 pyrimidines in the USR to purines, but resistance was abolished when a 2-nt mutation was introduced downstream of the USR that substantially increased the secondary structure in the USR through formation of a stable hairpin. The same 2-nt mutation also enhanced the NMD susceptibility of a subgenomic RNA expressed independently of the genomic RNA. The conserved lack of RNA structure among most carmoviruses at the 5' end of their 3' UTR could serve to enhance subgenomic RNA stability, which would increase expression of the encoded capsid protein that also functions as the RNA silencing suppressor. These results demonstrate that the TCV genome has features that are inherently NMD-resistant and these strategies could be widespread among RNA viruses and NMD-resistant host mRNAs with long 3' UTRs.
Collapse
Affiliation(s)
- Jared P. May
- Department of Cell Biology and Molecular Genetics, University of Maryland–College Park, College Park, Maryland, United States of America
| | - Xuefeng Yuan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, P.R.China
| | - Erika Sawicki
- Department of Cell Biology and Molecular Genetics, University of Maryland–College Park, College Park, Maryland, United States of America
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland–College Park, College Park, Maryland, United States of America
| |
Collapse
|
9
|
Srivastava AK, Lu Y, Zinta G, Lang Z, Zhu JK. UTR-Dependent Control of Gene Expression in Plants. TRENDS IN PLANT SCIENCE 2018; 23:248-259. [PMID: 29223924 PMCID: PMC5828884 DOI: 10.1016/j.tplants.2017.11.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 05/22/2023]
Abstract
Throughout their lives, plants sense many developmental and environmental stimuli, and activation of optimal responses against these stimuli requires extensive transcriptional reprogramming. To facilitate this activation, plant mRNA contains untranslated regions (UTRs) that significantly increase the coding capacity of the genome by producing multiple mRNA variants from the same gene. In this review we compare UTRs of arabidopsis (Arabidopsis thaliana) and rice (Oryza sativum) at the genome scale to highlight their complexity in crop plants. We discuss different modes of UTR-based regulation with emphasis on genes that regulate multiple plant processes, including flowering, stress responses, and nutrient homeostasis. We demonstrate functional specificity in genes with variable UTR length and propose future research directions.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Permanent address: Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Loughran G, Jungreis I, Tzani I, Power M, Dmitriev RI, Ivanov IP, Kellis M, Atkins JF. Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. J Biol Chem 2018; 293:4434-4444. [PMID: 29386352 PMCID: PMC5868278 DOI: 10.1074/jbc.m117.818526] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/30/2018] [Indexed: 12/25/2022] Open
Abstract
Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid-long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor.
Collapse
Affiliation(s)
- Gary Loughran
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland,
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, and
| | - Ioanna Tzani
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Michael Power
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ivaylo P Ivanov
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, and
| | - John F Atkins
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland, .,Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330
| |
Collapse
|