1
|
Arteaga S, Dolenz BJ, Znosko BM. Competitive Influence of Alkali Metals in the Ion Atmosphere on Nucleic Acid Duplex Stability. ACS OMEGA 2024; 9:1287-1297. [PMID: 38222622 PMCID: PMC10785066 DOI: 10.1021/acsomega.3c07563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
The nonspecific atmosphere around nucleic acids, often termed the ion atmosphere, encompasses a collection of weak ion-nucleic acid interactions. Although nonspecific, the ion atmosphere has been shown to influence nucleic acid folding and structural stability. Studies investigating the composition of the ion atmosphere have shown competitive occupancy of the atmosphere between metal ions in the same solution. Many studies have investigated single ion effects on nucleic acid secondary structure stability; however, no comprehensive studies have investigated how the competitive occupancy of mixed ions in the ion atmosphere influences nucleic acid secondary structure stability. Here, six oligonucleotides were optically melted in buffers containing molar quantities, or mixtures, of either XCl (X = Li, K, Rb, or Cs) or NaCl. A correction factor was developed to better predict RNA duplex stability in solutions containing mixed XCl/NaCl. For solutions containing a 1:1 mixture of XCl/NaCl, one alkali metal chloride contributed more to duplex stability than the other. Overall, there was a 54% improvement in predictive capabilities with the correction factor compared with the standard 1.0 M NaCl nearest-neighbor models. This correction factor can be used in models to better predict RNA secondary structure in solutions containing mixed XCl/NaCl.
Collapse
Affiliation(s)
- Sebastian
J. Arteaga
- Department of Chemistry, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - Bruce J. Dolenz
- Department of Chemistry, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - Brent M. Znosko
- Department of Chemistry, Saint Louis University, Saint
Louis, Missouri 63103, United States
| |
Collapse
|
2
|
Templeton C, Hamilton I, Russell R, Elber R. Impact of Ion-Mixing Entropy on Orientational Preferences of DNA Helices: FRET Measurements and Computer Simulations. J Phys Chem B 2023; 127:8796-8808. [PMID: 37815452 PMCID: PMC11341850 DOI: 10.1021/acs.jpcb.3c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Biological processes require DNA and RNA helices to pack together in specific interhelical orientations. While electrostatic repulsion between backbone charges is expected to be maximized when helices are in parallel alignment, such orientations are commonplace in nature. To better understand how the repulsion is overcome, we used experimental and computational approaches to investigate how the orientational preferences of DNA helices depend on the concentration and valence of mobile cations. We used Förster resonance energy transfer (FRET) to probe the relative orientations of two 24-bp helices held together via a freely rotating PEG linker. At low cation concentrations, the helices preferred more "cross"-like orientations over those closer to parallel, and this preference was reduced with increasing salt concentrations. The results were in good quantitative agreement with Poisson-Boltzmann (PB) calculations for monovalent salt (Na+). However, PB underestimated the ability of mixtures of monovalent and divalent ions (Mg2+) to reduce the conformational preference. As a complementary approach, we performed all-atom molecular dynamics (MD) simulations and found better agreement with the experimental results. While MD and PB predict similar electrostatic forces, MD predicts a greater accumulation of Mg2+ in the ion atmosphere surrounding the DNA. Mg2+ occupancy is predicted to be greater in conformations close to the parallel orientation than in conformations close to the crossed orientation, enabling a greater release of Na+ ions and providing an entropic gain (one bound ion for two released). MD predicts an entropy gain larger than that of PB because of the increased Mg2+ occupancy. The entropy changes have a negligible effect at low Mg2+ concentrations because the free energies are dominated by electrostatic repulsion. However, as the Mg2+ concentration increases, charge screening is more effective and the mixing entropy produces readily detectable changes in packing preferences. Our results underline the importance of mixing entropy of counterions in nucleic acid interactions and provide a new understanding on the impact of a mixed ion atmosphere on the packing of DNA helices.
Collapse
Affiliation(s)
- Clark Templeton
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Physics, FU Berlin, 14195 Berlin, Germany
| | - Ian Hamilton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ron Elber
- Institute for Computational Engineering and Science, Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Sengul MY, MacKerell AD. Influence of Mg 2+ Distribution on the Stability of Folded States of the Twister Ribozyme Revealed Using Grand Canonical Monte Carlo and Generative Deep Learning Enhanced Sampling. ACS OMEGA 2023; 8:19532-19546. [PMID: 37305323 PMCID: PMC10249389 DOI: 10.1021/acsomega.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Metal ions, particularly magnesium ions (Mg2+), play a role in stabilizing the tertiary structures of RNA molecules. Theoretical models and experimental techniques show that metal ions can change RNA dynamics and how it transitions through different stages of folding. However, the specific ways in which metal ions contribute to the formation and stabilization of RNA's tertiary structure are not fully understood at the atomic level. Here, we combined oscillating excess chemical potential Grand Canonical Monte Carlo (GCMC) and metadynamics to bias toward the sampling of unfolded states using reaction coordinates generated by machine learning allowing for examination of Mg2+-RNA interactions that contribute to stabilizing folded states of the pseudoknot found in the Twister ribozyme. GCMC is used to sample diverse ion distributions around the RNA with deep learning applied to iteratively generate system-specific reaction coordinates to maximize conformational sampling during metadynamics simulations. Results from 6 μs simulations performed on 9 individual systems indicate that Mg2+ ions play a crucial role in stabilizing the three-dimensional (3D) structure of the RNA by stabilizing specific interactions of phosphate groups or phosphate groups and bases of neighboring nucleotides. While many phosphates are accessible to interactions with Mg2+, it is observed that multiple, specific interactions are required to sample conformations close to the folded state; coordination of Mg2+ at individual specific sites facilitates sampling of folded conformations though unfolding ultimately occurs. It is only when multiple specific interactions occur, including the presence of specific inner-shell cation interactions linking two nucleotides, that conformations close to the folded state are stable. While many of the identified Mg2+ interactions are observed in the X-ray crystal structure of Twister, the present study suggests two new Mg2+ ion sites in the Twister ribozyme that contribute to stabilization. In addition, specific interactions with Mg2+ are observed that destabilize the local RNA structure, a process that may facilitate the folding of RNA into its correct structure.
Collapse
Affiliation(s)
- Mert Y. Sengul
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Kumar S, Reddy G. TPP Riboswitch Populates Holo-Form-like Structure Even in the Absence of Cognate Ligand at High Mg 2+ Concentration. J Phys Chem B 2022; 126:2369-2381. [PMID: 35298161 DOI: 10.1021/acs.jpcb.1c10794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Riboswitches are noncoding RNA that regulate gene expression by folding into specific three-dimensional structures (holo-form) upon binding by their cognate ligand in the presence of Mg2+. Riboswitch functioning is also hypothesized to be under kinetic control requiring large cognate ligand concentrations. We ask the question under thermodynamic conditions, can the riboswitches populate structures similar to the holo-form only in the presence of Mg2+ and absence of cognate ligand binding. We addressed this question using thiamine pyrophosphate (TPP) riboswitch as a model system and computer simulations using a coarse-grained model for RNA. The folding free energy surface (FES) shows that with the initial increase in Mg2+ concentration ([Mg2+]), the aptamer domain (AD) of TPP riboswitch undergoes a barrierless collapse in its dimensions. On further increase in [Mg2+], intermediates separated by barriers appear on the FES, and one of the intermediates has a TPP ligand-binding competent structure. We show that site-specific binding of the Mg2+ aids in the formation of tertiary contacts. For [Mg2+] greater than physiological concentration, AD folds into a structure similar to the crystal structure of the TPP holo-form even in the absence of the TPP ligand. The folding kinetics shows that TPP AD populates an intermediate due to the misalignment of two arms present in the structure, which acts as a kinetic trap, leading to larger folding timescales. The predictions of the intermediate structures from the simulations are amenable for experimental verification.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
5
|
St-Pierre P, Shaw E, Jacques S, Dalgarno PA, Perez-Gonzalez C, Picard-Jean F, Penedo JC, Lafontaine DA. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. Nucleic Acids Res 2021; 49:5891-5904. [PMID: 33963862 PMCID: PMC8191784 DOI: 10.1093/nar/gkab307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Riboswitches are RNA sequences that regulate gene expression by undergoing structural changes upon the specific binding of cellular metabolites. Crystal structures of purine-sensing riboswitches have revealed an intricate network of interactions surrounding the ligand in the bound complex. The mechanistic details about how the aptamer folding pathway is involved in the formation of the metabolite binding site have been previously shown to be highly important for the riboswitch regulatory activity. Here, a combination of single-molecule FRET and SHAPE assays have been used to characterize the folding pathway of the adenine riboswitch from Vibrio vulnificus. Experimental evidences suggest a folding process characterized by the presence of a structural intermediate involved in ligand recognition. This intermediate state acts as an open conformation to ensure ligand accessibility to the aptamer and folds into a structure nearly identical to the ligand-bound complex through a series of structural changes. This study demonstrates that the add riboswitch relies on the folding of a structural intermediate that pre-organizes the aptamer global structure and the ligand binding site to allow efficient metabolite sensing and riboswitch genetic regulation.
Collapse
Affiliation(s)
- Patrick St-Pierre
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Euan Shaw
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Samuel Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul A Dalgarno
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Cibran Perez-Gonzalez
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Frédéric Picard-Jean
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
6
|
Jeng SCY, Trachman RJ, Weissenboeck F, Truong L, Link KA, Jepsen MDE, Knutson JR, Andersen ES, Ferré-D'Amaré AR, Unrau PJ. Fluorogenic aptamers resolve the flexibility of RNA junctions using orientation-dependent FRET. RNA (NEW YORK, N.Y.) 2021; 27:433-444. [PMID: 33376189 PMCID: PMC7962493 DOI: 10.1261/rna.078220.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/20/2020] [Indexed: 05/26/2023]
Abstract
To further understand the transcriptome, new tools capable of measuring folding, interactions, and localization of RNA are needed. Although Förster resonance energy transfer (FRET) is an angle- and distance-dependent phenomenon, the majority of FRET measurements have been used to report distances, by assuming rotationally averaged donor-acceptor pairs. Angle-dependent FRET measurements have proven challenging for nucleic acids due to the difficulties in incorporating fluorophores rigidly into local substructures in a biocompatible manner. Fluorescence turn-on RNA aptamers are genetically encodable tags that appear to rigidly confine their cognate fluorophores, and thus have the potential to report angular-resolved FRET. Here, we use the fluorescent aptamers Broccoli and Mango-III as donor and acceptor, respectively, to measure the angular dependence of FRET. Joining the two fluorescent aptamers by a helix of variable length allowed systematic rotation of the acceptor fluorophore relative to the donor. FRET oscillated in a sinusoidal manner as a function of helix length, consistent with simulated data generated from models of oriented fluorophores separated by an inflexible helix. Analysis of the orientation dependence of FRET allowed us to demonstrate structural rigidification of the NiCo riboswitch upon transition metal-ion binding. This application of fluorescence turn-on aptamers opens the way to improved structural interpretation of ensemble and single-molecule FRET measurements of RNA.
Collapse
Affiliation(s)
- Sunny C Y Jeng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Florian Weissenboeck
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Lynda Truong
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Katie A Link
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Mette D E Jepsen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Jay R Knutson
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Ebbe S Andersen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
7
|
Cruz-León S, Schwierz N. Hofmeister Series for Metal-Cation-RNA Interactions: The Interplay of Binding Affinity and Exchange Kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5979-5989. [PMID: 32366101 PMCID: PMC7304902 DOI: 10.1021/acs.langmuir.0c00851] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A large variety of physicochemical properties involving RNA depends on the type of metal cation present in solution. In order to gain microscopic insight into the origin of these ion specific effects, we apply molecular dynamics simulations to describe the interactions of metal cations and RNA. For the three most common ion binding sites on RNA, we calculate the binding affinities and exchange rates of eight different mono- and divalent metal cations. Our results reveal that binding sites involving phosphate groups preferentially bind metal cations with high charge density (such as Mg2+) in inner-sphere conformations while binding sites involving N7 or O6 atoms preferentially bind cations with low charge density (such as K+). The binding affinity therefore follows a direct Hofmeister series at the backbone but is reversed at the nucleobases leading to a high selectivity of ion binding sites on RNA. In addition, the exchange rates for cation binding cover almost 5 orders of magnitude, leading to a vastly different time scale for the lifetimes of contact pairs. Taken together, the site-specific binding affinities and the specific lifetime of contact pairs provide the microscopic explanation of ion specific effects observed in a wide variety of macroscopic RNA properties. Finally, combining the results from atomistic simulations with extended Poisson-Boltzmann theory allows us to predict the distribution of metal cations around double-stranded RNA at finite concentrations and to reproduce the results of ion counting experiments with good accuracy.
Collapse
|
8
|
Plumridge A, Andresen K, Pollack L. Visualizing Disordered Single-Stranded RNA: Connecting Sequence, Structure, and Electrostatics. J Am Chem Soc 2019; 142:109-119. [PMID: 31804813 DOI: 10.1021/jacs.9b04461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disordered homopolymeric regions of single-stranded RNA, such as U or A tracts, are found within functional RNAs where they play distinct roles in defining molecular structure and facilitating recognition by partners. Despite this prominence, details of conformational and biophysical properties of these regions have not yet been resolved. We apply a number of experimental techniques to investigate the conformations of these biologically important motifs and provide quantitative measurements of their ion atmospheres. Single strands of RNA display pronounced sequence-dependent conformations that relate to the unique ion atmospheres each attracts. Chains of rU bases are relatively unstructured under all conditions, while chains of rA bases display distinct ordering through stacking or clustering motifs, depending on the composition of the surrounding solution. These dramatic structural differences are consistent with the measured disparity in ion composition and atmospheres around each homopolymer, revealing a complex interplay of base, ion, and single-strand ordering. The unique structural and ionic signatures of homopolymer ssRNAs explains their role(s) in folding structured RNAs and may explain their distinct recognition by protein partners.
Collapse
Affiliation(s)
- Alex Plumridge
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| | - Kurt Andresen
- Department of Physics , Gettysburg College , Gettysburg , Pennsylvania 17325 , United States
| | - Lois Pollack
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
9
|
Osko JD, Roose BW, Shinsky SA, Christianson DW. Structure and Function of the Acetylpolyamine Amidohydrolase from the Deep Earth Halophile Marinobacter subterrani. Biochemistry 2019; 58:3755-3766. [PMID: 31436969 PMCID: PMC6736730 DOI: 10.1021/acs.biochem.9b00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polyamines are small organic cations that are essential for cellular function in all kingdoms of life. Polyamine metabolism is regulated by enzyme-catalyzed acetylation-deacetylation cycles in a fashion similar to the epigenetic regulation of histone function in eukaryotes. Bacterial polyamine deacetylases are particularly intriguing, because these enzymes share the fold and function of eukaryotic histone deacetylases. Recently, acetylpolyamine amidohydrolase from the deep earth halophile Marinobacter subterrani (msAPAH) was described. This Zn2+-dependent deacetylase shares 53% amino acid sequence identity with the acetylpolyamine amidohydrolase from Mycoplana ramosa (mrAPAH) and 22% amino acid sequence identity with the catalytic domain of histone deacetylase 10 from Danio rerio (zebrafish; zHDAC10), the eukaryotic polyamine deacetylase. The X-ray crystal structure of msAPAH, determined in complexes with seven different inhibitors as well as the acetate coproduct, shows how the chemical strategy of Zn2+-dependent amide hydrolysis and the catalytic specificity for cationic polyamine substrates is conserved in a subterranean halophile. Structural comparisons with mrAPAH reveal that an array of aspartate and glutamate residues unique to msAPAH enable the binding of one or more Mg2+ ions in the active site and elsewhere on the protein surface. Notwithstanding these differences, activity assays with a panel of acetylpolyamine and acetyllysine substrates confirm that msAPAH is a broad-specificity polyamine deacetylase, much like mrAPAH. The broad substrate specificity contrasts with the narrow substrate specificity of zHDAC10, which is highly specific for N8-acetylspermidine hydrolysis. Notably, quaternary structural features govern the substrate specificity of msAPAH and mrAPAH, whereas tertiary structural features govern the substrate specificity of zHDAC10.
Collapse
Affiliation(s)
- Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - Benjamin W. Roose
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | | | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
10
|
Nicholson DA, Sengupta A, Sung HL, Nesbitt DJ. Amino Acid Stabilization of Nucleic Acid Secondary Structure: Kinetic Insights from Single-Molecule Studies. J Phys Chem B 2018; 122:9869-9876. [PMID: 30289262 DOI: 10.1021/acs.jpcb.8b06872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amino acid and nucleic acid interactions are central in biology and may have played a role in the evolutionary development of protein-based life from an early "RNA Universe." To explore the possible role of single amino acids in promoting nucleic acid folding, single-molecule Förster resonance energy transfer experiments have been implemented with a DNA hairpin construct (7 nucleotide double strand with a 40A loop) as a simple model for secondary structure formation. Exposure to positively charged amino acids (arginine and lysine) is found to clearly stabilize the secondary structure. Kinetically, each amino acid promotes folding by generating a large increase in the folding rate with little change in the unfolding rate. From analysis as a function of temperature, arginine and lysine are found to significantly increase the overall exothermicity of folding while imposing only a small entropic penalty on the folding process. Detailed investigations into the kinetics and thermodynamics of this amino acid-induced folding stability reveal arginine and lysine to interact with nucleic acids in a manner reminiscent of monovalent cations. Specifically, these observations are interpreted in the context of an ion atmosphere surrounding the nucleic acid, in which amino acid salts stabilize folding qualitatively like small monovalent cations but also exhibit differences because of the composition of their side chains.
Collapse
Affiliation(s)
- David A Nicholson
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
| | - Abhigyan Sengupta
- Department of Bioengineering , University of California at Merced , Merced , California 95340 , United States
| | - Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
11
|
Shinsky SA, Christianson DW. Polyamine Deacetylase Structure and Catalysis: Prokaryotic Acetylpolyamine Amidohydrolase and Eukaryotic HDAC10. Biochemistry 2018. [PMID: 29533602 DOI: 10.1021/acs.biochem.8b00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyamines such as putrescine, spermidine, and spermine are small aliphatic cations that serve myriad biological functions in all forms of life. While polyamine biosynthesis and cellular trafficking pathways are generally well-defined, only recently has the molecular basis of reversible polyamine acetylation been established. In particular, enzymes that catalyze polyamine deacetylation reactions have been identified and structurally characterized: histone deacetylase 10 (HDAC10) from Homo sapiens and Danio rerio (zebrafish) is a highly specific N8-acetylspermidine deacetylase, and its prokaryotic counterpart, acetylpolyamine amidohydrolase (APAH) from Mycoplana ramosa, is a broad-specificity polyamine deacetylase. Similar to the greater family of HDACs, which mainly serve as lysine deacetylases, both enzymes adopt the characteristic arginase-deacetylase fold and employ a Zn2+-activated water molecule for catalysis. In contrast with HDACs, however, the active sites of HDAC10 and APAH are sterically constricted to enforce specificity for long, slender polyamine substrates and exclude bulky peptides and proteins containing acetyl-l-lysine. Crystal structures of APAH and D. rerio HDAC10 reveal that quaternary structure, i.e., dimer assembly, provides the steric constriction that directs the polyamine substrate specificity of APAH, whereas tertiary structure, a unique 310 helix defined by the P(E,A)CE motif, provides the steric constriction that directs the polyamine substrate specificity of HDAC10. Given the recent identification of HDAC10 and spermidine as mediators of autophagy, HDAC10 is rapidly emerging as a biomarker and target for the design of isozyme-selective inhibitors that will suppress autophagic responses to cancer chemotherapy, thereby rendering cancer cells more susceptible to cytotoxic drugs.
Collapse
Affiliation(s)
- Stephen A Shinsky
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|