1
|
Mana T, Bhattacharya B, Lahiri H, Mukhopadhyay R. XNAs: A Troubleshooter for Nucleic Acid Sensing. ACS OMEGA 2022; 7:15296-15307. [PMID: 35571783 PMCID: PMC9096816 DOI: 10.1021/acsomega.2c00581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The strategies for nucleic acid sensing based on nucleic acid hybridization between the target sequence and the capture probe sequence are considered to be largely successful as far as detection of a specific target of known sequence is concerned. However, when compared with other complementary methods, like direct sequencing, a number of results are still found to be either "false positives" or "false negatives". This suggests that modifications in these strategies are necessary to make them more accurate. In this minireview, we propose that one way toward improvement could be replacement of the DNA capture probes with the xeno nucleic acid or XNA capture probes. This is because the XNAs, especially the locked nucleic acid, the peptide nucleic acid, and the morpholino, have shown better single nucleobase mismatch discrimination capacity than the DNA capture probes, indicating their capacity for more precise detection of nucleic acid sequences, which is beneficial for detection of gene stretches having point mutations. Keeping the current trend in mind, this minireview will include the recent developments in nanoscale, fluorescent label-free applications, and present the cases where the XNA probes show clear advantages over the DNA probes.
Collapse
Affiliation(s)
- Tanushree Mana
- School
of Biological Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Budhaditya Bhattacharya
- School
of Biological Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Hiya Lahiri
- School
of Biological Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rupa Mukhopadhyay
- School
of Biological Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Mana T, Kundu J, Lahiri H, Bera S, Kolay J, Sinha S, Mukhopadhyay R. Molecularly resolved, label-free nucleic acid sensing at solid-liquid interface using non-ionic DNA analogues. RSC Adv 2022; 12:9263-9274. [PMID: 35424880 PMCID: PMC8985177 DOI: 10.1039/d2ra00386d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 01/10/2023] Open
Abstract
Nucleic acid-based biosensors, where the capture probe is a nucleic acid, e.g., DNA or its synthetic analogue xeno nucleic acid (XNA), offer interesting ways of eliciting clinically relevant information from hybridization/dehybridization signals. In this respect, the application of XNA probes is attractive since the drawbacks of DNA probes might be overcome. Within the XNA probe repertoire, peptide nucleic acid (PNA) and morpholino (MO) are promising since their backbones are non-ionic. Therefore, in the absence of electrostatic charge repulsion between the capture probe and the target nucleic acid, a stable duplex can be formed. In addition, these are nuclease-resistant probes. Herein, we have tested the molecularly resolved nucleic acid sensing capacity of PNA and MO capture probes using a fluorescent label-free single molecule force spectroscopy approach. As far as single nucleobase mismatch discrimination is concerned, both PNA and MO performed better than DNA, while the performance of the MO probe was the best. We propose that the conformationally more rigid backbone of MO, compared to the conformationally flexible PNA, is an advantage for MO, since the probe orientation can be made more upright on the surface and therefore MO can be more effectively accessed by the target sequences. The performance of the XNA probes has been compared to that of the DNA probe, using fixed nucleobase sequences, so that the effect of backbone variation could be investigated. To our knowledge, this is the first report on molecularly resolved nucleic acid sensing by non-ionic capture probes, here, MO and PNA. Improved nucleic acid sensing in terms of single nucleobase mismatch discrimination, as achieved by the surface-confined non-ionic PNA and MO capture probes, is exemplified by single molecule force spectroscopy.![]()
Collapse
Affiliation(s)
- Tanushree Mana
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| | - Jayanta Kundu
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India
| | - Hiya Lahiri
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| | - Sudipta Bera
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| | - Jayeeta Kolay
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India
| | - Rupa Mukhopadhyay
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| |
Collapse
|
3
|
Directly Arylated Oligonucleotides as Fluorescent Molecular Rotors for Probing DNA Single-Nucleotide Polymorphisms. Bioorg Med Chem 2022; 56:116617. [DOI: 10.1016/j.bmc.2022.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/18/2022]
|
4
|
Ravi Kumara GS, Seo YJ. Polymerase-mediated synthesis of p-vinylaniline-coupled fluorescent DNA for the sensing of nucleolin protein- c-myc G-quadruplex interactions. Org Biomol Chem 2021; 19:5788-5793. [PMID: 34085078 DOI: 10.1039/d1ob00863c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper we report the synthesis of two deoxyuridine derivatives (dUCN2, dUPy)-featuring p-vinylaniline-based fluorophores linked through a propargyl unit at the 5' position-that function as molecular rotors. This probing system proved to be useful for the sensing of gene regulation arising from interactions between this G-quadruplex and nucleolin.
Collapse
Affiliation(s)
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
5
|
Lei J, Huang Y, Zhong W, Xiao D, Zhou C. Early Monitoring Drug Resistant Mutation T790M with a Two-Dimensional Simultaneous Discrimination Nanopore Strategy. Anal Chem 2020; 92:8867-8873. [PMID: 32452671 DOI: 10.1021/acs.analchem.0c00575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With the aim of detecting low frequency of drug resistant mutation T790M against wild-type sequences, we reported a two-dimensional signal analysis strategy by combining a three locked nucleic acids (LNAs)-modified probe (LP15-3t) and an α-HL nanopore. The specific hybridization of the LP15-3t probe with the T790M generated unique long two-level signals, including characteristic blocking current and characteristic dwell time. Due to the significant dwell time difference (114.2-fold) and the blocking current difference ranging from 81% to 96%, this two-dimensional signal analysis strategy can simultaneously distinguish T790M sequences with a sensitivity of 0.0001% against wild-type sequences. The LOD of T790M was 0.1 pM. This high discrimination capability would have great potential in the detection of rare mutation sequences and the early monitoring of clinical outcome of NSCLC patients with TKI drug resistance.
Collapse
Affiliation(s)
- Jing Lei
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuqin Huang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Wenjun Zhong
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
6
|
Lahiri H, Banerjee S, Mukhopadhyay R. Free-Energy-Based Gene Mutation Detection Using LNA Probes. ACS Sens 2019; 4:2688-2696. [PMID: 31549503 DOI: 10.1021/acssensors.9b01115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have developed a label-free approach for direct detection of gene mutations using free-energy values that are derived from single-molecule force spectroscopy (SMFS)-based nucleic acid unbinding experiments. From the duplex unbinding force values acquired by SMFS, the force-loading-rate-independent Gibbs free-energy values were derived using Jarzinsky's equality treatment. Because it provides molecule-by-molecule information, this approach is a major shift compared to the earlier reports on label-free detection of DNA sequences, which are mostly based on ensemble level data. We tested our approach in the disease model framework of multiple drug-resistant tuberculosis using the nuclease-resistant and conformationally rigid locked nucleic acid probes that are a robust and efficient alternative to the DNA probes. All of the major mutations in Mycobacterium tuberculosis (MTB), as relevant to MTB's resistance to the first-line anti-TB drugs rifampicin and isoniazid, could be identified, and the wild type could be discriminated from the most prevalent mutation and the most prevalent mutation from the less occurring ones. Our approach could also identify DNA sequences (45 mer), having overhang stretches at different positions with respect to the complementary stretch. Probably for the first time, the findings show that free-energy-based detection of gene mutations is possible at molecular resolution.
Collapse
Affiliation(s)
- Hiya Lahiri
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Siddhartha Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Rupa Mukhopadhyay
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
7
|
Lahiri H, Mishra S, Mukhopadhyay R. Nanoscale Nucleic Acid Recognition at the Solid-Liquid Interface Using Xeno Nucleic Acid Probes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8875-8888. [PMID: 30398876 DOI: 10.1021/acs.langmuir.8b02770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Challenges in reliable nucleic acid detection are manifold. The major ones are related to false positive or negative signals due to a lack of target specificity in detection and to low sensitivity, especially when a plethora of background sequences are present that can mask the specific recognition signal. Utilizing designed synthetic nucleic acids that are commonly called xeno nucleic acids could offer potential routes to meeting such challenges. In this article, we present the general framework of nucleic acid detection, especially for nanoscale applications, and discuss how and why the xeno nucleic acids could be truly an alternative to the DNA probes. Two specific cases, locked nucleic acid (LNA) and peptide nucleic acid (PNA), which are nuclease-resistant and can form thermally stable duplexes with DNA, are addressed. It is shown that the relative ease of the conformationally rigid LNA probe to be oriented upright on the substrate surface and of the nonionic PNA probe to result into high probe density assists in their use in nanoscale nucleic acid recognition. It is anticipated that success with these probes may lead to important developments such as PCR-independent approaches where the major aim is to detect a small number of target sequences present in the analyte medium.
Collapse
Affiliation(s)
- Hiya Lahiri
- School of Biological Sciences , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| | - Sourav Mishra
- School of Biological Sciences , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| | - Rupa Mukhopadhyay
- School of Biological Sciences , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| |
Collapse
|
8
|
Nakagawa O, Fujii A, Kishimoto Y, Nakatsuji Y, Nozaki N, Obika S. 2'-O,4'-C-Methylene-Bridged Nucleic Acids Stabilize Metal-Mediated Base Pairing in a DNA Duplex. Chembiochem 2018; 19:2372-2379. [PMID: 30168891 DOI: 10.1002/cbic.201800448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 11/08/2022]
Abstract
The 2'-O,4'-C-methylene-bridged or locked nucleic acid (2',4'-BNA/LNA), with an N-type sugar conformation, effectively improves duplex-forming ability. 2',4'-BNA/LNA is widely used to improve gene knockdown in nucleic acid based therapies and is used in gene diagnosis. Metal-mediated base pairs (MMBPs), such as thymine (T)-HgII -T and cytosine (C)-AgI -C have been developed and used as attractive tools in DNA nanotechnology studies. This study aimed to investigate the application of 2',4'-BNA/LNA in the field of MMBPs. 2',4'-BNA/LNA with 5-methylcytosine stabilized the MMBP of C with AgI ions. Moreover, the 2',4'-BNA/LNA sugar significantly improved the duplex-forming ability of the DNA/DNA complex, relative to that by the unmodified sugar. These results suggest that the sugar conformation is important for improving the stability of duplex-containing MMBPs. The results indicate that 2',4'-BNA/LNA can be applied not only to nucleic acid based therapies, but also to MMBP technologies.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yusuke Nakatsuji
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Natsumi Nozaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Mishra S, Lee Y, Park JW. Direct Quantification of Trace Amounts of a Chronic Myeloid Leukemia Biomarker Using Locked Nucleic Acid Capture Probes. Anal Chem 2018; 90:12824-12831. [PMID: 30272952 DOI: 10.1021/acs.analchem.8b03350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular monitoring is indispensable for the clinical management of chronic myeloid leukemia (CML) patients. Real-time quantitative polymerase chain reaction (RT-qPCR) is the gold standard for the quantitative assessment of BCR-ABL transcript levels, which are critical in clinical decision-making. However, the frequent recurrence of the disease after drug discontinuation for 60% of patients has necessitated more sensitive and specific techniques to detect residual BCR-ABL transcripts. Here, we describe a quantification method for the detection of BCR-ABL targets at very low concentrations (<10 copies/sample) in the presence of a million copies of normal BCR and ABL genes. In this method, a fully modified locked nucleic acid (LNA) and a LNA/DNA chimera were used as capture probes, and the quantitative imaging mode of atomic force microscopy (AFM) was employed. Targets with one of the major breakpoints (found in more than 95% of CML patients), b3a2 and b2a2, were quantified. The BCR-ABL target captured on a miniaturized LNA-probe spot was scanned at nanometric resolution, and the samples containing one to ten copies of the BCR-ABL genes were examined. It was observed that the highest sensitivity, i.e., the detection of a single copy of the target gene, could be achieved through multiple runs, and the observed cluster number was well correlative (adjusted R2 = 0.999) to the target copy number in the sample solution. This observation clearly demonstrates that the LNA-based platform is effective in quantifying BCR-ABL targets with extremely low copy numbers, highlighting the potential applicability of AFM for use in the direct quantification of such targets without amplification or labeling.
Collapse
Affiliation(s)
- Sourav Mishra
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Yoonhee Lee
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Joon Won Park
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| |
Collapse
|
10
|
Kurus NN, Dultsev FN. Determination of the Thermodynamic Parameters of DNA Double Helix Unwinding with the Help of Mechanical Methods. ACS OMEGA 2018; 3:2793-2797. [PMID: 30023851 PMCID: PMC6044692 DOI: 10.1021/acsomega.7b01815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
For the first time, rupture event scanning (REVS) procedure based on quartz crystal microbalance (QCM) and involving only mechanical action was used to determine the height of the energy barrier for dsDNA unwinding. Melting point was determined with the help of this procedure. To determine the thermodynamic parameters including enthalpy, DNA denaturation was represented as a unimolecular process. This allowed us to recover the energy profiles from the experimental data obtained by force measurements at different scanning times (reaction times) for different temperatures. The thus obtained results were compared with the data obtained with the help of another mechanical method, namely, atomic force microscopy. The mechanism of DNA unwinding in QCM-based experiments through the unzipping mode, as proposed by us in previous works, was confirmed. Thus, we demonstrated that REVS procedure may be used to assess the thermodynamic parameters of dsDNA unwinding.
Collapse
Affiliation(s)
- Nina N. Kurus
- Institute
of Semiconductor Physics, SB RAS, 13 Lavrentyev Avenue, 630090 Novosibirsk, Russia
| | - Fedor N. Dultsev
- Institute
of Semiconductor Physics, SB RAS, 13 Lavrentyev Avenue, 630090 Novosibirsk, Russia
- Novosibirsk
State University, 2 Pirogov
Street, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Bae YI, Hwang I, Kim I, Kim K, Park JW. Force Measurement for the Interaction between Cucurbit[7]uril and Mica and Self-Assembled Monolayer in the Presence of Zn 2+ Studied with Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11884-11892. [PMID: 28946747 DOI: 10.1021/acs.langmuir.7b02168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Force spectroscopy with atomic force microscopy (AFM) revealed that cucurbit[7]uril (CB[7]) strongly binds to a mica surface in the presence of cations. Indeed, Zn2+ was observed to facilitate the self-assembly of CB[7] on the mica surface, whereas monocations, such as Na+, were less effective. The progression of the process and the cation-mediated self-assembled monolayer were characterized using AFM, and the observed height of the layer agrees well with the calculated CB[7] value (9.1 Å). We utilized force-based AFM to further study the interaction of CB[7] with guest molecules. To this end, CB[7] was immobilized on a glass substrate, and aminomethylferrocene (am-Fc) was conjugated onto an AFM tip. The single-molecule interaction between CB[7] and am-Fc was monitored by collecting the unbinding force curves. The force histogram showed single ruptures and a unimodal distribution, and the most probable unbinding force value was 101 pN in deionized water and 86 pN in phosphate-buffered saline buffer. The results indicate that the unbinding force was larger than that of streptavidin-biotin measured under the same conditions, whereas the dissociation constant was smaller by 1 order of magnitude (0.012 s-1 vs 0.13 s-1). Furthermore, a high-resolution adhesion force map showed a part of the CB[7] cavities on the surface.
Collapse
Affiliation(s)
- Young-In Bae
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Ilha Hwang
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Ikjin Kim
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Kimoon Kim
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joon Won Park
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| |
Collapse
|
12
|
Lee Y, Kim Y, Lee D, Roy D, Park JW. Quantification of Fewer than Ten Copies of a DNA Biomarker without Amplification or Labeling. J Am Chem Soc 2016; 138:7075-81. [DOI: 10.1021/jacs.6b02791] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | | | | | - Dhruvajyoti Roy
- Nanogea Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | | |
Collapse
|
13
|
Lahiri H, Mishra S, Mana T, Mukhopadhyay R. Discriminating unalike single nucleobase mismatches using a molecularly resolved, label-free, interfacial LNA-based assay. Analyst 2016; 141:4035-43. [DOI: 10.1039/c6an00484a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecularly resolved, label-free discrimination of different types of single nucleobase mismatches by LNA probes.
Collapse
Affiliation(s)
- Hiya Lahiri
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sourav Mishra
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tanushree Mana
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Rupa Mukhopadhyay
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|