1
|
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduct Target Ther 2025; 10:33. [PMID: 39904973 PMCID: PMC11794951 DOI: 10.1038/s41392-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
As a highly complex organ with digestive, endocrine, and immune-regulatory functions, the liver is pivotal in maintaining physiological homeostasis through its roles in metabolism, detoxification, and immune response. Various factors including viruses, alcohol, metabolites, toxins, and other pathogenic agents can compromise liver function, leading to acute or chronic injury that may progress to end-stage liver diseases. While sharing common features, liver diseases exhibit distinct pathophysiological, clinical, and therapeutic profiles. Currently, liver diseases contribute to approximately 2 million deaths globally each year, imposing significant economic and social burdens worldwide. However, there is no cure for many kinds of liver diseases, partly due to a lack of thorough understanding of the development of these liver diseases. Therefore, this review provides a comprehensive examination of the epidemiology and characteristics of liver diseases, covering a spectrum from acute and chronic conditions to end-stage manifestations. We also highlight the multifaceted mechanisms underlying the initiation and progression of liver diseases, spanning molecular and cellular levels to organ networks. Additionally, this review offers updates on innovative diagnostic techniques, current treatments, and potential therapeutic targets presently under clinical evaluation. Recent advances in understanding the pathogenesis of liver diseases hold critical implications and translational value for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Aier Institute of Ophthalmology, Central South University, Changsha, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangxin Kong
- Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yangkun Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Erdan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
2
|
Chen X, Li RT, Chen RY, Shi PD, Liu ZX, Lou YN, Wu M, Zhang RR, Tang W, Li XF, Qin CF. The subgenomic flaviviral RNA suppresses RNA interference through competing with siRNAs for binding RISC components. J Virol 2024; 98:e0195423. [PMID: 38289102 PMCID: PMC10878275 DOI: 10.1128/jvi.01954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 02/21/2024] Open
Abstract
During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ru-Yi Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pan-Deng Shi
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zi-Xin Liu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ya-Nan Lou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei Wu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Tang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Alhatlani BY, Aljabr W, Alhamlan FS, Almatroudi A, Azam M, Alsaleem M, Allemailem KS. Identification of host factors that bind to the 5′ end of the MERS-CoV RNA genome. Future Virol 2023; 18:373-385. [DOI: 10.2217/fvl-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aim: The aim of this study was to identify host factors that interact with the 5′ end of the MERS-CoV RNA genome. Materials & methods: RNA affinity chromatography followed by mass spectrometry analysis was used to identify the binding of host factors in Vero E6 cells. Results: A total of 59 host factors that bound the MERS-CoV RNA genome in non-infected Vero E6 cells were identified. Most of the identified cellular proteins were previously reported to interact with the genome of other RNA viruses. We validated our mass spectrometry results using western blotting. Conclusion: These data enhance our knowledge about the RNA–host interactions of coronaviruses, which could serve as targets for developing antiviral therapeutics against MERS-CoV.
Collapse
Affiliation(s)
- Bader Y Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia
| | - Waleed Aljabr
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fatimah S Alhamlan
- Department of Infection & Immunity, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohd Azam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mansour Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
A Degradation Motif in STAU1 Defines a Novel Family of Proteins Involved in Inflammation. Int J Mol Sci 2022; 23:ijms231911588. [PMID: 36232890 PMCID: PMC9569955 DOI: 10.3390/ijms231911588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer development is regulated by inflammation. Staufen1 (STAU1) is an RNA-binding protein whose expression level is critical in cancer cells as it is related to cell proliferation or cell death. STAU1 protein levels are downregulated during mitosis due to its degradation by the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). In this paper, we map the molecular determinant involved in STAU1 degradation to amino acids 38-50, and by alanine scanning, we shorten the motif to F39PxPxxLxxxxL50 (FPL-motif). Mutation of the FPL-motif prevents STAU1 degradation by APC/C. Interestingly, a search in databases reveals that the FPL-motif is shared by 15 additional proteins, most of them being involved in inflammation. We show that one of these proteins, MAP4K1, is indeed degraded via the FPL-motif; however, it is not a target of APC/C. Using proximity labeling with STAU1, we identify TRIM25, an E3 ubiquitin ligase involved in the innate immune response and interferon production, as responsible for STAU1 and MAP4K1 degradation, dependent on the FPL-motif. These results are consistent with previous studies that linked STAU1 to cancer-induced inflammation and identified a novel degradation motif that likely coordinates a novel family of proteins involved in inflammation. Data are available via ProteomeXchange with the identifier PXD036675.
Collapse
|
5
|
Yeh SC, Diosa-Toro M, Tan WL, Rachenne F, Hain A, Yeo CPX, Bribes I, Xiang BWW, Sathiamoorthy Kannan G, Manuel MC, Missé D, Mok YK, Pompon J. Characterization of dengue virus 3'UTR RNA binding proteins in mosquitoes reveals that AeStaufen reduces subgenomic flaviviral RNA in saliva. PLoS Pathog 2022; 18:e1010427. [PMID: 36121894 PMCID: PMC9531803 DOI: 10.1371/journal.ppat.1010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/04/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Dengue viruses (DENV) are expanding global pathogens that are transmitted through the bite of mosquitoes, mostly Aedes aegypti. As RNA viruses, DENV rely on RNA-binding proteins (RBPs) to complete their life cycle. Alternatively, RBPs can act as restriction factors that prevent DENV multiplication. While the importance of RBPs is well-supported in humans, there is a dearth of information about their influence on DENV transmission by mosquitoes. Such knowledge could be harnessed to design novel, effective interventions against DENV. Here, we successfully adapted RNA-affinity chromatography coupled with mass spectrometry-a technique initially developed in mammalian cells-to identify RBPs in Ae. aegypti cells. We identified fourteen RBPs interacting with DENV serotype 2 3'UTR, which is involved in the viral multiplication and produces subgenomic flaviviral RNA (sfRNA). We validated the RNA affinity results for two RBPs by confirming that AePur binds the 3'UTR, whereas AeStaufen interacts with both 3'UTR and sfRNA. Using in vivo functional evaluation, we determined that RBPs like AeRan, AeExoRNase, and AeRNase have pro-viral functions, whereas AeGTPase, AeAtu, and AePur have anti-viral functions in mosquitoes. Furthermore, we showed that human and mosquito Pur homologs have a shared affinity to DENV2 RNA, although the anti-viral effect is specific to the mosquito protein. Importantly, we revealed that AeStaufen mediates a reduction of gRNA and sfRNA copies in several mosquito tissues, including the salivary glands and that AeStaufen-mediated sfRNA reduction diminishes the concentration of transmission-enhancing sfRNA in saliva, thereby revealing AeStaufen's role in DENV transmission. By characterizing the first RBPs that associate with DENV2 3'UTR in mosquitoes, our study unravels new pro- and anti-viral targets for the design of novel therapeutic interventions as well as provides foundation for studying the role of RBPs in virus-vector interactions.
Collapse
Affiliation(s)
- Shih-Chia Yeh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Wei-Lian Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | | | - Arthur Hain
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Celestia Pei Xuan Yeo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Inès Bribes
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Benjamin Wong Wei Xiang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | | | - Menchie Casayuran Manuel
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
6
|
Balakrishnan K, Munusami P, Mohareer K, Priyakumar UD, Banerjee A, Luedde T, Mande SC, Münk C, Banerjee S. Staufen‐2 functions as a cofactor for enhanced Rev‐mediated nucleocytoplasmic trafficking of
HIV
‐1 genomic
RNA
via the
CRM1
pathway. FEBS J 2022; 289:6731-6751. [DOI: 10.1111/febs.16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences University of Hyderabad India
- Clinic for Gastroenterology, Hepatology, and Infectiology Medical Faculty, Heinrich Heine University Düsseldorf Germany
| | - Punnagai Munusami
- Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology Hyderabad India
- Department of Chemistry Arignar Anna Government Arts & Science College Karaikal Puducherry India
| | - Krishnaveni Mohareer
- Department of Biochemistry, School of Life Sciences University of Hyderabad India
| | - U. Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology Hyderabad India
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine University of Nevada Las Vegas NV USA
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology Medical Faculty, Heinrich Heine University Düsseldorf Germany
| | - Shekhar C. Mande
- National Centre for Cell Science Pune India
- Council of Scientific and Industrial Research New Delhi India
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology Medical Faculty, Heinrich Heine University Düsseldorf Germany
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences University of Hyderabad India
| |
Collapse
|
7
|
Wei XF, Fan SY, Wang YW, Li S, Long SY, Gan CY, Li J, Sun YX, Guo L, Wang PY, Yang X, Wang JL, Cui J, Zhang WL, Huang AL, Hu JL. Identification of STAU1 as a regulator of HBV replication by TurboID-based proximity labeling. iScience 2022; 25:104416. [PMID: 35663023 PMCID: PMC9156947 DOI: 10.1016/j.isci.2022.104416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
The core promoter (CP) of hepatitis B virus (HBV) is critical for HBV replication by controlling the transcription of pregenomic RNA (pgRNA). Host factors regulating the activity of the CP can be identified by different methods. Biotin-based proximity labeling, a powerful method with the capability to capture weak or dynamic interactions, has not yet been used to map proteins interacting with the CP. Here, we established a strategy, based on the newly evolved promiscuous enzyme TurboID, for interrogating host factors regulating the activity of HBV CP. Using this strategy, we identified STAU1 as an important factor involved in the regulation of HBV CP. Mechanistically, STAU1 indirectly binds to CP mediated by TARDBP, and recruits the SAGA transcription coactivator complex to the CP to upregulate its activity. Moreover, STAU1 binds to HBx and enhances the level of HBx by stabilizing it in a ubiquitin-independent manner.
Collapse
Affiliation(s)
- Xia-Fei Wei
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shu-Ying Fan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-Wei Wang
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shan Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shao-Yuan Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chun-Yang Gan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-Xue Sun
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lin Guo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Pei-Yun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xue Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jin-Lan Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jing Cui
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen-Lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Chen S, Liu Q, Zhang L, Ma J, Xue B, Li H, Deng R, Guo M, Xu Y, Tian R, Wang J, Cao W, Yang Q, Wang L, Li X, Liu S, Yang D, Zhu H. The Role of REC8 in the Innate Immune Response to Viral Infection. J Virol 2022; 96:e0217521. [PMID: 35107381 PMCID: PMC8941933 DOI: 10.1128/jvi.02175-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
REC8 meiotic recombination protein (REC8) is a member of structural maintenance of chromosome (SMC) protein partners, which play an important role in meiosis, antitumor activity, and sperm formation. As the adaptor proteins of RIG-I-like receptor (RLR) signaling and cyclic GMP-AMP synthase (cGAS)-DNA signaling, the activity and stability of MAVS (mitochondrial antiviral signaling protein; also known as VISA, Cardif, and IPS-1) and STING (stimulator of interferon genes; also known as MITA) are critical for innate immunity. Here, we report that REC8 interacts with MAVS and STING and inhibits their ubiquitination and subsequent degradation, thereby promoting innate antiviral signaling. REC8 is upregulated through the JAK-STAT signaling pathway during viral infection. Knockdown of REC8 impairs the innate immune responses against vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and herpes simplex virus (HSV). Mechanistically, during infection with viruses, the SUMOylated REC8 is transferred from the nucleus to the cytoplasm and then interacts with MAVS and STING to inhibit their K48-linked ubiquitination triggered by RNF5. Moreover, REC8 promotes the recruitment of TBK1 to MAVS and STING. Thus, REC8 functions as a positive modulator of innate immunity. Our work highlights a previously undocumented role of meiosis-associated protein REC8 in regulating innate immunity. IMPORTANCE The innate immune response is crucial for the host to resist the invasion of viruses and other pathogens. STING and MAVS play a critical role in the innate immune response to DNA and RNA viral infection, respectively. In this study, REC8 promoted the innate immune response by targeting STING and MAVS. Notably, REC8 interacts with MAVS and STING in the cytoplasm and inhibits K48-linked ubiquitination of MAVS and STING triggered by RNF5, stabilizing MAVS and STING protein to promote innate immunity and gradually inhibiting viral infection. Our study provides a new insight for the study of antiviral innate immunity.
Collapse
Affiliation(s)
- Shengwen Chen
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Lini Zhang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Jiahuan Ma
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Mengmeng Guo
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yan Xu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Jingjing Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Wenyan Cao
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Qiong Yang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Luolin Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xinran Li
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Shun Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Cancer Hospital, Changsha, China
| |
Collapse
|
9
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
10
|
Ramos H, Monette A, Niu M, Barrera A, López-Ulloa B, Fuentes Y, Guizar P, Pino K, DesGroseillers L, Mouland A, López-Lastra M. The double-stranded RNA-binding protein, Staufen1, is an IRES-transacting factor regulating HIV-1 cap-independent translation initiation. Nucleic Acids Res 2022; 50:411-429. [PMID: 34893869 PMCID: PMC8754648 DOI: 10.1093/nar/gkab1188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Translation initiation of the viral genomic mRNA (vRNA) of human immunodeficiency virus-type 1 (HIV-1) can be mediated by a cap- or an internal ribosome entry site (IRES)-dependent mechanism. A previous report shows that Staufen1, a cellular double-stranded (ds) RNA-binding protein (RBP), binds to the 5'untranslated region (5'UTR) of the HIV-1 vRNA and promotes its cap-dependent translation. In this study, we now evaluate the role of Staufen1 as an HIV-1 IRES-transacting factor (ITAF). We first confirm that Staufen1 associates with both the HIV-1 vRNA and the Gag protein during HIV-1 replication. We found that in HIV-1-expressing cells, siRNA-mediated depletion of Staufen1 reduces HIV-1 vRNA translation. Using dual-luciferase bicistronic mRNAs, we show that the siRNA-mediated depletion and cDNA-mediated overexpression of Staufen1 acutely regulates HIV-1 IRES activity. Furthermore, we show that Staufen1-vRNA interaction is required for the enhancement of HIV-1 IRES activity. Interestingly, we find that only Staufen1 harboring an intact dsRNA-binding domain 3 (dsRBD3) rescues HIV-1 IRES activity in Staufen1 CRISPR-Cas9 gene edited cells. Finally, we show that the expression of Staufen1-dsRBD3 alone enhances HIV-1 IRES activity. This study provides evidence of a novel role for Staufen1 as an ITAF promoting HIV-1 vRNA IRES activity.
Collapse
Affiliation(s)
- Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Brenda López-Ulloa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Yazmín Fuentes
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Paola Guizar
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Luc DesGroseillers
- Department of Biochemistry and Molecular Medicine, University of Montreal, P.O. Box 6128, Station Centre Ville, Montreal, Québec H3C 3J7, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
11
|
Bonnet-Magnaval F, Diallo LH, Brunchault V, Laugero N, Morfoisse F, David F, Roussel E, Nougue M, Zamora A, Marchaud E, Tatin F, Prats AC, Garmy-Susini B, DesGroseillers L, Lacazette E. High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. Int J Mol Sci 2021; 23:215. [PMID: 35008641 PMCID: PMC8745428 DOI: 10.3390/ijms23010215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Leïla Halidou Diallo
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Valérie Brunchault
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Nathalie Laugero
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florent Morfoisse
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florian David
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emilie Roussel
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Manon Nougue
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Audrey Zamora
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emmanuelle Marchaud
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florence Tatin
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Anne-Catherine Prats
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Barbara Garmy-Susini
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Luc DesGroseillers
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Eric Lacazette
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| |
Collapse
|
12
|
Balakrishnan K, Jaguva Vasudevan AA, Mohareer K, Luedde T, Münk C, Banerjee S. Encapsidation of Staufen-2 Enhances Infectivity of HIV-1. Viruses 2021; 13:v13122459. [PMID: 34960728 PMCID: PMC8703407 DOI: 10.3390/v13122459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2–HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect on viral propagation were unknown. Here, we report that Staufen-2 interacts with HIV-1 Gag and is incorporated into virions and that encapsidated Staufen-2 boosted viral infectivity. Further, Staufen-2 gets co-packaged into virions, possibly by interacting with host factors Staufen-1 or antiviral protein APOBEC3G, which resulted in different outcomes on the infectivity of Staufen-2-encapsidated virions. These observations suggest that encapsidated host factors influence viral population dynamics and infectivity. With the explicit identification of the incorporation of Staufen proteins into HIV-1 and other retroviruses, such as Simian Immunodeficiency Virus (SIV), we propose that packaging of RNA binding proteins, such as Staufen, in budding virions of retroviruses is probably a general phenomenon that can drive or impact the viral population dynamics, infectivity, and evolution.
Collapse
Affiliation(s)
- Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India; (K.B.); (K.M.)
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
| | - Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
| | - Krishnaveni Mohareer
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India; (K.B.); (K.M.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
- Correspondence: (C.M.); (S.B.); Tel.: +49-021-1811-0887 (C.M.); +91-40-2313-4573 (S.B.)
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India; (K.B.); (K.M.)
- Correspondence: (C.M.); (S.B.); Tel.: +49-021-1811-0887 (C.M.); +91-40-2313-4573 (S.B.)
| |
Collapse
|
13
|
Park SW, Yu KL, Bae JH, Kim GN, Kim HI, You JC. Investigation of the effect of Staufen1 overexpression on the HIV-1 virus production. BMB Rep 2021. [PMID: 34353428 PMCID: PMC8633522 DOI: 10.5483/bmbrep.2021.54.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated how Staufen1 influences the HIV-1 production. The overexpression of Staufen1 increased virus production without any negative affect on the viral infectivity. This increase was not caused by transcriptional activation; but by influencing post-transcriptional steps. Using multiple Gag protein derivatives, we confirmed that the zinc-finger domains of the HIV-1 nucleocapsid (NC) are important for its interaction with Staufen1. We also found that Staufen1 colocalized in stress granules with the mature form of the HIV-1 NC protein.
Collapse
Affiliation(s)
- Seong-won Park
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Kyung-Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Jun-Hyun Bae
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Ga-Na Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Hae-In Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| |
Collapse
|
14
|
Bonnet-Magnaval F, DesGroseillers L. The Staufen1-dependent cell cycle regulon or how a misregulated RNA-binding protein leads to cancer. Biol Rev Camb Philos Soc 2021; 96:2192-2208. [PMID: 34018319 DOI: 10.1111/brv.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of reports have linked the RNA-binding protein Staufen1 (STAU1) to the control of cell decision making. In non-transformed cells, STAU1 balances the expression of messenger RNA (mRNA) regulons that regulate differentiation and well-ordered cell division. Misregulation of STAU1 expression and/or functions changes the fragile balance in the expression of pro- and anti-proliferative and apoptotic genes and favours a novel equilibrium that supports cell proliferation and cancer development. The misregulation of STAU1 functions causes multiple coordinated modest effects in the post-transcriptional regulation of many RNA targets that code for cell cycle regulators, leading to dramatic consequences at the cellular level. The new tumorigenic equilibrium in STAU1-mediated gene regulation observed in cancer cells can be further altered by a slight increase in STAU1 expression that favours expression of pro-apoptotic genes and cell death. The STAU1-dependent cell cycle regulon is a good model to study how abnormal expression of an RNA-binding protein promotes cell growth and provides an advantageous selection of malignant cells in the first step of cancer development.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
15
|
May JP, Simon AE. Targeting of viral RNAs by Upf1-mediated RNA decay pathways. Curr Opin Virol 2020; 47:1-8. [PMID: 33341474 DOI: 10.1016/j.coviro.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Viral RNAs are susceptible to co-translational RNA decay pathways mediated by the RNA helicase Upstream frameshift 1 (Upf1). Upf1 is a key component in nonsense-mediated decay (NMD), Staufen1-mediated mRNA decay (SMD), and structure-mediated RNA decay (SRD) pathways, among others. Diverse families of viruses have features that predispose them to Upf1 targeting, but have evolved means to escape decay through the action of cis-acting or trans-acting viral factors. Studies aimed at understanding how viruses are subjected to and circumvent NMD have increased our understanding of NMD target selection of host mRNAs. This review focuses on the knowledge gained from studying NMD in viral systems as well as related Upf1-dependent pathways and how these pathways restrict virus replication.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD, USA.
| |
Collapse
|
16
|
Ghram M, Bonnet-Magnaval F, Hotea DI, Doran B, Ly S, DesGroseillers L. Staufen1 is Essential for Cell-Cycle Transitions and Cell Proliferation Via the Control of E2F1 Expression. J Mol Biol 2020; 432:3881-3897. [DOI: 10.1016/j.jmb.2020.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
|
17
|
Gandelman M, Dansithong W, Figueroa KP, Paul S, Scoles DR, Pulst SM. Staufen 1 amplifies proapoptotic activation of the unfolded protein response. Cell Death Differ 2020; 27:2942-2951. [PMID: 32415281 PMCID: PMC7492261 DOI: 10.1038/s41418-020-0553-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/28/2022] Open
Abstract
Staufen-1 (STAU1) is an RNA-binding protein that becomes highly overabundant in numerous neurodegenerative disease models, including those carrying mutations in presenilin1 (PSEN1), microtubule-associated protein tau (MAPT), huntingtin (HTT), TAR DNA-binding protein-43 gene (TARDBP), or C9orf72. We previously reported that elevations in STAU1 determine autophagy defects and its knockdown is protective in models of several neurodegenerative diseases. Additional functional consequences of STAU1 overabundance, however, have not been investigated. We studied the role of STAU1 in the chronic activation of the unfolded protein response (UPR), a common feature among neurodegenerative diseases and often directly associated with neuronal death. Here we report that STAU1 is a novel modulator of the UPR, and is required for apoptosis induced by activation of the PERK–CHOP pathway. STAU1 levels increased in response to multiple endoplasmic reticulum (ER) stressors, and exogenous expression of STAU1 was sufficient to cause apoptosis through the PERK–CHOP pathway of the UPR. Cortical neurons and skin fibroblasts derived from Stau1−/− mice showed reduced UPR and apoptosis when challenged with thapsigargin. In fibroblasts from individuals with SCA2 or with ALS-causing TDP-43 and C9ORF72 mutations, we found highly increased STAU1 and CHOP levels in basal conditions, and STAU1 knockdown restored CHOP levels to normal. Taken together, these results show that STAU1 overabundance reduces cellular resistance to ER stress and precipitates apoptosis.
Collapse
Affiliation(s)
- Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT, 84132, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT, 84132, USA
| | - Karla P Figueroa
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT, 84132, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT, 84132, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT, 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
18
|
Visentin S, Cannone G, Doutch J, Harris G, Gleghorn ML, Clifton L, Smith BO, Spagnolo L. A multipronged approach to understanding the form and function of hStaufen protein. RNA (NEW YORK, N.Y.) 2020; 26:265-277. [PMID: 31852734 PMCID: PMC7025507 DOI: 10.1261/rna.072595.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/09/2019] [Indexed: 05/09/2023]
Abstract
Staufen is a dsRNA-binding protein involved in many aspects of RNA regulation, such as mRNA transport, Staufen-mediated mRNA decay and the regulation of mRNA translation. It is a modular protein characterized by the presence of conserved consensus amino acid sequences that fold into double-stranded RNA binding domains (RBDs) as well as degenerated RBDs that are instead involved in protein-protein interactions. The variety of biological processes in which Staufen participates in the cell suggests that this protein associates with many diverse RNA targets, some of which have been identified experimentally. Staufen binding mediates the recruitment of effectors via protein-protein and protein-RNA interactions. The structural determinants of a number of these interactions, as well as the structure of full-length Staufen, remain unknown. Here, we present the first solution structure models for full-length hStaufen155, showing that its domains are arranged as beads-on-a-string connected by flexible linkers. In analogy with other nucleic acid-binding proteins, this could underpin Stau1 functional plasticity.
Collapse
Affiliation(s)
- Silvia Visentin
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Giuseppe Cannone
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Michael L Gleghorn
- School of Chemistry and Materials Science, College of Science, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Luke Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Brian O Smith
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Laura Spagnolo
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
19
|
Liao KC, Chuo V, Fagg WS, Bradrick SS, Pompon J, Garcia-Blanco MA. The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA Biol 2019; 17:366-380. [PMID: 31829086 DOI: 10.1080/15476286.2019.1703069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Quaking (QKI) is an RNA-binding protein (RBP) involved in multiple aspects of RNA metabolism and many biological processes. Despite a known immune function in regulating monocyte differentiation and inflammatory responses, the degree to which QKI regulates the host interferon (IFN) response remains poorly characterized. Here we show that QKI ablation enhances poly(I:C) and viral infection-induced IFNβ transcription. Characterization of IFN-related signalling cascades reveals that QKI knockout results in higher levels of IRF3 phosphorylation. Interestingly, complementation with QKI-5 isoform alone is sufficient to rescue this phenotype and reduce IRF3 phosphorylation. Further analysis shows that MAVS, but not RIG-I or MDA5, is robustly upregulated in the absence of QKI, suggesting that QKI downregulates MAVS and thus represses the host IFN response. As expected, MAVS depletion reduces IFNβ activation and knockout of MAVS in the QKI knockout cells completely abolishes IFNβ induction. Consistently, ectopic expression of RIG-I activates stronger IFNβ induction via MAVS-IRF3 pathway in the absence of QKI. Collectively, these findings demonstrate a novel role for QKI in negatively regulating host IFN response by reducing MAVS levels.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - W Samuel Fagg
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, Transplant Division, The University of Texas Medical Branch, Galveston, TX, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Mariano A Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
20
|
Gaete-Argel A, Márquez CL, Barriga GP, Soto-Rifo R, Valiente-Echeverría F. Strategies for Success. Viral Infections and Membraneless Organelles. Front Cell Infect Microbiol 2019; 9:336. [PMID: 31681621 PMCID: PMC6797609 DOI: 10.3389/fcimb.2019.00336] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA homeostasis or “RNAstasis” is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Aracelly Gaete-Argel
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Chantal L Márquez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- Emerging Viruses Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Real LM, Fernández-Fuertes M, Sáez ME, Rivero-Juárez A, Frías M, Téllez F, Santos J, Merino D, Moreno-Grau S, Gómez-Salgado J, González-Serna A, Corma-Gómez A, Ruiz A, Macías J, Pineda JA. A genome-wide association study on low susceptibility to hepatitis C virus infection (GEHEP012 study). Liver Int 2019; 39:1918-1926. [PMID: 31206233 DOI: 10.1111/liv.14177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND A low proportion of individuals repeatedly exposed to the hepatitis C virus (HCV) remain uninfected. This condition could have a genetic basis but it is not known whether or not it is mainly driven by a high-penetrance common allele. OBJECTIVE To explore whether low susceptibility to HCV infection is mainly driven by a high-penetrance common allele. METHODS In this genome-wide association study (GWAS), a total of 804 HCV-seropositive individuals and 27 high-risk HCV-seronegative (HRSN) subjects were included. Plink and Magma software were used to carry out single nucleotide polymorphism (SNP)-based and gene-based association analyses respectively. RESULTS No SNP nor any gene was associated with low susceptibility to HCV infection after multiple testing correction. However, SNPs previously associated with this trait and allocated within the LDLR gene, rs5925 and rs688, were also associated with this condition in our study under a dominant model (24 out of 27 [88.9%] rs5925-C carriers in the HRSN group vs 560 of 804 [69.6%] rs5925-C carriers in the HCV-seropositive group, P = 0.031, odds ratio [OR] = 3.48; 95% confidence interval [CI] = 1.04-11.58; and 24 out of 27 [88.9%] rs688-T carriers in the HRSN group vs 556 of 804 [69.1%] rs688-T carriers in the HCV-seropositive group, P = 0.028, OR = 3.57, 95% CI = 1.65-11.96). CONCLUSIONS Low susceptibility to HCV infection does not seem to be mainly driven by a high-penetrant common allele. By contrast, it seems a multifactorial trait where genes such as LDLR could be involved.
Collapse
Affiliation(s)
- Luis M Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Marta Fernández-Fuertes
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - María E Sáez
- Centro Andaluz de Estudios Bioinformáticos (CAEBI, SL), Sevilla, Spain
| | - Antonio Rivero-Juárez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Mario Frías
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | | | - Jesús Santos
- Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Dolores Merino
- Unidad de Enfermedades Infecciosas, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
| | - Sonia Moreno-Grau
- Fundació ACE-Institut Català de Neurociències Aplicades, Universidad Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro González-Serna
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Anais Corma-Gómez
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Agustín Ruiz
- Fundació ACE-Institut Català de Neurociències Aplicades, Universidad Internacional de Catalunya (UIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Macías
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Juan A Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| |
Collapse
|
22
|
Rao S, Hassine S, Monette A, Amorim R, DesGroseillers L, Mouland AJ. HIV-1 requires Staufen1 to dissociate stress granules and to produce infectious viral particles. RNA (NEW YORK, N.Y.) 2019; 25:727-736. [PMID: 30902835 PMCID: PMC6521601 DOI: 10.1261/rna.069351.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) has two major fates during viral replication: to serve as the template for the major structural and enzymatic proteins, or to be encapsidated and packaged into assembling virions to serve as the genomic vRNA in budding viruses. The dynamic balance between vRNA translation and encapsidation is mediated by numerous host proteins, including Staufen1. During HIV-1 infection, HIV-1 recruits Staufen1 to assemble a distinct ribonucleoprotein complex promoting vRNA encapsidation and viral assembly. Staufen1 also rescues vRNA translation and gene expression during conditions of cellular stress. In this work, we utilized novel Staufen1-/- gene-edited cells to further characterize the contribution of Staufen1 in HIV-1 replication. We observed a marked deficiency in the ability of HIV-1 to dissociate stress granules (SGs) in Staufen1-deficient cells and remarkably, the vRNA repositioned to SGs. These phenotypes were rescued by Staufen1 expression in trans or in cis, but not by a dsRBD-binding mutant, Staufen1F135A. The mistrafficking of the vRNA in these Staufen1-/- cells was also accompanied by a dramatic decrease in viral production and infectivity. This work provides novel insight into the mechanisms by which HIV-1 uses Staufen1 to ensure optimal vRNA translation and trafficking, supporting an integral role for Staufen1 in the HIV-1 life cycle, positioning it as an attractive target for next-generation antiretroviral agents.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
| | - Sami Hassine
- Département de biochimie et médecine moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
- Department of Medicine, McGill University, Montréal, Québec, Canada H4A 3J1
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
- Department of Medicine, McGill University, Montréal, Québec, Canada H4A 3J1
| |
Collapse
|
23
|
Staufen1 Interacts with Multiple Components of the Ebola Virus Ribonucleoprotein and Enhances Viral RNA Synthesis. mBio 2018; 9:mBio.01771-18. [PMID: 30301857 PMCID: PMC6178623 DOI: 10.1128/mbio.01771-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ebola virus (EBOV) is a negative-strand RNA virus with significant public health importance. Currently, no therapeutics are available for Ebola, which imposes an urgent need for a better understanding of EBOV biology. Here we dissected the virus-host interplay between EBOV and host RNA-binding proteins. We identified novel EBOV host factors, including Staufen1, which interacts with multiple viral factors and is required for efficient viral RNA synthesis. Ebola virus (EBOV) genome and mRNAs contain long, structured regions that could hijack host RNA-binding proteins to facilitate infection. We performed RNA affinity chromatography coupled with mass spectrometry to identify host proteins that bind to EBOV RNAs and identified four high-confidence proviral host factors, including Staufen1 (STAU1), which specifically binds both 3′ and 5′ extracistronic regions of the EBOV genome. We confirmed that EBOV infection rate and production of infectious particles were significantly reduced in STAU1-depleted cells. STAU1 was recruited to sites of EBOV RNA synthesis upon infection and enhanced viral RNA synthesis. Furthermore, STAU1 interacts with EBOV nucleoprotein (NP), virion protein 30 (VP30), and VP35; the latter two bridge the viral polymerase to the NP-coated genome, forming the viral ribonucleoprotein (RNP) complex. Our data indicate that STAU1 plays a critical role in EBOV replication by coordinating interactions between the viral genome and RNA synthesis machinery.
Collapse
|
24
|
Ye C, Yu Z, Xiong Y, Wang Y, Ruan Y, Guo Y, Chen M, Luan S, Zhang E, Liu H. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction. FASEB J 2018; 33:286-300. [PMID: 29979632 DOI: 10.1096/fj.201800062rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infectious bursal disease virus (IBDV) infection triggers the induction of type I IFN, which is mediated by melanoma differentiation-associated protein 5 recognition of the viral genomic double-stranded RNA (dsRNA). However, the mechanism of IBDV overcoming the type I IFN antiviral response remains poorly characterized. Here, we show that IBDV genomic dsRNA selectively binds to the host cellular RNA binding protein Staufen1 (STAU1) in vitro and in vivo. The viral dsRNA binding region was mapped to the N-terminal moiety of STAU1 (residues 1-468). Down-regulation of STAU1 impaired IBDV replication and enhanced IFN-β transcription in response to IBDV infection, while having little effect on the viral attachment to the host cells and cellular entry. Conversely, overexpression of STAU1 but not the IBDV dsRNA-binding deficient STAU1 mutant (469-702) led to a suppression of IBDV dsRNA-induced IFN-β promoter activity. Moreover, we found that the binding of STAU1 to IBDV dsRNA decreased the association of melanoma differentiation-associated protein 5 but not VP3 with the IBDV dsRNA in vitro. Finally, we showed that STAU1 and VP3 suppressed IFN-β gene transcription in response to IBDV infection in an additive manner. Collectively, these findings provide a novel insight into the evasive strategies used by IBDV to escape the host IFN antiviral response.-Ye, C., Yu, Z., Xiong, Y., Wang, Y., Ruan, Y., Guo, Y., Chen, M., Luan, S., Zhang, E., Liu, H. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction.
Collapse
Affiliation(s)
- Chengjin Ye
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Zhaoli Yu
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yu Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yina Ruan
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yueping Guo
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Mianmian Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Shilu Luan
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Enli Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Hebin Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
25
|
Fernández-Carrillo C, Pérez-Vilaró G, Díez J, Pérez-Del-Pulgar S. Hepatitis C virus plays with fire and yet avoids getting burned. A review for clinicians on processing bodies and stress granules. Liver Int 2018; 38:388-398. [PMID: 28782251 DOI: 10.1111/liv.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 08/02/2017] [Indexed: 02/13/2023]
Abstract
Over the last few years, many reports have defined several types of RNA cell granules composed of proteins and messenger RNA (mRNA) that regulate gene expression on a post-transcriptional level. Processing bodies (P-bodies) and stress granules (SGs) are among the best-known RNA granules, only detectable when they accumulate into very dynamic cytosolic foci. Recently, a tight association has been found between positive-stranded RNA viruses, including hepatitis C virus (HCV), and these granules. The present article offers a comprehensive review on the complex and paradoxical relationship between HCV, P-bodies and SGs from a translational perspective. Despite the fact that components of P-bodies and SGs have assiduously controlled mRNA expression, either by sequestration or degradation, for thousands of years, HCV has learned how to dangerously exploit certain of them for its own benefit in an endless biological war. Thus, HCV has gained the ability to hack ancient host machineries inherited from prokaryotic times. While P-bodies and SGs are crucial to the HCV cycle, in the interferon-free era we still lack detailed knowledge of the mechanisms involved, processes that may underlie the long-term complications of HCV infection.
Collapse
Affiliation(s)
| | - Gemma Pérez-Vilaró
- Department of Experimental and Health Sciences, Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juana Díez
- Department of Experimental and Health Sciences, Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
26
|
Rao S, Cinti A, Temzi A, Amorim R, You JC, Mouland AJ. HIV-1 NC-induced stress granule assembly and translation arrest are inhibited by the dsRNA binding protein Staufen1. RNA (NEW YORK, N.Y.) 2018; 24:219-236. [PMID: 29127210 PMCID: PMC5769749 DOI: 10.1261/rna.064618.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
The nucleocapsid (NC) is an N-terminal protein derived from the HIV-1 Gag precursor polyprotein, pr55Gag NC possesses key functions at several pivotal stages of viral replication. For example, an interaction between NC and the host double-stranded RNA-binding protein Staufen1 was shown to regulate several steps in the viral replication cycle, such as Gag multimerization and genomic RNA encapsidation. In this work, we observed that the overexpression of NC leads to the induction of stress granule (SG) assembly. NC-mediated SG assembly was unique as it was resistant to the SG blockade imposed by the HIV-1 capsid (CA), as shown in earlier work. NC also reduced host cell mRNA translation, as judged by a puromycylation assay of de novo synthesized proteins, and this was recapitulated in polysome profile analyses. Virus production was also found to be significantly reduced. Finally, Staufen1 expression completely rescued the blockade to NC-mediated SG assembly, global mRNA translation as well as virus production. NC expression also resulted in the phosphorylation of protein kinase R (PKR) and eIF2α, and this was inhibited with Staufen1 coexpression. This work sheds light on an unexpected function of NC in host cell translation. A comprehensive understanding of the molecular mechanisms by which a fine balance of the HIV-1 structural proteins NC and CA act in concert with host proteins such as Staufen1 to modulate the host stress response will aid in the development of new antiviral therapeutics.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Alessandro Cinti
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Abdelkrim Temzi
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| |
Collapse
|
27
|
Mao Z, Liu C, Lin X, Sun B, Su C. PPP2R5A: A multirole protein phosphatase subunit in regulating cancer development. Cancer Lett 2018; 414:222-229. [DOI: 10.1016/j.canlet.2017.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
|
28
|
Mishra P, Dixit U, Pandey AK, Upadhyay A, Pandey VN. Modulation of HCV replication and translation by ErbB3 binding protein1 isoforms. Virology 2016; 500:35-49. [PMID: 27770702 DOI: 10.1016/j.virol.2016.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
We recently identified a cell-factor, ErbB3 binding protein 1 (Ebp-1), which specifically interacts with the viral RNA genome and modulates HCV replication and translation. Ebp1 has two isoforms, p48, and p42, that result from differential splicing. We found that both isoforms interact with HCV proteins NS5A and NS5B, as well as cell-factor PKR. The p48 isoform, which localizes in the cytoplasm and nuclei, promoted HCV replication, whereas the shorter p42 isoform, which resides exclusively in the cytoplasm, strongly inhibited HCV replication. Transient expression of individual isoforms in Ebp1-knockdown MH14 cells confirmed that the p48 isoform promotes HCV replication, while the p42 isoform inhibits it. We found that Ebp1-p42 significantly enhanced autophosphorylation of PKR, while Ebp1-p48 isoform strongly inhibited it. We propose that modulation of autophosphorylation of PKR by p48 isoform is an important mechanism whereby the HCV virus escapes innate antiviral immune responses by circumventing p42-mediated inhibition of its replication.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Updesh Dixit
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alok Upadhyay
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|