1
|
Roske JJ, Yeeles JTP. Structural basis for processive daughter-strand synthesis and proofreading by the human leading-strand DNA polymerase Pol ε. Nat Struct Mol Biol 2024:10.1038/s41594-024-01370-y. [PMID: 39112807 DOI: 10.1038/s41594-024-01370-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/11/2024] [Indexed: 10/18/2024]
Abstract
During chromosome replication, the nascent leading strand is synthesized by DNA polymerase epsilon (Pol ε), which associates with the sliding clamp processivity factor proliferating cell nuclear antigen (PCNA) to form a processive holoenzyme. For high-fidelity DNA synthesis, Pol ε relies on nucleotide selectivity and its proofreading ability to detect and excise a misincorporated nucleotide. Here, we present cryo-electron microscopy (cryo-EM) structures of human Pol ε in complex with PCNA, DNA and an incoming nucleotide, revealing how Pol ε associates with PCNA through its PCNA-interacting peptide box and additional unique features of its catalytic domain. Furthermore, by solving a series of cryo-EM structures of Pol ε at a mismatch-containing DNA, we elucidate how Pol ε senses and edits a misincorporated nucleotide. Our structures delineate steps along an intramolecular switching mechanism between polymerase and exonuclease activities, providing the basis for a proofreading mechanism in B-family replicative polymerases.
Collapse
|
2
|
Ren Z, Yang X. Deconvolution of dynamic heterogeneity in protein structure. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:041302. [PMID: 39165899 PMCID: PMC11335360 DOI: 10.1063/4.0000261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Heterogeneity is intrinsic to the dynamic process of a chemical reaction. As reactants are converted to products via intermediates, the nature and extent of heterogeneity vary temporally throughout the duration of the reaction and spatially across the molecular ensemble. The goal of many biophysical techniques, including crystallography and spectroscopy, is to establish a reaction trajectory that follows an experimentally provoked dynamic process. It is essential to properly analyze and resolve heterogeneity inevitably embedded in experimental datasets. We have developed a deconvolution technique based on singular value decomposition (SVD), which we have rigorously practiced in diverse research projects. In this review, we recapitulate the motivation and challenges in addressing the heterogeneity problem and lay out the mathematical foundation of our methodology that enables isolation of chemically sensible structural signals. We also present a few case studies to demonstrate the concept and outcome of the SVD-based deconvolution. Finally, we highlight a few recent studies with mechanistic insights made possible by heterogeneity deconvolution.
Collapse
Affiliation(s)
- Zhong Ren
- Authors to whom correspondence should be addressed: and
| | - Xiaojing Yang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
3
|
Ren Z, Kang W, Gunawardana S, Bowatte K, Thoulass K, Kaeser G, Krauß N, Lamparter T, Yang X. Dynamic interplays between three redox cofactors in a DNA photolyase revealed by spectral decomposition. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101297. [PMID: 37064408 PMCID: PMC10104447 DOI: 10.1016/j.xcrp.2023.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
DNA repair catalyzed by photolyases is accomplished by a light-dependent electron transfer event from a fully reduced flavin adenine dinucleotide to a DNA lesion site. Prokaryotic DNA photolyase, PhrB, possesses a ribolumazine cofactor and a four-iron-four-sulfur cluster in addition to the catalytic flavin, but their functional roles are poorly understood. Here, we employ time-resolved absorption spectroscopy to probe light-induced responses in both solution and single crystals of PhrB. We jointly analyze a large collection of light-induced difference spectra from the wild-type and mutant PhrB obtained under different light and redox conditions. By applying singular value decomposition to 159 time series, we dissect light-induced spectral changes and examine the dynamic interplay between three cofactors. Our findings suggest that these cofactors form an interdependent redox network to coordinate light-induced redox responses. We propose that the ribolumazine cofactor serves as a photoprotective pigment under intense light or prolonged illumination, while the iron-sulfur cluster acts as a transient electron cache to maintain balance between two otherwise independent photoreactions of the flavin and ribolumazine.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Lead contact
| | - Weijia Kang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Semini Gunawardana
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Kalinga Bowatte
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Katharina Thoulass
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Ren Z, Zhang F, Kang W, Wang C, Shin H, Zeng X, Gunawardana S, Bowatte K, Krau Ü N, Lamparter T, Yang X. Spin-Coupled Electron Densities of Iron-Sulfur Cluster Imaged by In Situ Serial Laue Diffraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523341. [PMID: 36711581 PMCID: PMC9882091 DOI: 10.1101/2023.01.09.523341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Iron-sulfur clusters are inorganic cofactors found in many proteins involved in fundamental biological processes including DNA processing. The prokaryotic DNA repair enzyme PhrB, a member of the protein family of cryptochromes and photolyases, carries a four-iron-four-sulfur cluster [4Fe4S] in addition to the catalytic cofactor flavin adenine dinucleotide (FAD) and a second pigment 6,7-dimethyl-8-ribityllumazine (DMRL). The light-induced redox reactions of this multi-cofactor protein complex were recently shown as two interdependent photoreductions of FAD and DMRL mediated by the [4Fe4S] cluster functioning as an electron cache to hold a fine balance of electrons. Here, we apply the more traditional temperature-scan cryo-trapping technique in protein crystallography and the newly developed technology of in situ serial Laue diffraction at room temperature. These diffraction methods in dynamic crystallography enable us to capture strong signals of electron density changes in the [4Fe4S] cluster that depict quantized electronic movements. The mixed valence layers of the [4Fe4S] cluster due to spin coupling and their dynamic responses to light illumination are observed directly in our difference maps between its redox states. These direct observations of the quantum effects in a protein bound iron-sulfur cluster have thus opened a window into the mechanistic understanding of metal clusters in biological systems.
Collapse
|
5
|
Lv D, Li J, Ye S. The Assembly Switch Mechanism of FtsZ Filament Revealed by All-Atom Molecular Dynamics Simulations and Coarse-Grained Models. Front Microbiol 2021; 12:639883. [PMID: 33859629 PMCID: PMC8042166 DOI: 10.3389/fmicb.2021.639883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 01/14/2023] Open
Abstract
Bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, and assembles into dynamic filaments that are essential for cell division. Here, we used a multi-scale computational strategy that combined all-atom molecular dynamics (MD) simulations and coarse-grained models to reveal the conformational dynamics of assembled FtsZ. We found that the top end of a filament is highly dynamic and can undergo T-to-R transitions in both GTP- and GDP-bound states. We observed several subcategories of nucleation related dimer species, which leading to a feasible nucleation pathway. In addition, we observed that FtsZ filament exhibits noticeable amounts of twisting, indicating a substantial helicity of the FtsZ filament. These results agree with the previously models and experimental data. Anisotropy network model (ANM) analysis revealed a polymerization enhanced assembly cooperativity, and indicated that the cooperative motions in FtsZ are encoded in the structure. Taken together, our study provides a molecular-level understanding of the diversity of the structural states of FtsZ and the relationships among polymerization, hydrolysis, and cooperative assembly, which should shed new light on the molecular basis of FtsZ’s cooperativity.
Collapse
Affiliation(s)
- Dashuai Lv
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Institute of Quantitative Biology, Hangzhou, China
| | - Sheng Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Abstract
Direct visualization of electronic and molecular events during biochemical reactions is essential to mechanistic insights. This Letter presents an in-depth analysis of the serial crystallographic data sets collected by Barends and Schlichting et al. ( Science 2015 , 350 , 445 ) that probe the ligand photodissociation in carbonmonoxy myoglobin. This analysis reveals electron density changes caused by the formation of high-spin 3d atomic orbitals of the heme iron upon photolysis and their dynamic behaviors within the first few picoseconds. The heme iron is found popping out of and recoiling back into the heme plane in succession. These findings provide long-awaited visual validations for previous works using ultrafast spectroscopy and molecular dynamics simulations. Electron density variations are also found largely in the solvent during the first period of a low-frequency oscillation. This work demonstrates the importance of the analytical methods in detecting and isolating weak, transient signals of electronic changes arising from chemical reactions.
Collapse
|
7
|
Structural basis of molecular logic OR in a dual-sensor histidine kinase. Proc Natl Acad Sci U S A 2019; 116:19973-19982. [PMID: 31527275 DOI: 10.1073/pnas.1910855116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signal detection and integration by sensory proteins constitute the critical molecular events as living organisms respond to changes in a complex environment. Many sensory proteins adopt a modular architecture that integrates the perception of distinct chemical or physical signals and the generation of a biological response in the same protein molecule. Currently, how signal perception and integration are achieved in such a modular, often dimeric, framework remains elusive. Here, we report a dynamic crystallography study on the tandem sensor domains of a dual-sensor histidine kinase PPHK (phosphorylation-responsive photosensitive histidine kinase) that operates a molecular logic OR, by which the output kinase activity is modulated by a phosphorylation signal and a light signal. A joint analysis of ∼170 crystallographic datasets probing different signaling states shows remarkable dimer asymmetry as PPHK responds to the input signals and transitions from one state to the other. Supported by mutational data and structural analysis, these direct observations reveal the working mechanics of the molecular logic OR in PPHK, where the light-induced bending of a long signaling helix at the dimer interface is counteracted by the ligand-induced structural changes from a different sensor domain. We propose that the logic OR of PPHK, together with an upstream photoreceptor, implements a "long-pass" red light response distinct from those accomplished by classical phytochromes.
Collapse
|
8
|
Jozwiakowski SK, Kummer S, Gari K. Human DNA polymerase delta requires an iron-sulfur cluster for high-fidelity DNA synthesis. Life Sci Alliance 2019; 2:2/4/e201900321. [PMID: 31278166 PMCID: PMC6613617 DOI: 10.26508/lsa.201900321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
The iron–sulfur cluster in human DNA polymerase delta has an impact on DNA polymerase and exonuclease activities and can hence influence the fidelity of DNA synthesis. Replication of eukaryotic genomes relies on the family B DNA polymerases Pol α, Pol δ, and Pol ε. All of these enzymes coordinate an iron–sulfur (FeS) cluster, but the function of this cofactor has remained largely unclear. Here, we show that the FeS cluster in the catalytic subunit of human Pol δ is coordinated by four invariant cysteines of the C-terminal CysB motif. FeS cluster loss causes a partial destabilisation of the four-subunit enzyme, a defect in double-stranded DNA binding, and compromised polymerase and exonuclease activities. Importantly, complex stability, DNA binding, and enzymatic activities are restored in the presence of proliferating cell nuclear antigen. We further show that also more subtle changes to the FeS cluster-binding pocket that do not abolish FeS cluster binding can have repercussions on the distant exonuclease domain and render the enzyme error-prone. Our data hence suggest that the FeS cluster in human Pol δ is an important co-factor that despite its C-terminal location has an impact on both DNA polymerase and exonuclease activities, and can influence the fidelity of DNA synthesis.
Collapse
Affiliation(s)
| | - Sandra Kummer
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
An updated structural classification of replicative DNA polymerases. Biochem Soc Trans 2019; 47:239-249. [PMID: 30647142 DOI: 10.1042/bst20180579] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.
Collapse
|
10
|
Fidelity of DNA replication-a matter of proofreading. Curr Genet 2018; 64:985-996. [PMID: 29500597 PMCID: PMC6153641 DOI: 10.1007/s00294-018-0820-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/29/2023]
Abstract
DNA that is transmitted to daughter cells must be accurately duplicated to maintain genetic integrity and to promote genetic continuity. A major function of replicative DNA polymerases is to replicate DNA with the very high accuracy. The fidelity of DNA replication relies on nucleotide selectivity of replicative DNA polymerase, exonucleolytic proofreading, and postreplicative DNA mismatch repair (MMR). Proofreading activity that assists most of the replicative polymerases is responsible for removal of incorrectly incorporated nucleotides from the primer terminus before further primer extension. It is estimated that proofreading improves the fidelity by a 2–3 orders of magnitude. The primer with the incorrect terminal nucleotide has to be moved to exonuclease active site, and after removal of the wrong nucleotide must be transferred back to polymerase active site. The mechanism that allows the transfer of the primer between pol and exo site is not well understood. While defects in MMR are well known to be linked with increased cancer incidence only recently, the replicative polymerases that have alterations in the exonuclease domain have been associated with some sporadic and hereditary human cancers. In this review, we would like to emphasize the importance of proofreading (3′-5′ exonuclease activity) in the fidelity of DNA replication and to highlight what is known about switching from polymerase to exonuclease active site.
Collapse
|
11
|
Pricer R, Gestwicki JE, Mapp AK. From Fuzzy to Function: The New Frontier of Protein-Protein Interactions. Acc Chem Res 2017; 50:584-589. [PMID: 28945413 DOI: 10.1021/acs.accounts.6b00565] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Conformationally heterogenous or "fuzzy" proteins have often been described as lacking specificity in binding and in function. The activation domains, for example, of transcriptional activators were labeled as negative noodles, with little structure or specificity. However, emerging data illustrates that the opposite is true: conformational heterogeneity enables context-specific function to emerge in response to changing cellular conditions and, furthermore, allows a single structural motif to be used in multiple settings. A further benefit is that conformational heterogeneity can be harnessed for the discovery of allosteric drug-like modulators, targeting critical pathways in protein homeostasis and transcription.
Collapse
Affiliation(s)
- Rachel Pricer
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
| | - Jason E Gestwicki
- Institute
for Neurodegenerative Diseases, Department of Pharmaceutical Chemistry, University of California—San Francisco, San Francisco, California 94143-0518, United States
| | - Anna K Mapp
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|