1
|
Zhou C, Sun M, Zhang P, Yuan Y, Peng J, Zhang H, He C, Yao G, Liu Y, Zhou P, Lai B. Spatial confinement Fenton oxidation realized via tunable nanopore structure of porous carbon. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134979. [PMID: 38905982 DOI: 10.1016/j.jhazmat.2024.134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Spatially confined structure exhibits surprising physics and chemistry properties that significantly impact the thermodynamics and kinetics of oxidation reactions. Herein, porous carbons are rationally designed for tunable nanopore structures (micropores, 4.12 % ∼ 91.64 %) and diverse spatial confinement ability, as indicated by their differential enhancement performances in the Fenton oxidation. Porous carbons can alter the characteristics of the charge transport process for accelerating sustainable electron shuttle between hydrogen peroxide and iron species, and thus exhibit long-term performance (17 cycling tests). The positive spatial confinement for boosting Fenton oxidation (charge transport, mass transfer) occurs in nanochannels < 1 nm, while the diminished effect ranges of 1-1.5 nm, and the adverse effect ranges greater than 1.5 nm. The density functional theory calculation provides further support for certifying the promoted charge transport process and spatial confinement for hydroxyl radical inside the confined nanochannel structure (below 1 nm, especially) by the comparatively large electron cloud and the relatively negative adsorption energy, respectively. Coupling nanochannels with the Fenton oxidation greatly utilize hydrogen peroxide, due to spatial nanoconfinement and selective adsorption towards target contaminants. This strategy of deploying nanochannels in catalyst design can be applied for the elaborate construction of efficient nanostructured catalysts for environmental remediation.
Collapse
Affiliation(s)
- Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Minglu Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Yue Yuan
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiali Peng
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China; Sino-German Centre for innovative Environmental Technologies, Aachen 52074, Germany
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Orlandini E, Micheletti C. Topological and physical links in soft matter systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:013002. [PMID: 34547745 DOI: 10.1088/1361-648x/ac28bf] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Linking, or multicomponent topological entanglement, is ubiquitous in soft matter systems, from mixtures of polymers and DNA filaments packedin vivoto interlocked line defects in liquid crystals and intertwined synthetic molecules. Yet, it is only relatively recently that theoretical and experimental advancements have made it possible to probe such entanglements and elucidate their impact on the physical properties of the systems. Here, we review the state-of-the-art of this rapidly expanding subject and organize it as follows. First, we present the main concepts and notions, from topological linking to physical linking and then consider the salient manifestations of molecular linking, from synthetic to biological ones. We next cover the main physical models addressing mutual entanglements in mixtures of polymers, both linear and circular. Finally, we consider liquid crystals, fluids and other non-filamentous systems where topological or physical entanglements are observed in defect or flux lines. We conclude with a perspective on open challenges.
Collapse
Affiliation(s)
- Enzo Orlandini
- Department of Physics and Astronomy, University of Padova and Sezione INFN, Via Marzolo 8, Padova, Italy
| | - Cristian Micheletti
- SISSA, International School for Advanced Studies, via Bonomea 265, Trieste, Italy
| |
Collapse
|
3
|
Japaridze A, Yang W, Dekker C, Nasser W, Muskhelishvili G. DNA sequence-directed cooperation between nucleoid-associated proteins. iScience 2021; 24:102408. [PMID: 33997690 PMCID: PMC8099737 DOI: 10.1016/j.isci.2021.102408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) are a class of highly abundant DNA-binding proteins in bacteria and archaea. While both the composition and relative abundance of the NAPs change during the bacterial growth cycle, surprisingly little is known about their crosstalk in mutually binding and stabilizing higher-order nucleoprotein complexes in the bacterial chromosome. Here, we use atomic force microscopy and solid-state nanopores to investigate long-range nucleoprotein structures formed by the binding of two major NAPs, FIS and H-NS, to DNA molecules with distinct binding site arrangements. We find that spatial organization of the protein binding sites can govern the higher-order architecture of the nucleoprotein complexes. Based on sequence arrangement the complexes differed in their global shape and compaction as well as the extent of FIS and H-NS binding. Our observations highlight the important role the DNA sequence plays in driving structural differentiation within the bacterial chromosome. The location of protein binding sites along DNA is important for 3D organization FIS protein forms DNA loops while H-NS forms compact DNA plectonemes FIS DNA loops inhibit H-NS from spreading over the DNA FIS and H-NS competition creates regions of ‘open’ and ‘closed’ DNA
Collapse
Affiliation(s)
- Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wayne Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Georgi Muskhelishvili
- School of Natural Sciences, Agricultural University of Georgia, Davit Aghmashenebeli Alley 240, 0159 Tbilisi, Georgia
| |
Collapse
|
4
|
The condensin holocomplex cycles dynamically between open and collapsed states. Nat Struct Mol Biol 2020; 27:1134-1141. [PMID: 32989304 DOI: 10.1038/s41594-020-0508-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Structural maintenance of chromosome (SMC) protein complexes are the key organizers of the spatiotemporal structure of chromosomes. The condensin SMC complex has recently been shown to be a molecular motor that extrudes large loops of DNA, but the mechanism of this unique motor remains elusive. Using atomic force microscopy, we show that budding yeast condensin exhibits mainly open 'O' shapes and collapsed 'B' shapes, and it cycles dynamically between these two states over time, with ATP binding inducing the O to B transition. Condensin binds DNA via its globular domain and also via the hinge domain. We observe a single condensin complex at the stem of extruded DNA loops, where the neck size of the DNA loop correlates with the width of the condensin complex. The results are indicative of a type of scrunching model in which condensin extrudes DNA by a cyclic switching of its conformation between O and B shapes.
Collapse
|
5
|
BEDNARIKOVA Z, GAZOVA Z, VALLE F, BYSTRENOVA E. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes. J Microsc 2020; 280:241-251. [DOI: 10.1111/jmi.12936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Z. BEDNARIKOVA
- Slovak Academy of Science Institute of Experimental Physics Kosice Slovakia
| | - Z. GAZOVA
- Slovak Academy of Science Institute of Experimental Physics Kosice Slovakia
| | | | | |
Collapse
|
6
|
Smith KB, Wehrli M, Japaridze A, Assenza S, Dekker C, Mezzenga R. Interplay between Confinement and Drag Forces Determine the Fate of Amyloid Fibrils. PHYSICAL REVIEW LETTERS 2020; 124:118102. [PMID: 32242730 DOI: 10.1103/physrevlett.124.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
The fine interplay between the simultaneous stretching and confinement of amyloid fibrils is probed by combining a microcapillary setup with atomic force microscopy. Single-molecule statistics reveal how the stretching of fibrils changed from force to confinement dominated at different length scales. System order, however, is solely ruled by confinement. Coarse-grained simulations support the results and display the potential to tailor system properties by tuning the two effects. These findings may further help shed light on in vivo amyloid fibril growth and transport in highly confined environments such as blood vessels.
Collapse
Affiliation(s)
- Kathleen Beth Smith
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Monika Wehrli
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Salvatore Assenza
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
- Department of Materials, Swiss Federal Institute of Technology, Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
7
|
Abstract
The glass transition in soft matter systems is generally triggered by an increase in packing fraction or a decrease in temperature. It has been conjectured that the internal topology of the constituent particles, such as polymers, can cause glassiness too. However, the conjecture relies on immobilizing a fraction of the particles and is therefore difficult to fulfill experimentally. Here we show that in dense solutions of circular polymers containing (active) segments of increased mobility, the interplay of the activity and the topology of the polymers generates an unprecedented glassy state of matter. The active isotropic driving enhances mutual ring threading to the extent that the rings can relax only in a cooperative way, which dramatically increases relaxation times. Moreover, the observed phenomena feature similarities with the conformation and dynamics of the DNA fibre in living nuclei of higher eukaryotes.
Collapse
Affiliation(s)
- Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria.
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Iurii Chubak
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
8
|
Castro-Villarreal P, Ramírez JE. Stochastic curvature of enclosed semiflexible polymers. Phys Rev E 2019; 100:012503. [PMID: 31499867 DOI: 10.1103/physreve.100.012503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 11/07/2022]
Abstract
The conformational states of a semiflexible polymer enclosed in a compact domain of typical size a are studied as stochastic realizations of paths defined by the Frenet equations under the assumption that stochastic "curvature" satisfies a white noise fluctuation theorem. This approach allows us to derive the Hermans-Ullman equation, where we exploit a multipolar decomposition that allows us to show that the positional probability density function is well described by a telegrapher's equation whenever 2a/ℓ_{p}>1, where ℓ_{p} is the persistence length. We also develop a Monte Carlo algorithm for use in computer simulations in order to study the conformational states in a compact domain. In addition, the case of a semiflexible polymer enclosed in a square domain of side a is presented as an explicit example of the formulated theory and algorithm. In this case, we show the existence of a polymer shape transition similar to the one found by Spakowitz and Wang [Phys. Rev. Lett. 91, 166102 (2003)PRLTAO0031-900710.1103/PhysRevLett.91.166102] where in this case the critical persistence length is ℓ_{p}^{*}≃a/8 such that the mean-square end-to-end distance exhibits an oscillating behavior for values ℓ_{p}>ℓ_{p}^{*}, whereas for ℓ_{p}<ℓ_{p}^{*} it behaves monotonically increasing.
Collapse
Affiliation(s)
- Pavel Castro-Villarreal
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata, Km. 8, Rancho San Francisco, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - J E Ramírez
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 165, 72000 Puebla, Puebla, Mexico.,Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Murade CU, Shubeita GT. A Molecular Sensor Reveals Differences in Macromolecular Crowding between the Cytoplasm and Nucleoplasm. ACS Sens 2019; 4:1835-1843. [PMID: 31250628 DOI: 10.1021/acssensors.9b00569] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe a molecular sensor that reports, using fluorescence resonance energy transfer (FRET), on the degree of macromolecular crowding in different cellular compartments. The oligonucleotide-based sensor is sensitive to changes in the volume fraction of macromolecules over a wide range in vitro and, when introduced in cells, rapidly distributes and shows a striking contrast between the cytosol and the nucleus. This contrast can be modulated by osmotic stress or by using a number of drugs that alter chromatin organization within the nucleus. These findings suggest that the sensor can be used as a tool to probe chromosome organization. Further, our finding that the cell maintains different degrees of macromolecular crowding in the cytoplasm and nucleoplasm has implications on molecular mechanisms since crowding can alter protein conformations, binding rates, reaction kinetics, and therefore protein function.
Collapse
Affiliation(s)
- Chandrashekhar U. Murade
- Physics Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - George T. Shubeita
- Physics Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Smith KB, Tisserant J, Assenza S, Arcari M, Nyström G, Mezzenga R. Confinement-Induced Ordering and Self-Folding of Cellulose Nanofibrils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801540. [PMID: 30828528 PMCID: PMC6382315 DOI: 10.1002/advs.201801540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Indexed: 05/19/2023]
Abstract
Cellulose is a pervasive polymer, displaying hierarchical lengthscales and exceptional strength and stiffness. Cellulose's complex organization, however, also hinders the detailed understanding of the assembly, mesoscopic properties, and structure of individual cellulose building blocks. This study combines nanolithography with atomic force microscopy to unveil the properties and structure of single cellulose nanofibrils under weak geometrical confinement. By statistical analysis of the fibril morphology, it emerges that confinement induces both orientational ordering and self-folding of the fibrils. Excluded volume simulations reveal that this effect does not arise from a fibril population bias applied by the confining slit, but rather that the fibril conformation itself changes under confinement, with self-folding favoring fibril's free volume entropy. Moreover, a nonstochastics angular bending probability of the fibril kinks is measured, ruling out alternating amorphous-crystalline regions. These findings push forward the understanding of cellulose nanofibrils and may inspire the design of functional materials based on fibrous templates.
Collapse
Affiliation(s)
- Kathleen Beth Smith
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology in Zurich8092ZurichSwitzerland
| | - Jean‐Nicolas Tisserant
- Nanotechnology GroupSwiss Federal Institute of Technology in Zurich8803RüschlikonSwitzerland
- Institute for High Frequency TechnologyBraunschweig University of Technology38106BraunschweigGermany
| | - Salvatore Assenza
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology in Zurich8092ZurichSwitzerland
| | - Mario Arcari
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology in Zurich8092ZurichSwitzerland
| | - Gustav Nyström
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology in Zurich8092ZurichSwitzerland
- Laboratory for Applied Wood MaterialsEmpa8600DuebendorfSwitzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology in Zurich8092ZurichSwitzerland
- Department of MaterialsSwiss Federal Institute of Technology8093ZurichSwitzerland
| |
Collapse
|
11
|
Ropelewski S, Uehara E, Lehmann C, Deguchi T, Dietler G. Two-point correlation function of ring polymers: Experiments and numerical simulations for the case of circular DNA in 2 dimensions. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Bleha T, Cifra P. Correlation anisotropy and stiffness of DNA molecules confined in nanochannels. J Chem Phys 2018; 149:054903. [PMID: 30089382 DOI: 10.1063/1.5034219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The anisotropy of orientational correlations in DNA molecules confined in cylindrical channels is explored by Monte Carlo simulations using a coarse-grained model of double-stranded (ds) DNA. We find that the correlation function ⟨C(s)⟩⊥ in the transverse (confined) dimension exhibits a region of negative values in the whole range of channel sizes. Such a clear-cut sign of the opposite orientation of chain segments represents a microscopic validation of the Odijk deflection mechanism in narrow channels. At moderate-to-weak confinement, the negative ⟨C(s)⟩⊥ correlations imply a preference of DNA segments for transverse looping. The inclination for looping can explain a reduction of stiffness as well as the enhanced knotting of confined DNA relative to that detected earlier in bulk at some channel sizes. Furthermore, it is shown that the orientational persistence length Por fails to convey the apparent stiffness of DNA molecules in channels. Instead, correlation lengths P∥ and P⊥ in the axial and transverse directions, respectively, encompass the channel-induced modifications of DNA stiffness.
Collapse
Affiliation(s)
- Tomáš Bleha
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia
| | - Peter Cifra
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia
| |
Collapse
|
13
|
Structure and Properties of DNA Molecules Over The Full Range of Biologically Relevant Supercoiling States. Sci Rep 2018; 8:6163. [PMID: 29670174 PMCID: PMC5906655 DOI: 10.1038/s41598-018-24499-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/04/2018] [Indexed: 01/03/2023] Open
Abstract
Topology affects physical and biological properties of DNA and impacts fundamental cellular processes, such as gene expression, genome replication, chromosome structure and segregation. In all organisms DNA topology is carefully modulated and the supercoiling degree of defined genome regions may change according to physiological and environmental conditions. Elucidation of structural properties of DNA molecules with different topology may thus help to better understand genome functions. Whereas a number of structural studies have been published on highly negatively supercoiled DNA molecules, only preliminary observations of highly positively supercoiled are available, and a description of DNA structural properties over the full range of supercoiling degree is lacking. Atomic Force Microscopy (AFM) is a powerful tool to study DNA structure at single molecule level. We here report a comprehensive analysis by AFM of DNA plasmid molecules with defined supercoiling degree, covering the full spectrum of biologically relevant topologies, under different observation conditions. Our data, supported by statistical and biochemical analyses, revealed striking differences in the behavior of positive and negative plasmid molecules.
Collapse
|