1
|
Warren GM, Shuman S. Structure and in vivo psoralen DNA crosslink repair activity of mycobacterial Nei2. mBio 2024; 15:e0124824. [PMID: 39012146 PMCID: PMC11323726 DOI: 10.1128/mbio.01248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 07/17/2024] Open
Abstract
Mycobacterium smegmatis Nei2 is a monomeric enzyme with AP β-lyase activity on single-stranded DNA. Expression of Nei2, and its operonic neighbor Lhr (a tetrameric 3'-to-5' helicase), is induced in mycobacteria exposed to DNA damaging agents. Here, we find that nei2 deletion sensitizes M. smegmatis to killing by DNA inter-strand crosslinker trimethylpsoralen but not to crosslinkers mitomycin C and cisplatin. By contrast, deletion of lhr sensitizes to killing by all three crosslinking agents. We report a 1.45 Å crystal structure of recombinant Nei2, which is composed of N and C terminal lobes flanking a central groove suitable for DNA binding. The C lobe includes a tetracysteine zinc complex. Mutational analysis identifies the N-terminal proline residue (Pro2 of the ORF) and Lys51, but not Glu3, as essential for AP lyase activity. We find that Nei2 has 5-hydroxyuracil glycosylase activity on single-stranded DNA that is effaced by alanine mutations of Glu3 and Lys51 but not Pro2. Testing complementation of psoralen sensitivity by expression of wild-type and mutant nei2 alleles in ∆nei2 cells established that AP lyase activity is neither sufficient nor essential for crosslink repair. By contrast, complementation of psoralen sensitivity of ∆lhr cells by mutant lhr alleles depended on Lhr's ATPase/helicase activities and its tetrameric quaternary structure. The lhr-nei2 operon comprises a unique bacterial system to rectify inter-strand crosslinks.IMPORTANCEThe DNA inter-strand crosslinking agents mitomycin C, cisplatin, and psoralen-UVA are used clinically for the treatment of cancers and skin diseases; they have been invaluable in elucidating the pathways of inter-strand crosslink repair in eukaryal systems. Whereas DNA crosslinkers are known to trigger a DNA damage response in bacteria, the roster of bacterial crosslink repair factors is incomplete and likely to vary among taxa. This study implicates the DNA damage-inducible mycobacterial lhr-nei2 gene operon in protecting Mycobacterium smegmatis from killing by inter-strand crosslinkers. Whereas interdicting the activity of the Lhr helicase sensitizes mycobacteria to mitomycin C, cisplatin, and psoralen-UVA, the Nei2 glycosylase functions uniquely in evasion of damage caused by psoralen-UVA.
Collapse
Affiliation(s)
- Garrett M. Warren
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Buckley RJ, Lou‐Hing A, Hanson KM, Ahmed NR, Cooper CDO, Bolt EL. Escherichia coli DNA repair helicase Lhr is also a uracil-DNA glycosylase. Mol Microbiol 2023; 120:298-306. [PMID: 37452011 PMCID: PMC10953399 DOI: 10.1111/mmi.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
DNA glycosylases protect genetic fidelity during DNA replication by removing potentially mutagenic chemically damaged DNA bases. Bacterial Lhr proteins are well-characterized DNA repair helicases that are fused to additional 600-700 amino acids of unknown function, but with structural homology to SecB chaperones and AlkZ DNA glycosylases. Here, we identify that Escherichia coli Lhr is a uracil-DNA glycosylase (UDG) that depends on an active site aspartic acid residue. We show that the Lhr DNA helicase activity is functionally independent of the UDG activity, but that the helicase domains are required for fully active UDG activity. Consistent with UDG activity, deletion of lhr from the E. coli chromosome sensitized cells to oxidative stress that triggers cytosine deamination to uracil. The ability of Lhr to translocate single-stranded DNA and remove uracil bases suggests a surveillance role to seek and remove potentially mutagenic base changes during replication stress.
Collapse
Affiliation(s)
| | - Anna Lou‐Hing
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Karl M. Hanson
- School of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Nadia R. Ahmed
- School of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Christopher D. O. Cooper
- School of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
- CHARM Therapeutics LtdB900 Babraham Research CampusCambridgeUK
| | - Edward L. Bolt
- School of Life SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
3
|
Warren GM, Ejaz A, Fay A, Glickman MS, Shuman S. Mycobacterial helicase Lhr abets resistance to DNA crosslinking agents mitomycin C and cisplatin. Nucleic Acids Res 2023; 51:218-235. [PMID: 36610794 PMCID: PMC9841417 DOI: 10.1093/nar/gkac1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium smegmatis Lhr exemplifies a novel clade of helicases composed of an N-terminal ATPase/helicase domain (Lhr-Core) and a large C-terminal domain (Lhr-CTD) that nucleates a unique homo-tetrameric quaternary structure. Expression of Lhr, and its operonic neighbor Nei2, is induced in mycobacteria exposed to mitomycin C (MMC). Here we report that lhr deletion sensitizes M. smegmatis to killing by DNA crosslinkers MMC and cisplatin but not to killing by monoadduct-forming alkylating agent methyl methanesulfonate or UV irradiation. Testing complementation of MMC and cisplatin sensitivity by expression of Lhr mutants in Δlhr cells established that: (i) Lhr-CTD is essential for DNA repair activity, such that Lhr-Core does not suffice; (ii) ATPase-defective mutant D170A/E171A fails to complement; (iii) ATPase-active, helicase-defective mutant W597A fails to complement and (iv) alanine mutations at the CTD-CTD interface that interdict homo-tetramer formation result in failure to complement. Our results instate Lhr's ATP-driven motor as an agent of inter-strand crosslink repair in vivo, contingent on Lhr's tetrameric quaternary structure. We characterize M. smegmatis Nei2 as a monomeric enzyme with AP β-lyase activity on single-stranded DNA. Counter to previous reports, we find Nei2 is inactive as a lyase at a THF abasic site and has feeble uracil glycosylase activity.
Collapse
Affiliation(s)
- Garrett M Warren
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, NY, NY 10065, USA
| | - Anam Ejaz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, NY, NY 10065, USA
| | - Allison Fay
- Immunology Program, Memorial Sloan Kettering Cancer Center, NY, NY 10065, USA
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, NY, NY 10065, USA
| | - Stewart Shuman
- To whom correspondence should be addressed. Tel: +1 212 639 7145; E-mail:
| |
Collapse
|
4
|
Genetic and Biochemical Characterizations of aLhr1 Helicase in the Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Catalysts 2021. [DOI: 10.3390/catal12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination (HR) refers to the process of information exchange between homologous DNA duplexes and is composed of four main steps: end resection, strand invasion and formation of a Holliday junction (HJ), branch migration, and resolution of the HJ. Within each step of HR in Archaea, the helicase-promoting branch migration is not fully understood. Previous biochemical studies identified three candidates for archaeal helicase promoting branch migration in vitro: Hjm/Hel308, PINA, and archaeal long helicase related (aLhr) 2. However, there is no direct evidence of their involvement in HR in vivo. Here, we identified a novel helicase encoded by Saci_0814, isolated from the thermophilic crenarchaeon Sulfolobus acidocaldarius; the helicase dissociated a synthetic HJ. Notably, HR frequency in the Saci_0814-deleted strain was lower than that of the parent strain (5-fold decrease), indicating that Saci_0814 may be involved in HR in vivo. Saci_0814 is classified as an aLhr1 under superfamily 2 helicases; its homologs are conserved among Archaea. Purified protein produced in Escherichia coli showed branch migration activity in vitro. Based on both genetic and biochemical evidence, we suggest that aLhr1 is involved in HR and may function as a branch migration helicase in S. acidocaldarius.
Collapse
|
5
|
Phylogenetic Diversity of Lhr Proteins and Biochemical Activities of the Thermococcales aLhr2 DNA/RNA Helicase. Biomolecules 2021; 11:biom11070950. [PMID: 34206878 PMCID: PMC8301817 DOI: 10.3390/biom11070950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Helicase proteins are known to use the energy of ATP to unwind nucleic acids and to remodel protein-nucleic acid complexes. They are involved in almost every aspect of DNA and RNA metabolisms and participate in numerous repair mechanisms that maintain cellular integrity. The archaeal Lhr-type proteins are SF2 helicases that are mostly uncharacterized. They have been proposed to be DNA helicases that act in DNA recombination and repair processes in Sulfolobales and Methanothermobacter. In Thermococcales, a protein annotated as an Lhr2 protein was found in the network of proteins involved in RNA metabolism. To investigate this, we performed in-depth phylogenomic analyses to report the classification and taxonomic distribution of Lhr-type proteins in Archaea, and to better understand their relationship with bacterial Lhr. Furthermore, with the goal of envisioning the role(s) of aLhr2 in Thermococcales cells, we deciphered the enzymatic activities of aLhr2 from Thermococcus barophilus (Tbar). We showed that Tbar-aLhr2 is a DNA/RNA helicase with a significant annealing activity that is involved in processes dependent on DNA and RNA transactions.
Collapse
|
6
|
Warren GM, Wang J, Patel DJ, Shuman S. Oligomeric quaternary structure of Escherichia coli and Mycobacterium smegmatis Lhr helicases is nucleated by a novel C-terminal domain composed of five winged-helix modules. Nucleic Acids Res 2021; 49:3876-3887. [PMID: 33744958 PMCID: PMC8053096 DOI: 10.1093/nar/gkab145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium smegmatis Lhr (MsmLhr; 1507-aa) is the founder of a novel clade of bacterial helicases. MsmLhr consists of an N-terminal helicase domain (aa 1–856) with a distinctive tertiary structure (Lhr-Core) and a C-terminal domain (Lhr-CTD) of unknown structure. Here, we report that Escherichia coli Lhr (EcoLhr; 1538-aa) is an ATPase, translocase and ATP-dependent helicase. Like MsmLhr, EcoLhr translocates 3′ to 5′ on ssDNA and unwinds secondary structures en route, with RNA:DNA hybrid being preferred versus DNA:DNA duplex. The ATPase and translocase activities of EcoLhr inhere to its 877-aa Core domain. Full-length EcoLhr and MsmLhr have homo-oligomeric quaternary structures in solution, whereas their respective Core domains are monomers. The MsmLhr CTD per se is a homo-oligomer in solution. We employed cryo-EM to solve the structure of the CTD of full-length MsmLhr. The CTD protomer is composed of a series of five winged-helix (WH) modules and a β-barrel module. The CTD adopts a unique homo-tetrameric quaternary structure. A Lhr-CTD subdomain, comprising three tandem WH modules and the β-barrel, is structurally homologous to AlkZ, a bacterial DNA glycosylase that recognizes and excises inter-strand DNA crosslinks. This homology is noteworthy given that Lhr is induced in mycobacteria exposed to the inter-strand crosslinker mitomycin C.
Collapse
Affiliation(s)
- Garrett M Warren
- Molecular Biology and Structural Biology Programs, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Juncheng Wang
- Molecular Biology and Structural Biology Programs, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dinshaw J Patel
- Molecular Biology and Structural Biology Programs, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology and Structural Biology Programs, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Mechanistic insights into Lhr helicase function in DNA repair. Biochem J 2021; 477:2935-2947. [PMID: 32706021 PMCID: PMC7437997 DOI: 10.1042/bcj20200379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
The DNA helicase Large helicase-related (Lhr) is present throughout archaea, including in the Asgard and Nanoarchaea, and has homologues in bacteria and eukaryotes. It is thought to function in DNA repair but in a context that is not known. Our data show that archaeal Lhr preferentially targets DNA replication fork structures. In a genetic assay, expression of archaeal Lhr gave a phenotype identical to the replication-coupled DNA repair enzymes Hel308 and RecQ. Purified archaeal Lhr preferentially unwound model forked DNA substrates compared with DNA duplexes, flaps and Holliday junctions, and unwound them with directionality. Single-molecule FRET measurements showed that binding of Lhr to a DNA fork causes ATP-independent distortion and base-pair melting at, or close to, the fork branchpoint. ATP-dependent directional translocation of Lhr resulted in fork DNA unwinding through the ‘parental’ DNA strands. Interaction of Lhr with replication forks in vivo and in vitro suggests that it contributes to DNA repair at stalled or broken DNA replication.
Collapse
|
8
|
Roske JJ, Liu S, Loll B, Neu U, Wahl MC. A skipping rope translocation mechanism in a widespread family of DNA repair helicases. Nucleic Acids Res 2021; 49:504-518. [PMID: 33300032 PMCID: PMC7797055 DOI: 10.1093/nar/gkaa1174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Mitomycin repair factor A represents a family of DNA helicases that harbor a domain of unknown function (DUF1998) and support repair of mitomycin C-induced DNA damage by presently unknown molecular mechanisms. We determined crystal structures of Bacillus subtilis Mitomycin repair factor A alone and in complex with an ATP analog and/or DNA and conducted structure-informed functional analyses. Our results reveal a unique set of auxiliary domains appended to a dual-RecA domain core. Upon DNA binding, a Zn2+-binding domain, encompassing the domain of unknown function, acts like a drum that rolls out a canopy of helicase-associated domains, entrapping the substrate and tautening an inter-domain linker across the loading strand. Quantification of DNA binding, stimulated ATPase and helicase activities in the wild type and mutant enzyme variants in conjunction with the mode of coordination of the ATP analog suggest that Mitomycin repair factor A employs similar ATPase-driven conformational changes to translocate on DNA, with the linker ratcheting through the nucleotides like a 'skipping rope'. The electrostatic surface topology outlines a likely path for the displaced DNA strand. Our results reveal unique molecular mechanisms in a widespread family of DNA repair helicases linked to bacterial antibiotics resistance.
Collapse
Affiliation(s)
- Johann J Roske
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Sunbin Liu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Bernhard Loll
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Ursula Neu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Biochemistry of Viruses, Takustraβe 6, D-14195 Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| |
Collapse
|
9
|
Ejaz A, Goldgur Y, Shuman S. Activity and structure of Pseudomonas putida MPE, a manganese-dependent single-strand DNA endonuclease encoded in a nucleic acid repair gene cluster. J Biol Chem 2019; 294:7931-7941. [PMID: 30894417 DOI: 10.1074/jbc.ra119.008049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/20/2019] [Indexed: 02/04/2023] Open
Abstract
A recently identified and widely prevalent prokaryal gene cluster encodes a suite of enzymes with imputed roles in nucleic acid repair. The enzymes are as follows: MPE, a DNA endonuclease; Lhr-Core, a 3'-5' DNA helicase; LIG, an ATP-dependent DNA ligase; and Exo, a metallo-β-lactamase-family nuclease. Bacterial and archaeal MPE proteins belong to the binuclear metallophosphoesterase superfamily that includes the well-studied DNA repair nucleases Mre11 and SbcD. Here, we report that the Pseudomonas putida MPE protein is a manganese-dependent DNA endonuclease that incises either linear single strands or the single-strand loops of stem-loop DNA structures. MPE has feeble activity on duplex DNA. A crystal structure of MPE at 2.2 Å resolution revealed that the active site includes two octahedrally coordinated manganese ions. Seven signature amino acids of the binuclear metallophosphoesterase superfamily serve as the enzymic metal ligands in MPE: Asp33, His35, Asp78, Asn112, His124, His146, and His158 A swath of positive surface potential on either side of the active site pocket suggests a binding site for the single-strand DNA substrate. The structure of MPE differs from Mre11 and SbcD in several key respects: (i) MPE is a monomer, whereas Mre11 and SbcD are homodimers; (ii) MPE lacks the capping domain present in Mre11 and SbcD; and (iii) the topology of the β sandwich that comprises the core of the metallophosphoesterase fold differs in MPE vis-à-vis Mre11 and SbcD. We surmise that MPE exemplifies a novel clade of DNA endonuclease within the binuclear metallophosphoesterase superfamily.
Collapse
Affiliation(s)
| | - Yehuda Goldgur
- Structural Biology Programs, Sloan Kettering Institute, New York, New York 10065
| | | |
Collapse
|
10
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|
11
|
Ejaz A, Shuman S. Characterization of Lhr-Core DNA helicase and manganese- dependent DNA nuclease components of a bacterial gene cluster encoding nucleic acid repair enzymes. J Biol Chem 2018; 293:17491-17504. [PMID: 30224353 DOI: 10.1074/jbc.ra118.005296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/11/2018] [Indexed: 11/06/2022] Open
Abstract
Lhr is a large superfamily 2 helicase present in mycobacteria and a moderate range of other bacterial taxa. A shorter version of Lhr, here referred to as Lhr-Core, is distributed widely in bacteria, where it is often encoded in a gene cluster along with predicted binuclear metallo-phosphoesterase (MPE), ATP-dependent DNA ligase, and metallo-β-lactamase exonuclease enzymes. Here we characterized the Lhr-Core and MPE proteins from Pseudomonas putida We report that P. putida Lhr-Core is an ssDNA-dependent ATPase/dATPase (Km , 0.37 mm ATP; k cat, 3.3 s-1), an ATP-dependent 3'-to-5' single-stranded DNA translocase, and an ATP-dependent 3'-to-5' helicase. Lhr-Core unwinds 3'-tailed duplexes in which the loading/tracking strand is DNA and the displaced strand is either DNA or RNA. We found that P. putida MPE is a manganese-dependent phosphodiesterase that releases p-nitrophenol from bis-p-nitrophenyl phosphate (k cat, 212 s-1) and p-nitrophenyl-5'-thymidylate (k cat, 34 s-1) but displays no detectable phosphomonoesterase activity against p-nitrophenyl phosphate. MPE is also a manganese-dependent DNA endonuclease that sequentially converts a closed-circle plasmid DNA to nicked circle and linear forms prior to degrading the linear DNA to produce progressively smaller fragments. The biochemical activities of MPE and a structure predicted in Phyre2 point to MPE as a new bacterial homolog of Mre11. Genetic linkage of a helicase and DNA nuclease with a ligase and a putative exonuclease (a predicted homolog of the SNM1/Apollo family of nucleases) suggests that these enzymes comprise or participate in a bacterial DNA repair pathway.
Collapse
Affiliation(s)
- Anam Ejaz
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Stewart Shuman
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|