1
|
Crisan CV, Goldberg JB. The dominant lineage of an emerging pathogen harbours contact-dependent inhibition systems. Microb Genom 2025; 11. [PMID: 39853206 DOI: 10.1099/mgen.0.001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Bacteria from the Stenotrophomonas maltophilia complex (Smc) are important multidrug-resistant pathogens that cause a broad range of infections. Smc is genomically diverse and has been classified into 23 lineages. Lineage Sm6 is the most common among sequenced strains, but it is unclear why this lineage has evolved to be dominant. Antagonistic interactions can significantly affect the evolution of bacterial populations. These interactions may be mediated by secreted contact-dependent proteins, which allow inhibitor cells to intoxicate adjacent target bacteria. Contact-dependent inhibition (CDI) requires three proteins: CdiA, CdiB and CdiI. CdiA is a large, filamentous protein exported to the surface of inhibitor cells through the pore-like CdiB. The CdiA C-terminal domain (CdiA-CT) is toxic when delivered into target cells of the same species or genus. CdiI immunity proteins neutralize the toxicity of cognate CdiA-CT toxins. We found that all complete Smc genomes from the Sm6 lineage harbour at least one CDI locus. By contrast, less than a quarter of strains from other lineages have CDI genes. Smc CdiA-CT domains are diverse and have a broad range of predicted functions. Most Sm6 strains harbour non-cognate cdiI genes predicted to provide protection against foreign toxins from other strains. Finally, we demonstrated that an Smc CdiA-CT toxin has antibacterial properties and is neutralized by its cognate CdiI.
Collapse
Affiliation(s)
- Cristian V Crisan
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Childrens Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Childrens Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Kielkopf CS, Shneider MM, Leiman PG, Taylor NMI. T6SS-associated Rhs toxin-encapsulating shells: Structural and bioinformatical insights into bacterial weaponry and self-protection. Structure 2024; 32:2375-2389.e5. [PMID: 39481373 DOI: 10.1016/j.str.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Bacteria use the type VI secretion system (T6SS) to secrete toxins into pro- and eukaryotic cells via machinery consisting of a contractile sheath and a rigid tube. Rearrangement hotspot (Rhs) proteins represent one of the most common T6SS effectors. The Rhs C-terminal toxin domain displays great functional diversity, while the Rhs core is characterized by YD repeats. We elucidate the Rhs core structures of PAAR- and VgrG-linked Rhs proteins from Salmonella bongori and Advenella mimigardefordensis, respectively. The Rhs core forms a large shell of β-sheets with a negatively charged interior and encloses a large volume. The S. bongori Rhs toxin does not lead to ordered density in the Rhs shell, suggesting the toxin is unfolded. Together with bioinformatics analysis showing that Rhs toxins predominantly act intracellularly, this suggests that the Rhs core functions two-fold, as a safety feature for the producer cell and as delivery mechanism for the toxin.
Collapse
Affiliation(s)
- Claudia S Kielkopf
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikhail M Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Molecular Bioengineering, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia; École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, 1015 Lausanne, Switzerland
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0647, USA.
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Halvorsen TM, Schroeder KA, Jones AM, Hammarlöf D, Low DA, Koskiniemi S, Hayes CS. Contact-dependent growth inhibition (CDI) systems deploy a large family of polymorphic ionophoric toxins for inter-bacterial competition. PLoS Genet 2024; 20:e1011494. [PMID: 39591464 PMCID: PMC11630599 DOI: 10.1371/journal.pgen.1011494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/10/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Contact-dependent growth inhibition (CDI) is a widespread form of inter-bacterial competition mediated by CdiA effector proteins. CdiA is presented on the inhibitor cell surface and delivers its toxic C-terminal region (CdiA-CT) into neighboring bacteria upon contact. Inhibitor cells also produce CdiI immunity proteins, which neutralize CdiA-CT toxins to prevent auto-inhibition. Here, we describe a diverse group of CDI ionophore toxins that dissipate the transmembrane potential in target bacteria. These CdiA-CT toxins are composed of two distinct domains based on AlphaFold2 modeling. The C-terminal ionophore domains are all predicted to form five-helix bundles capable of spanning the cell membrane. The N-terminal "entry" domains are variable in structure and appear to hijack different integral membrane proteins to promote toxin assembly into the lipid bilayer. The CDI ionophores deployed by E. coli isolates partition into six major groups based on their entry domain structures. Comparative sequence analyses led to the identification of receptor proteins for ionophore toxins from groups 1 & 3 (AcrB), group 2 (SecY) and groups 4 (YciB). Using forward genetic approaches, we identify novel receptors for the group 5 and 6 ionophores. Group 5 exploits homologous putrescine import proteins encoded by puuP and plaP, and group 6 toxins recognize di/tripeptide transporters encoded by paralogous dtpA and dtpB genes. Finally, we find that the ionophore domains exhibit significant intra-group sequence variation, particularly at positions that are predicted to interact with CdiI. Accordingly, the corresponding immunity proteins are also highly polymorphic, typically sharing only ~30% sequence identity with members of the same group. Competition experiments confirm that the immunity proteins are specific for their cognate ionophores and provide no protection against other toxins from the same group. The specificity of this protein interaction network provides a mechanism for self/nonself discrimination between E. coli isolates.
Collapse
Affiliation(s)
- Tiffany M. Halvorsen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Kaitlin A. Schroeder
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Allison M. Jones
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Disa Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - David A. Low
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Christopher S. Hayes
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
4
|
Park SH, Jeong SJ, Ha SC. Structural basis for the toxic activity of MafB2 from maf genomic island 2 (MGI-2) in N. meningitidis B16B6. Sci Rep 2023; 13:3365. [PMID: 36849501 PMCID: PMC9970974 DOI: 10.1038/s41598-023-30528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
The Maf polymorphic toxin system is involved in conflict between strains found in pathogenic Neisseria species such as Neisseria meningitidis and Neisseria gonorrhoeae. The genes encoding the Maf polymorphic toxin system are found in specific genomic islands called maf genomic islands (MGIs). In the MGIs, the MafB and MafI encode toxin and immunity proteins, respectively. Although the C-terminal region of MafB (MafB-CT) is specific for toxic activity, the underlying enzymatic activity that renders MafB-CT toxic is unknown in many MafB proteins due to lack of homology with domain of known function. Here we present the crystal structure of the MafB2-CTMGI-2B16B6/MafI2MGI-2B16B6 complex from N. meningitidis B16B6. MafB2-CTMGI-2B16B6 displays an RNase A fold similar to mouse RNase 1, although the sequence identity is only ~ 14.0%. MafB2-CTMGI-2B16B6 forms a 1:1 complex with MafI2MGI-2B16B6 with a Kd value of ~ 40 nM. The complementary charge interaction of MafI2MGI-2B16B6 with the substrate binding surface of MafB2-CTMGI-2B16B6 suggests that MafI2MGI-2B16B6 inhibits MafB2-CTMGI-2B16B6 by blocking access of RNA to the catalytic site. An in vitro enzymatic assay showed that MafB2-CTMGI-2B16B6 has ribonuclease activity. Mutagenesis and cell toxicity assays demonstrated that His335, His402 and His409 are important for the toxic activity of MafB2-CTMGI-2B16B6, suggesting that these residues are critical for its ribonuclease activity. These data provide structural and biochemical evidence that the origin of the toxic activity of MafB2MGI-2B16B6 is the enzymatic activity degrading ribonucleotides.
Collapse
Affiliation(s)
- So Hyeon Park
- grid.49100.3c0000 0001 0742 4007Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Sun Ju Jeong
- grid.49100.3c0000 0001 0742 4007Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Sung Chul Ha
- Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
5
|
Li H, Schneider T, Tan Y, Zhang D. Ribonuclease T2 represents a distinct circularly permutated version of the BECR RNases. Protein Sci 2023; 32:e4531. [PMID: 36477982 PMCID: PMC9793965 DOI: 10.1002/pro.4531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Detection of homologous relationships among proteins and understanding their mechanisms of diversification are major topics in the fields of protein science, bioinformatics, and phylogenetics. Recent developments in sequence/profile-based and structural similarity-based methods have greatly facilitated the unification and classification of many protein families into superfamilies or folds, yet many proteins remain unclassified in current protein databases. As one of the three earliest identified RNases in biology, ribonuclease T2, also known as RNase I in Escherichia coli, RNase Rh in fungi, or S-RNase in plant, is thought to be an ancient RNase family due to its widespread distribution and distinct structure. In this study, we present evidence that RNase T2 represents a circularly permutated version of the BECR (Barnase-EndoU-Colicin E5/D-RelE) fold RNases. This subtle relationship cannot be detected by traditional methods such as sequence/profile-based comparisons, structure-similarity searches, and circular permutation detections. However, we were able to identify the structural similarity using rational reconstruction of a theoretical RNase T2 ancestor via a reverse circular permutation process, followed by structural modeling using AlphaFold2, and structural comparisons. This relationship is further supported by the fact that RNase T2 and other typical BECR RNases, namely Colicin D, RNase A, and BrnT, share similar catalytic site configurations, all involving an analogous set of conserved residues on the α0 helix and the β4 strand of the BECR fold. This study revealed a hidden root of RNase T2 in bacterial toxin systems and demonstrated that reconstruction and modeling of ancestral topology is an effective strategy to identify remote relationship between proteins.
Collapse
Affiliation(s)
- Huan Li
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
| | - Theresa Schneider
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
| | - Yongjun Tan
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
| | - Dapeng Zhang
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
- Program of Bioinformatics and Computational BiologySchool of Science and Engineering, Saint Louis UniversitySaint LouisMissouriUSA
| |
Collapse
|
6
|
Cuthbert BJ, Hayes CS, Goulding CW. Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors. Front Mol Biosci 2022; 9:866854. [PMID: 35558562 PMCID: PMC9086364 DOI: 10.3389/fmolb.2022.866854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bacteria live in complex communities and environments, competing for space and nutrients. Within their niche habitats, bacteria have developed various inter-bacterial mechanisms to compete and communicate. One such mechanism is contact-dependent growth inhibition (CDI). CDI is found in many Gram-negative bacteria, including several pathogens. These CDI+ bacteria encode a CdiB/CdiA two-partner secretion system that delivers inhibitory toxins into neighboring cells upon contact. Toxin translocation results in the growth inhibition of closely related strains and provides a competitive advantage to the CDI+ bacteria. CdiB, an outer-membrane protein, secretes CdiA onto the surface of the CDI+ bacteria. When CdiA interacts with specific target-cell receptors, CdiA delivers its C-terminal toxin region (CdiA-CT) into the target-cell. CdiA-CT toxin proteins display a diverse range of toxic functions, such as DNase, RNase, or pore-forming toxin activity. CDI+ bacteria also encode an immunity protein, CdiI, that specifically binds and neutralizes its cognate CdiA-CT, protecting the CDI+ bacteria from auto-inhibition. In Gram-negative bacteria, toxin/immunity (CdiA-CT/CdiI) pairs have highly variable sequences and functions, with over 130 predicted divergent toxin/immunity complex families. In this review, we will discuss biochemical and structural advances made in the characterization of CDI. This review will focus on the diverse array of CDI toxin/immunity complex structures together with their distinct toxin functions. Additionally, we will discuss the most recent studies on target-cell recognition and toxin entry, along with the discovery of a new member of the CDI loci. Finally, we will offer insights into how these diverse toxin/immunity complexes could be harnessed to fight human diseases.
Collapse
Affiliation(s)
- Bonnie J. Cuthbert
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher S. Hayes
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Celia W. Goulding
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Li H, Tan Y, Zhang D. Genomic discovery and structural dissection of a novel type of polymorphic toxin system in gram-positive bacteria. Comput Struct Biotechnol J 2022; 20:4517-4531. [PMID: 36051883 PMCID: PMC9424270 DOI: 10.1016/j.csbj.2022.08.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Bacteria have developed several molecular conflict systems to facilitate kin recognition and non-kin competition to gain advantages in the acquisition of growth niches and of limited resources. One such example is a large class of so-called polymorphic toxin systems (PTSs), which comprise a variety of the toxin proteins secreted via T2SS, T5SS, T6SS, T7SS and many others. These systems are highly divergent in terms of sequence/structure, domain architecture, toxin-immunity association, and organization of the toxin loci, which makes it difficult to identify and characterize novel systems using traditional experimental and bioinformatic strategies. In recent years, we have been developing and utilizing unique genome-mining strategies and pipelines, based on the organizational principles of both domain architectures and genomic loci of PTSs, for an effective and comprehensive discovery of novel PTSs, dissection of their components, and prediction of their structures and functions. In this study, we present our systematic discovery of a new type of PTS (S8-PTS) in several gram-positive bacteria. We show that the S8-PTS contains three components: a peptidase of the S8 family (subtilases), a polymorphic toxin, and an immunity protein. We delineated the typical organization of these polymorphic toxins, in which a N-terminal signal peptide is followed by a potential receptor binding domain, BetaH, and one of 16 toxin domains. We classified each toxin domain by the distinct superfamily to which it belongs, identifying nine BECR ribonucleases, one Restriction Endonuclease, one HNH nuclease, two novel toxin domains homologous to the VOC enzymes, one toxin domain with the Frataxin-like fold, and several other unique toxin families such as Ntox33 and HicA. Accordingly, we identified 20 immunity families and classified them into different classes of folds. Further, we show that the S8-PTS-associated peptidases are analogous to many other processing peptidases found in T5SS, T7SS, T9SS, and many proprotein-processing peptidases, indicating that they function to release the toxin domains during secretion. The S8-PTSs are mostly found in animal and plant-associated bacteria, including many pathogens. We propose S8-PTSs will facilitate the competition of these bacteria with other microbes or contribute to the pathogen-host interactions.
Collapse
Affiliation(s)
- Huan Li
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
- Program of Bioinformatics and Computational Biology, College of Arts & Sciences, Saint Louis University, MO 63103, USA
- Corresponding author at: Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA.
| |
Collapse
|
8
|
Alexander LT, Lepore R, Kryshtafovych A, Adamopoulos A, Alahuhta M, Arvin AM, Bomble YJ, Böttcher B, Breyton C, Chiarini V, Chinnam NB, Chiu W, Fidelis K, Grinter R, Gupta GD, Hartmann MD, Hayes CS, Heidebrecht T, Ilari A, Joachimiak A, Kim Y, Linares R, Lovering AL, Lunin VV, Lupas AN, Makbul C, Michalska K, Moult J, Mukherjee PK, Nutt W(S, Oliver SL, Perrakis A, Stols L, Tainer JA, Topf M, Tsutakawa SE, Valdivia‐Delgado M, Schwede T. Target highlights in CASP14: Analysis of models by structure providers. Proteins 2021; 89:1647-1672. [PMID: 34561912 PMCID: PMC8616854 DOI: 10.1002/prot.26247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.
Collapse
Affiliation(s)
- Leila T. Alexander
- Biozentrum, University of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | | | | | - Athanassios Adamopoulos
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Markus Alahuhta
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Ann M. Arvin
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Yannick J. Bomble
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center, Julius‐Maximilians Universität WürzburgWürzburgGermany
| | - Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural BiologyGrenobleFrance
| | - Valerio Chiarini
- Program in Structural Biology and BiophysicsInstitute of Biotechnology, University of HelsinkiHelsinkiFinland
| | - Naga babu Chinnam
- Department of Molecular and Cellular OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexasUSA
| | - Wah Chiu
- Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
- BioengineeringStanford University School of MedicineStanfordCaliforniaUSA
- Division of Cryo‐EM and Bioimaging SSRLSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | | | - Rhys Grinter
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Gagan D. Gupta
- Radiation Biology & Health Sciences DivisionBhabha Atomic Research CentreMumbaiIndia
| | - Marcus D. Hartmann
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental BiologyUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Biomolecular Science and Engineering ProgramUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Tatjana Heidebrecht
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology of the National Research Council of Italy (CNR)RomeItaly
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - Romain Linares
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural BiologyGrenobleFrance
| | | | - Vladimir V. Lunin
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Andrei N. Lupas
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Cihan Makbul
- Biocenter and Rudolf Virchow Center, Julius‐Maximilians Universität WürzburgWürzburgGermany
| | - Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - John Moult
- Department of Cell Biology and Molecular GeneticsInstitute for Bioscience and Biotechnology Research, University of MarylandRockvilleMarylandUSA
| | - Prasun K. Mukherjee
- Nuclear Agriculture & Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
| | - William (Sam) Nutt
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - Stefan L. Oliver
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
| | - Anastassis Perrakis
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Lucy Stols
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - John A. Tainer
- Department of Molecular and Cellular OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexasUSA
- Department of Cancer BiologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University College LondonLondonUK
- Centre for Structural Systems Biology, Leibniz‐Institut für Experimentelle VirologieHamburgGermany
| | - Susan E. Tsutakawa
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Torsten Schwede
- Biozentrum, University of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| |
Collapse
|
9
|
Structural genomics and the Protein Data Bank. J Biol Chem 2021; 296:100747. [PMID: 33957120 PMCID: PMC8166929 DOI: 10.1016/j.jbc.2021.100747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
The field of Structural Genomics arose over the last 3 decades to address a large and rapidly growing divergence between microbial genomic, functional, and structural data. Several international programs took advantage of the vast genomic sequence information and evaluated the feasibility of structure determination for expanded and newly discovered protein families. As a consequence, structural genomics has developed structure-determination pipelines and applied them to a wide range of novel, uncharacterized proteins, often from “microbial dark matter,” and later to proteins from human pathogens. Advances were especially needed in protein production and rapid de novo structure solution. The experimental three-dimensional models were promptly made public, facilitating structure determination of other members of the family and helping to understand their molecular and biochemical functions. Improvements in experimental methods and databases resulted in fast progress in molecular and structural biology. The Protein Data Bank structure repository played a central role in the coordination of structural genomics efforts and the structural biology community as a whole. It facilitated development of standards and validation tools essential for maintaining high quality of deposited structural data.
Collapse
|
10
|
Ruhe ZC, Low DA, Hayes CS. Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery. Annu Rev Microbiol 2020; 74:497-520. [PMID: 32680451 DOI: 10.1146/annurev-micro-020518-115638] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
11
|
Mushegian A, Sorokina I, Eroshkin A, Dlakić M. An ancient evolutionary connection between Ribonuclease A and EndoU families. RNA (NEW YORK, N.Y.) 2020; 26:803-813. [PMID: 32284351 PMCID: PMC7297114 DOI: 10.1261/rna.074385.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The ribonuclease A family of proteins is well studied from the biochemical and biophysical points of view, but its evolutionary origins are obscure, as no sequences homologous to this family have been reported outside of vertebrates. Recently, the spatial structure of the ribonuclease domain from a bacterial polymorphic toxin was shown to be closely similar to the structure of vertebrate ribonuclease A. The absence of sequence similarity between the two structures prompted a speculation of convergent evolution of bacterial and vertebrate ribonuclease A-like enzymes. We show that bacterial and homologous archaeal polymorphic toxin ribonucleases with a known or predicted ribonuclease A-like fold are distant homologs of the ribonucleases from the EndoU family, found in all domains of cellular life and in viruses. We also detected a homolog of vertebrate ribonucleases A in the transcriptome assembly of the sea urchin Mesocentrotus franciscanus These observations argue for the common ancestry of prokaryotic ribonuclease A-like and ubiquitous EndoU-like ribonucleases, and suggest a better-grounded scenario for the origin of animal ribonucleases A, which could have emerged in the deuterostome lineage, either by an extensive modification of a copy of an EndoU gene, or, more likely, by a horizontal acquisition of a prokaryotic immunity-mediating ribonuclease gene.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia 22314, USA
| | | | | | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
12
|
Kaundal S, Deep A, Kaur G, Thakur KG. Molecular and Biochemical Characterization of YeeF/YezG, a Polymorphic Toxin-Immunity Protein Pair From Bacillus subtilis. Front Microbiol 2020; 11:95. [PMID: 32117125 PMCID: PMC7033585 DOI: 10.3389/fmicb.2020.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Polymorphic toxins are important and widespread elements of bacterial warfare that help in restricting the growth of competitors, aiding kin selection, and shaping the bacterial communities. Although widespread, polymorphic toxin systems (PTS) have been extensively studied in Gram-negative bacteria, there are limited studies describing PTS in Gram-positive bacteria. The present study characterizes YeeF/YezG, a predicted member of a PF04740 family of the polymorphic toxin-immunity system from a Gram-positive bacteria Bacillus subtilis. The expression of the C-terminal toxic domain of YeeF (YeeF-CT) causes growth inhibition and gross morphological changes in Escherichia coli. The observed toxic effects are neutralized by the co-expression of yezG, a gene present downstream of yeeF, confirming YeeF-CT/YezG as a toxin/immunity protein pair. Biochemical and in vivo studies reveal that YeeF-CT causes toxicity due to its non-specific metal-dependent DNase activity. This is different from the previously reported RNase activity from the three B. subtilis toxins belonging to PF04740 family. Isothermal titration calorimetry (ITC) data analysis suggests that YeeF-CT binds YezG with a dissociation constant in the nanomolar range. Analytical ultracentrifugation studies revealed that YeeF-CT forms a homodimer and binds with two molecules of monomeric YezG immunity protein to form a 2:2 stochiometric heterotetrameric complex. Biolayer interferometry and electrophoretic mobility shift assays show that YeeF-CT/YezG/DNA forms a stable ternary complex implicating that YezG is an exosite inhibitor of YeeF-CT. This study extends the molecular targets of the toxins in the PF04740 family and thus, this family of toxins can be broadly classified as nucleases harboring either DNases or RNases activities.
Collapse
Affiliation(s)
- Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Amar Deep
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Gundeep Kaur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| |
Collapse
|
13
|
Convergent Evolution of the Barnase/EndoU/Colicin/RelE (BECR) Fold in Antibacterial tRNase Toxins. Structure 2019; 27:1660-1674.e5. [PMID: 31515004 DOI: 10.1016/j.str.2019.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/03/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022]
Abstract
Contact-dependent growth inhibition (CDI) is a form of interbacterial competition mediated by CdiB-CdiA two-partner secretion systems. CdiA effector proteins carry polymorphic C-terminal toxin domains (CdiA-CT), which are neutralized by specific CdiI immunity proteins to prevent self-inhibition. Here, we present the crystal structures of CdiA-CT⋅CdiI complexes from Klebsiella pneumoniae 342 and Escherichia coli 3006. The toxins adopt related folds that resemble the ribonuclease domain of colicin D, and both are isoacceptor-specific tRNases that cleave the acceptor stem of deacylated tRNAGAUIle. Although the toxins are similar in structure and substrate specificity, CdiA-CTKp342 activity requires translation factors EF-Tu and EF-Ts, whereas CdiA-CTEC3006 is intrinsically active. Furthermore, the corresponding immunity proteins are unrelated in sequence and structure. CdiIKp342 forms a dimeric β sandwich, whereas CdiIEC3006 is an α-solenoid monomer. Given that toxin-immunity genes co-evolve as linked pairs, these observations suggest that the similarities in toxin structure and activity reflect functional convergence.
Collapse
|
14
|
Lepore R, Kryshtafovych A, Alahuhta M, Veraszto HA, Bomble YJ, Bufton JC, Bullock AN, Caba C, Cao H, Davies OR, Desfosses A, Dunne M, Fidelis K, Goulding CW, Gurusaran M, Gutsche I, Harding CJ, Hartmann MD, Hayes CS, Joachimiak A, Leiman PG, Loppnau P, Lovering AL, Lunin VV, Michalska K, Mir-Sanchis I, Mitra AK, Moult J, Phillips GN, Pinkas DM, Rice PA, Tong Y, Topf M, Walton JD, Schwede T. Target highlights in CASP13: Experimental target structures through the eyes of their authors. Proteins 2019; 87:1037-1057. [PMID: 31442339 PMCID: PMC6851490 DOI: 10.1002/prot.25805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
Abstract
The functional and biological significance of selected CASP13 targets are described by the authors of the structures. The structural biologists discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP13 experiment.
Collapse
Affiliation(s)
- Rosalba Lepore
- BSC-CNS Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Harshul A Veraszto
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Joshua C Bufton
- Nuffield Department of Medicine; Structural Genomics Consortium, University of Oxford, Oxford, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Alex N Bullock
- Nuffield Department of Medicine; Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Hongnan Cao
- Department of BioSciences, Rice University, Houston, Texas.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ambroise Desfosses
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, Zurich, Switzerland
| | | | - Celia W Goulding
- Department of Molecular Biology and Biochemistry; Pharmaceutical Sciences, University of California Irvine, Irvine, California
| | - Manickam Gurusaran
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | | | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences Division, Midwest Center for Structural Genomics, Argonne.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Karolina Michalska
- Structural Biology Center, Biosciences Division, Midwest Center for Structural Genomics, Argonne
| | - Ignacio Mir-Sanchis
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - A K Mitra
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John Moult
- Institute for Bioscience and Biotechnology Research, Department of Cell Biology and Molecular genetics, University of Maryland, Rockville, Maryland, USA
| | - George N Phillips
- Department of BioSciences, Rice University, Houston, Texas.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin
| | - Daniel M Pinkas
- Nuffield Department of Medicine; Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University College London, London, UK
| | - Jonathan D Walton
- Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - Torsten Schwede
- Biozentrum University of Basel, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Bartelli NL, Sun S, Gucinski GC, Zhou H, Song K, Hayes CS, Dahlquist FW. The Cytoplasm-Entry Domain of Antibacterial CdiA Is a Dynamic α-Helical Bundle with Disulfide-Dependent Structural Features. J Mol Biol 2019; 431:3203-3216. [PMID: 31181288 PMCID: PMC6727969 DOI: 10.1016/j.jmb.2019.05.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/01/2019] [Accepted: 05/30/2019] [Indexed: 01/04/2023]
Abstract
Many Gram-negative bacterial species use contact-dependent growth inhibition (CDI) systems to compete with neighboring cells. CDI+ strains express cell-surface CdiA effector proteins, which carry a toxic C-terminal region (CdiA-CT) that is cleaved from the effector upon transfer into the periplasm of target bacteria. The released CdiA-CT consists of two domains. The C-terminal domain is typically a nuclease that inhibits cell growth, and the N-terminal "cytoplasm-entry" domain mediates toxin translocation into the target-cell cytosol. Here, we use NMR and circular dichroism spectroscopic approaches to probe the structure, stability, and dynamics of the cytoplasm-entry domain from Escherichia coli STEC_MHI813. Chemical shift analysis reveals that the CdiA-CTMHI813 entry domain is composed of a C-terminal helical bundle and a dynamic N-terminal region containing two disulfide linkages. Disruption of the disulfides by mutagenesis or chemical reduction destabilizes secondary structure over the N-terminus, but has no effect on the C-terminal helices. Although critical for N-terminal structure, the disulfides have only modest effects on global thermodynamic stability, and the entry domain exhibits characteristics of a molten globule. We find that the disulfides form in vivo as the entry domain dwells in the periplasm of inhibitor cells prior to target-cell recognition. CdiA-CTMHI813 variants lacking either disulfide still kill target bacteria, but disruption of both bonds abrogates growth inhibition activity. We propose that the entry domain's dynamic structural features are critical for function. In its molten globule-like state, the domain resists degradation after delivery, yet remains pliable enough to unfold for membrane translocation.
Collapse
Affiliation(s)
- Nicholas L Bartelli
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Sheng Sun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Grant C Gucinski
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Hongjun Zhou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Kiho Song
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States.
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
16
|
Oroz J, Laurents DV. RNA binding proteins: Diversity from microsurgeons to cowboys. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194398. [PMID: 31271896 DOI: 10.1016/j.bbagrm.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023]
Abstract
The conformation and mechanism of proteins that degrade and bind RNA, which has provided key insights into post-transcriptional gene regulation, is explored here. During the twentieth century's last decades, the characterization of ribonucleases and RNA binding domains revealed the diversity of their reaction mechanisms and modes of RNA recognition, and the bases of protein folding, substrate specificity and binding affinity. More recent research showed how these domains combine through oligomerization or genetic recombination to create larger proteins with highly specific and readily programmable ribonucleolytic activity. In the last 15 years, the study of the capacity of proteins, usually disordered, to pool RNAs into discrete, non-aqueous microdroplets to facilitate their transport, modification and degradation - analogous to cowboys herding cattle - has advanced our comprehension of gene expression. Finally, the current uses of RNA binding proteins and the future applications of protein/RNA microdroplets are highlighted.
Collapse
Affiliation(s)
- Javier Oroz
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
17
|
Prats-Ejarque G, Li J, Ait-Ichou F, Lorente H, Boix E. Testing a Human Antimicrobial RNase Chimera Against Bacterial Resistance. Front Microbiol 2019; 10:1357. [PMID: 31275278 PMCID: PMC6594349 DOI: 10.3389/fmicb.2019.01357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
The emergence of bacterial resistance to the most commonly used antibiotics encourages the design of novel antimicrobial drugs. Antimicrobial proteins and peptides (AMPs) are the key players in host innate immunity. They exert a rapid and multifaceted action that reduces the development of bacterial adaptation mechanisms. Human antimicrobial RNases belonging to the vertebrate specific RNase A superfamily participate in the maintenance of tissue and body fluid sterility. Among the eight human canonical RNases, RNase 3 stands out as the most cationic and effective bactericidal protein against Gram-negative species. Its enhanced ability to disrupt the bacterial cell wall has evolved in detriment of its catalytic activity. Based on structure-functional studies we have designed an RNase 3/1 hybrid construct that combines the high catalytic activity of RNase 1 with RNase 3 bactericidal properties. Next, we have explored the ability of this hybrid RNase to target the development of bacterial resistance on an Acinetobacter baumannii cell culture. Synergy assays were performed in combination with colistin, a standard antimicrobial peptide used as an antibiotic to treat severe infections. Positive synergism was observed between colistin and the RNase 3/1 hybrid protein. Subsequently, using an in vitro experimental evolution assay, by exposure of a bacterial culture to colistin at incremental doses, we demonstrated the ability of the RNase 3/1 construct to reduce the emergence of bacterial antimicrobial resistance. The results advance the potential applicability of RNase-based drugs as antibiotic adjuvants.
Collapse
Affiliation(s)
| | | | | | | | - Ester Boix
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts. mBio 2019; 10:mBio.00715-19. [PMID: 31064832 PMCID: PMC6509191 DOI: 10.1128/mbio.00715-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diverse and highly variable systems involved in biological conflicts and self-versus-nonself discrimination are ubiquitous in bacteria but much less studied in archaea. We performed comprehensive comparative genomic analyses of the archaeal systems that share components with analogous bacterial systems and propose an approach to identify new systems that could be involved in these functions. We predict polymorphic toxin systems in 141 archaeal genomes and identify new, archaea-specific toxin and immunity protein families. These systems are widely represented in archaea and are predicted to play major roles in interactions between species and in intermicrobial conflicts. This work is expected to stimulate experimental research to advance the understanding of poorly characterized major aspects of archaeal biology. Numerous, diverse, highly variable defense and offense genetic systems are encoded in most bacterial genomes and are involved in various forms of conflict among competing microbes or their eukaryotic hosts. Here we focus on the offense and self-versus-nonself discrimination systems encoded by archaeal genomes that so far have remained largely uncharacterized and unannotated. Specifically, we analyze archaeal genomic loci encoding polymorphic and related toxin systems and ribosomally synthesized antimicrobial peptides. Using sensitive methods for sequence comparison and the “guilt by association” approach, we identified such systems in 141 archaeal genomes. These toxins can be classified into four major groups based on the structure of the components involved in the toxin delivery. The toxin domains are often shared between and within each system. We revisit halocin families and substantially expand the halocin C8 family, which was identified in diverse archaeal genomes and also certain bacteria. Finally, we employ features of protein sequences and genomic locus organization characteristic of archaeocins and polymorphic toxins to identify candidates for analogous but not necessarily homologous systems among uncharacterized protein families. This work confidently predicts that more than 1,600 archaeal proteins, currently annotated as “hypothetical” in public databases, are components of conflict and self-versus-nonself discrimination systems.
Collapse
|
19
|
Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology (Reading) 2019; 165:503-515. [DOI: 10.1099/mic.0.000789] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
20
|
Abstract
The Type VI secretion system (T6SS) is a protein nanomachine that is widespread in Gram-negative bacteria and is used to translocate effector proteins directly into neighbouring cells. It represents a versatile bacterial weapon that can deliver effectors into distinct classes of target cells, playing key roles in inter-bacterial competition and bacterial interactions with eukaryotic cells. This versatility is underpinned by the ability of the T6SS to deliver a vast array of effector proteins, with many distinct activities and modes of interaction with the secretion machinery. Recent work has highlighted the importance and diversity of interactions mediated by T6SSs within polymicrobial communities, and offers new molecular insights into effector delivery and action in target cells.
Collapse
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
21
|
Lu L, Li J, Moussaoui M, Boix E. Immune Modulation by Human Secreted RNases at the Extracellular Space. Front Immunol 2018; 9:1012. [PMID: 29867984 PMCID: PMC5964141 DOI: 10.3389/fimmu.2018.01012] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
The ribonuclease A superfamily is a vertebrate-specific family of proteins that encompasses eight functional members in humans. The proteins are secreted by diverse innate immune cells, from blood cells to epithelial cells and their levels in our body fluids correlate with infection and inflammation processes. Recent studies ascribe a prominent role to secretory RNases in the extracellular space. Extracellular RNases endowed with immuno-modulatory and antimicrobial properties can participate in a wide variety of host defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. Their expression and secretion are induced in response to a variety of injury stimuli. The secreted proteins can target damaged cells and facilitate their removal from the focus of infection or inflammation. Following tissue damage, RNases can participate in clearing RNA from cellular debris or work as signaling molecules to regulate the host response and contribute to tissue remodeling and repair. We provide here an overall perspective on the current knowledge of human RNases’ biological properties and their role in health and disease. The review also includes a brief description of other vertebrate family members and unrelated extracellular RNases that share common mechanisms of action. A better knowledge of RNase mechanism of actions and an understanding of their physiological roles should facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
22
|
Remmington A, Turner CE. The DNases of pathogenic Lancefield streptococci. MICROBIOLOGY (READING, ENGLAND) 2018; 164:242-250. [PMID: 29458565 DOI: 10.1099/mic.0.000612] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNases are abundant among the pathogenic streptococci, with most species harbouring genes for at least one. Despite their prevalence, however, the role for these extracellular enzymes is still relatively unclear. The DNases of the Lancefield group A Streptococcus, S. pyogenes are the best characterized, with a total of eight DNase genes identified so far. Six are known to be associated with integrated prophages. Two are chromosomally encoded, and one of these is cell-wall anchored. Homologues of both prophage-associated and chromosomally encoded S. pyogenes DNases have been identified in other streptococcal species, as well as other unique DNases. A major role identified for streptococcal DNases appears to be in the destruction of extracellular traps produced by immune cells, such as neutrophils, to ensnare bacteria and kill them. These traps are composed primarily of DNA which can be degraded by the secreted and cell-wall-anchored streptococcal DNases. DNases can also reduce TLR-9 signalling to dampen the immune response and produce cytotoxic deoxyadenosine to limit phagocytosis. Upper respiratory tract infection models of S. pyogenes have identified a role for DNases in potentiating infection and transmission, possibly by limiting the immune response or through some other unknown mechanism. Streptococcal DNases may also be involved in interacting with other microbial communities through communication, bacterial killing and disruption of competitive biofilms, or control of their own biofilm production. The contribution of DNases to pathogenesis may therefore be wide ranging and extend beyond direct interference with the host immune response.
Collapse
Affiliation(s)
- Alex Remmington
- Department of Molecular Biology and Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Claire E Turner
- Department of Molecular Biology and Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Conservation of Dynamics Associated with Biological Function in an Enzyme Superfamily. Structure 2018; 26:426-436.e3. [PMID: 29478822 DOI: 10.1016/j.str.2018.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/06/2017] [Accepted: 01/24/2018] [Indexed: 11/21/2022]
Abstract
Enzyme superfamily members that share common chemical and/or biological functions also share common features. While the role of structure is well characterized, the link between enzyme function and dynamics is not well understood. We present a systematic characterization of intrinsic dynamics of over 20 members of the pancreatic-type RNase superfamily, which share a common structural fold. This study is motivated by the fact that the range of chemical activity as well as molecular motions of RNase homologs spans over 105 folds. Dynamics was characterized using a combination of nuclear magnetic resonance experiments and computer simulations. Phylogenetic clustering led to the grouping of sequences into functionally distinct subfamilies. Detailed characterization of the diverse RNases showed conserved dynamical traits for enzymes within subfamilies. These results suggest that selective pressure for the conservation of dynamical behavior, among other factors, may be linked to the distinct chemical and biological functions in an enzyme superfamily.
Collapse
|
24
|
Cuthbert BJ, Burley KH, Goulding CW. Introducing the new bacterial branch of the RNase A superfamily. RNA Biol 2017; 15:9-12. [PMID: 29099294 DOI: 10.1080/15476286.2017.1387710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bovine pancreatic ribonuclease (RNase A) is the founding member of the RNase A superfamily. Members of this superfamily of ribonucleases have high sequence diversity, but possess a similar structural fold, together with a conserved His-Lys-His catalytic triad and structural disulfide bonds. Until recently, RNase A proteins had exclusively been identified in eukaryotes within vertebrae. Here, we discuss the discovery by Batot et al. of a bacterial RNase A superfamily member, CdiA-CTYkris: a toxin that belongs to an inter-bacterial competition system from Yersinia kristensenii. CdiA-CTYkris exhibits the same structural fold as conventional RNase A family members and displays in vitro and in vivo ribonuclease activity. However, CdiA-CTYkris shares little to no sequence similarity with RNase A, and lacks the conserved disulfide bonds and catalytic triad of RNase A. Interestingly, the CdiA-CTYkris active site more closely resembles the active site composition of various eukaryotic endonucleases. Despite lacking sequence similarity to eukaryotic RNase A family members, CdiA-CTYkris does share high sequence similarity with numerous Gram-negative and Gram-positive bacterial proteins/domains. Nearly all of these bacterial homologs are toxins associated with virulence and bacterial competition, suggesting that the RNase A superfamily has a distinct bacterial subfamily branch, which likely arose by way of convergent evolution. Finally, RNase A interacts directly with the immunity protein of CdiA-CTYkris, thus the cognate immunity protein for the bacterial RNase A member could be engineered as a new eukaryotic RNase A inhibitor.
Collapse
Affiliation(s)
- Bonnie J Cuthbert
- a Department of Molecular Biology and Biochemistry , University of California Irvine , Irvine , CA , USA
| | - Kalistyn H Burley
- b Department of Pharmaceutical Sciences , University of California Irvine , Irvine , CA , USA
| | - Celia W Goulding
- a Department of Molecular Biology and Biochemistry , University of California Irvine , Irvine , CA , USA.,b Department of Pharmaceutical Sciences , University of California Irvine , Irvine , CA , USA
| |
Collapse
|
25
|
Pseudomonas aeruginosa Contact-Dependent Growth Inhibition Plays Dual Role in Host-Pathogen Interactions. mSphere 2017; 2:mSphere00336-17. [PMID: 29152577 PMCID: PMC5687917 DOI: 10.1128/msphere.00336-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance. Microorganisms exist in a diverse ecosystem and have evolved many different mechanisms for sensing and influencing the polymicrobial environment around them, utilizing both diffusible and contact-dependent signals. Contact-dependent growth inhibition (CDI) is one such communication system employed by Gram-negative bacteria. In addition to CDI mediation of growth inhibition, recent studies have demonstrated CDI-mediated control of communal behaviors such as biofilm formation. We postulated that CDI may therefore play an active role in host-pathogen interactions, allowing invading strains to establish themselves at polymicrobial mucosal interfaces through competitive interactions while simultaneously facilitating pathogenic capabilities via CDI-mediated signaling. Here, we show that Pseudomonas aeruginosa produces two CDI systems capable of mediating competition under conditions of growth on a surface or in liquid. Furthermore, we demonstrated a novel role for these systems in contributing to virulence in acute infection models, likely via posttranscriptional regulation of beneficial behaviors. While we did not observe any role for the P. aeruginosa CDI systems in biofilm biogenesis, we did identify for the first time robust CDI-mediated competition during interaction with a mammalian host using a model of chronic respiratory tract infection, as well as evidence that CDI expression is maintained in chronic lung infections. These findings reveal a previously unappreciated role for CDI in host-pathogen interactions and emphasize their importance during infection. IMPORTANCE How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance.
Collapse
|