1
|
Shrestha SK, Lachke SA. Lens Regeneration: The Application of iSyTE and In Silico Approaches to Evaluate Gene Expression in Lens Organoids. Methods Mol Biol 2025; 2848:37-58. [PMID: 39240515 DOI: 10.1007/978-1-0716-4087-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Several protocols have been established for the generation of lens organoids from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and other cells with regenerative potential in humans or various animal models. It is important to examine how well the regenerated lens organoids reflect lens biology, in terms of its development, homeostasis, and aging. Toward this goal, the iSyTE database (integrated Systems Tool for Eye gene discovery; https://research.bioinformatics.udel.edu/iSyTE/ ), a bioinformatics resource tool that contains meta-analyzed gene expression data in wild-type lens across different embryonic, postnatal, and adult stages, can serve as a resource for comparative analysis. This article outlines the approaches toward effective use of iSyTE to gain insights into normal gene expression in the mouse lens, enriched expression in the lens, and differential gene expression in select mouse gene-perturbation cataract/lens defects models, which in turn can be used to evaluate expression of key lens-relevant genes in lens organoids by transcriptomics (e.g., RNA-sequencing (RNA-seq), microarrays, etc.) or other downstream methods (e.g., RT-qPCR, etc.).
Collapse
Affiliation(s)
- Sanjaya K Shrestha
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
2
|
Fonseca A, Riveras E, Moyano TC, Alvarez JM, Rosa S, Gutiérrez RA. Dynamic changes in mRNA nucleocytoplasmic localization in the nitrate response of Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:4227-4245. [PMID: 38950037 DOI: 10.1111/pce.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Alejandro Fonseca
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José M Alvarez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Wang Q, Li H, Mao Y, Garg A, Park ES, Wu Y, Chow A, Peregrin J, Zhang X. Shc1 cooperates with Frs2 and Shp2 to recruit Grb2 in FGF-induced lens development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619055. [PMID: 39484547 PMCID: PMC11527007 DOI: 10.1101/2024.10.20.619055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Fibroblast growth factor (FGF) signaling elicits multiple downstream pathways, most notably the Ras/MAPK cascade facilitated by the adaptor protein Grb2. However, the mechanism by which Grb2 is recruited to the FGF signaling complex remains unresolved. Here we showed that genetic ablation of FGF signaling prevented lens induction by disrupting transcriptional regulation and actin cytoskeletal arrangements, which could be reproduced by deleting the juxtamembrane region of the FGF receptor and rescued by Kras activation. Conversely, mutations affecting the Frs2-binding site on the FGF receptor or the deletion of Frs2 and Shp2 primarily impact later stages of lens vesicle development involving lens fiber cell differentiation. Our study further revealed that the loss of Grb2 abolished MAPK signaling, resulting in a profound arrest of lens development. However, disrupting the Grb2 binding site on Shp2 or abrogating Shp2 phosphatase activity only modestly influenced FGF signaling, whereas mutating the presumed Shp2 dephosphorylation site on Grb2 did not impede MAPK signaling in lens development, indicating that Shp2 is only partially responsible for Grb2 recruitment. In contrast, we observed that FGF signaling is required for the phosphorylation of the Grb2-binding sites on Shc1 and the deletion of Shc1 exacerbates the lens vesicle defect caused by Frs2 and Shp2 deletion. These results reveal that Shc1 collaborates with Frs2 and Shp2 to target Grb2 in FGF signaling.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Hongge Li
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yingyu Mao
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Ankur Garg
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Eun Sil Park
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yihua Wu
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Alyssa Chow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - John Peregrin
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Zhou N, He M, Zhou G, Fan Q, Qi Y. Variant in EZR leads to defects in lens development. Ophthalmic Genet 2024; 45:363-371. [PMID: 38563525 DOI: 10.1080/13816810.2024.2330391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 02/05/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Congenital cataract is a common cause of blindness. Genetic factors always play important role. MATERIAL AND METHODS This study identified a novel missense variant (c.1412C>T (p.P471L)) in the EZR gene in a four-generation Chinese family with nuclear cataract by linkage analysis and whole-exome sequencing. A knockout study in zebrafish using transcription activator-like effector nucleases was carried out to gain insight into candidate gene function. RESULTS Conservative and functional prediction suggests that the P-to-L substitution may impair the function of the human ezrin protein. Histology showed developmental delays in the ezrin-mutated zebrafish, manifesting as multilayered lens epithelial cells. Immunohistochemistry revealed abnormal proliferation patterns in mutant fish. CONCLUSIONS The study suggests that ezrin may be involved in the enucleation and differentiation of lens epithelial cells.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mingyan He
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangkai Zhou
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiuyang Fan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Upreti A, Padula SL, Weaver JM, Wagner BD, Kneller AM, Petulla AL, Lachke SA, Robinson ML. A Transcriptomics Analysis of the Regulation of Lens Fiber Cell Differentiation in the Absence of FGFRs and PTEN. Cells 2024; 13:1222. [PMID: 39056803 PMCID: PMC11274593 DOI: 10.3390/cells13141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Adding 50% vitreous humor to the media surrounding lens explants induces fiber cell differentiation and a significant immune/inflammatory response. While Fgfr loss blocks differentiation in lens epithelial explants, this blockage is partially reversed by deleting Pten. To investigate the functions of the Fgfrs and Pten during lens fiber cell differentiation, we utilized a lens epithelial explant system and conducted RNA sequencing on vitreous humor-exposed explants lacking Fgfrs, or Pten or both Fgfrs and Pten. We found that Fgfr loss impairs both vitreous-induced differentiation and inflammation while the additional loss of Pten restores these responses. Furthermore, transcriptomic analysis suggested that PDGFR-signaling in FGFR-deficient explants is required to mediate the rescue of vitreous-induced fiber differentiation in explants lacking both Fgfrs and Pten. The blockage of β-crystallin induction in explants lacking both Fgfrs and Pten in the presence of a PDGFR inhibitor supports this hypothesis. Our findings demonstrate that a wide array of genes associated with fiber cell differentiation are downstream of FGFR-signaling and that the vitreous-induced immune responses also depend on FGFR-signaling. Our data also demonstrate that many of the vitreous-induced gene-expression changes in Fgfr-deficient explants are rescued in explants lacking both Fgfrs and Pten.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Stephanie L. Padula
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Jacob M. Weaver
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Allison M. Kneller
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Anthony L. Petulla
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| |
Collapse
|
6
|
De Magalhães CG, Cvekl A, Jaeger RG, Yan CYI. Lens placode modulates extracellular matrix formation during early eye development. Differentiation 2024; 138:100792. [PMID: 38935992 PMCID: PMC11247415 DOI: 10.1016/j.diff.2024.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.
Collapse
Affiliation(s)
- Cecília G De Magalhães
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - C Y Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
7
|
Choquet H, Duot M, Herrera VA, Shrestha SK, Meyers TJ, Hoffmann TJ, Sangani PK, Lachke SA. Multi-tissue transcriptome-wide association study identifies novel candidate susceptibility genes for cataract. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1362350. [PMID: 38984127 PMCID: PMC11182099 DOI: 10.3389/fopht.2024.1362350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/01/2024] [Indexed: 07/11/2024]
Abstract
Introduction Cataract is the leading cause of blindness among the elderly worldwide. Twin and family studies support an important role for genetic factors in cataract susceptibility with heritability estimates up to 58%. To date, 55 loci for cataract have been identified by genome-wide association studies (GWAS), however, much work remains to identify the causal genes. Here, we conducted a transcriptome-wide association study (TWAS) of cataract to prioritize causal genes and identify novel ones, and examine the impact of their expression. Methods We performed tissue-specific and multi-tissue TWAS analyses to assess associations between imputed gene expression from 54 tissues (including 49 from the Genotype Tissue Expression (GTEx) Project v8) with cataract using FUSION software. Meta-analyzed GWAS summary statistics from 59,944 cataract cases and 478,571 controls, all of European ancestry and from two cohorts (GERA and UK Biobank) were used. We then examined the expression of the novel genes in the lens tissue using the iSyTE database. Results Across tissue-specific and multi-tissue analyses, we identified 99 genes for which genetically predicted gene expression was associated with cataract after correcting for multiple testing. Of these 99 genes, 20 (AC007773.1, ANKH, ASIP, ATP13A2, CAPZB, CEP95, COQ6, CREB1, CROCC, DDX5, EFEMP1, EIF2S2, ESRRB, GOSR2, HERC4, INSRR, NIPSNAP2, PICALM, SENP3, and SH3YL1) did not overlap with previously reported cataract-associated loci. Tissue-specific analysis identified 202 significant gene-tissue associations for cataract, of which 166 (82.2%), representing 9 unique genes, were attributed to the previously reported 11q13.3 locus. Tissue-enrichment analysis revealed that gastrointestinal tissues represented one of the highest proportions of the Bonferroni-significant gene-tissue associations (21.3%). Moreover, this gastrointestinal tissue type was the only anatomical category significantly enriched in our results, after correcting for the number of tissue donors and imputable genes for each reference panel. Finally, most of the novel cataract genes (e.g., Capzb) were robustly expressed in iSyTE lens data. Discussion Our results provide evidence of the utility of imputation-based TWAS approaches to characterize known GWAS risk loci and identify novel candidate genes that may increase our understanding of cataract etiology. Our findings also highlight the fact that expression of genes associated with cataract susceptibility is not necessarily restricted to lens tissue.
Collapse
Affiliation(s)
- Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, United States
| | - Matthieu Duot
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- The National Centre for Scientific Research (CNRS), IGDR (Institut de Génétique et Développement de Rennes) - Joint Research Units (UMR), Univ Rennes, Rennes, France
| | - Victor A Herrera
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, United States
| | - Sanjaya K Shrestha
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Travis J Meyers
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, United States
| | - Thomas J Hoffmann
- Institute for Human Genetics, University of California San Francisco (UCSF), San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, United States
| | - Poorab K Sangani
- Department of Ophthalmology, KPNC, South San Francisco, CA, United States
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| |
Collapse
|
8
|
Upreti A, Hoang TV, Li M, Tangeman JA, Dierker DS, Wagner BD, Tsonis PA, Liang C, Lachke SA, Robinson ML. miR-26 Deficiency Causes Alterations in Lens Transcriptome and Results in Adult-Onset Cataract. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 38683565 PMCID: PMC11059818 DOI: 10.1167/iovs.65.4.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Despite strong evidence demonstrating that normal lens development requires regulation governed by microRNAs (miRNAs), the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance, was conducted by miRNA sequencing. Mouse lenses lacking each of three abundantly expressed lens miRNAs (miR-184, miR-26, and miR-1) were analyzed to explore the role of these miRNAs in lens development. Results Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4 to 6 weeks of age. RNA sequencing analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens enriched and linked to cataract (e.g., Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes) and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusions miR-1, miR-184, and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Thanh V. Hoang
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Minghua Li
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Jared A. Tangeman
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - David S. Dierker
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | | | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| |
Collapse
|
9
|
De Magalhães CG, Cvekl A, Jaeger RG, Yan CYI. Lens Placode Modulates Extracellular Matrix Formation During Early Eye Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569417. [PMID: 38076974 PMCID: PMC10705410 DOI: 10.1101/2023.11.30.569417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2 , a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.
Collapse
|
10
|
Perez RC, Yang X, Familari M, Martinez G, Lovicu FJ, Hime GR, de Iongh RU. TOB1 and TOB2 mark distinct RNA processing granules in differentiating lens fiber cells. J Mol Histol 2024; 55:121-138. [PMID: 38165569 DOI: 10.1007/s10735-023-10177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/12/2023] [Indexed: 01/04/2024]
Abstract
Differentiation of lens fiber cells involves a complex interplay of signals from growth factors together with tightly regulated gene expression via transcriptional and post-transcriptional regulators. Various studies have demonstrated that RNA-binding proteins, functioning in ribonucleoprotein granules, have important roles in regulating post-transcriptional expression during lens development. In this study, we examined the expression and localization of two members of the BTG/TOB family of RNA-binding proteins, TOB1 and TOB2, in the developing lens and examined the phenotype of mice that lack Tob1. By RT-PCR, both Tob1 and Tob2 mRNA were detected in epithelial and fiber cells of embryonic and postnatal murine lenses. In situ hybridization showed Tob1 and Tob2 mRNA were most intensely expressed in the early differentiating fibers, with weaker expression in anterior epithelial cells, and both appeared to be downregulated in the germinative zone of E15.5 lenses. TOB1 protein was detected from E11.5 to E16.5 and was predominantly detected in large cytoplasmic puncta in early differentiating fiber cells, often co-localizing with the P-body marker, DCP2. Occasional nuclear puncta were also observed. By contrast, TOB2 was detected in a series of interconnected peri-nuclear granules, in later differentiating fiber cells of the inner cortex. TOB2 did not appear to co-localize with DCP2 but did partially co-localize with an early stress granule marker (EIF3B). These data suggest that TOB1 and TOB2 are involved with different aspects of the mRNA processing cycle in lens fiber cells. In vitro experiments using rat lens epithelial explants treated with or without a fiber differentiating dose of FGF2 showed that both TOB1 and TOB2 were up-regulated during FGF-induced differentiation. In differentiating explants, TOB1 also co-localized with DCP2 in large cytoplasmic granules. Analyses of Tob1-/- mice revealed relatively normal lens morphology but a subtle defect in cell cycle arrest of some cells at the equator and in the lens fiber mass of E13.5 embryos. Overall, these findings suggest that TOB proteins play distinct regulatory roles in RNA processing during lens fiber differentiation.
Collapse
Affiliation(s)
- Rafaela C Perez
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xenia Yang
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mary Familari
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gemma Martinez
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences and Save Sight Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gary R Hime
- Stem Cell Genetics Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robb U de Iongh
- Ocular Development Laboratory, Anatomy & Physiology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
11
|
Upreti A, Hoang TV, Li M, Tangeman JA, Dierker DS, Wagner BD, Tsonis PA, Liang C, Lachke SA, Robinson ML. miR-26 deficiency causes alterations in lens transcriptome and results in adult-onset cataract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577818. [PMID: 38352453 PMCID: PMC10862774 DOI: 10.1101/2024.01.29.577818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Purpose Despite strong evidence demonstrating that normal lens development requires regulation governed by miRNAs, the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance was conducted by miRNA-seq. Mouse lenses lacking each of three abundantly expressed lens miRNAs: miR-184, miR-26 and miR-1 were analyzed to explore the role of these miRNAs in lens development. Results Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4-6 weeks of age. RNA-seq analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens-enriched and linked to cataract (e.g. Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes), and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3 ), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusion miR-1, miR-184 and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Thanh V Hoang
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Minghua Li
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jared A Tangeman
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - David S Dierker
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Brad D Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | | | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Michael L Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
12
|
Tangeman JA, Rebull SM, Grajales-Esquivel E, Weaver JM, Bendezu-Sayas S, Robinson ML, Lachke SA, Del Rio-Tsonis K. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology. Development 2024; 151:dev202249. [PMID: 38180241 PMCID: PMC10906490 DOI: 10.1242/dev.202249] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataracts. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq and CUT&RUN-seq to discover previously unreported mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Furthermore, we identify an epigenetic paradigm of cellular differentiation, defined by progressive loss of the H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Sofia M. Rebull
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jacob M. Weaver
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Stacy Bendezu-Sayas
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Michael L. Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
13
|
Xiang J, Pompetti AJ, Faranda AP, Wang Y, Novo SG, Li DWC, Duncan MK. ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment. Cells 2023; 12:2636. [PMID: 37998373 PMCID: PMC10670291 DOI: 10.3390/cells12222636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The late embryonic mouse lens requires the transcription factor ATF4 for its survival although the underlying mechanisms were unknown. Here, RNAseq analysis revealed that E16.5 Atf4 null mouse lenses downregulate the mRNA levels of lens epithelial markers as well as known markers of late lens fiber cell differentiation. However, a comparison of this list of differentially expressed genes (DEGs) with other known transcriptional regulators of lens development indicated that ATF4 expression is not directly controlled by the previously described lens gene regulatory network. Pathway analysis revealed that the Atf4 DEG list was enriched in numerous genes involved in nutrient transport, amino acid biosynthesis, and tRNA charging. These changes in gene expression likely result in the observed reductions in lens free amino acid and glutathione levels, which would result in the observed low levels of extractable lens protein, finally leading to perinatal lens disintegration. These data demonstrate that ATF4, via its function in the integrated stress response, is likely to play a crucial role in mediating the adaption of the lens to the avascularity needed to maintain lens transparency.
Collapse
Affiliation(s)
- Jiawen Xiang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Anthony J. Pompetti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P. Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Samuel G. Novo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
14
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye Lens Organoids Made Simple: Characterization of a New Three-Dimensional Organoid Model for Lens Development and Pathology. Cells 2023; 12:2478. [PMID: 37887322 PMCID: PMC10605248 DOI: 10.3390/cells12202478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cataract, the opacification of the lens, is the leading cause of blindness worldwide. Although effective, cataract surgery is costly and can lead to complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined three-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization and biology. These organoids can be rapidly produced in large amounts. High-throughput RNA sequencing (RNA-seq) on specific organoid regions isolated via laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display a spatiotemporal expression of key lens genes, e.g., Jag1, Pax6, Prox1, Hsf4 and Cryab. Further, these lens organoids are amenable to the induction of opacities. Finally, the knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1, induces opacities in these organoids, indicating their use in rapidly screening for genes that are functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataracts.
Collapse
Affiliation(s)
- Matthieu Duot
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roselyne Viel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes, 35000 Rennes, France
| | - Justine Viet
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Catherine Le Goff-Gaillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Luc Paillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Carole Gautier-Courteille
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - David Reboutier
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| |
Collapse
|
15
|
Bejarano E, Whitcomb EA, Pfeiffer RL, Rose KL, Asensio MJ, Rodríguez-Navarro JA, Ponce-Mora A, Canto A, Almansa I, Schey KL, Jones BW, Taylor A, Rowan S. Unbalanced redox status network as an early pathological event in congenital cataracts. Redox Biol 2023; 66:102869. [PMID: 37677999 PMCID: PMC10495660 DOI: 10.1016/j.redox.2023.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.
Collapse
Affiliation(s)
- Eloy Bejarano
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Elizabeth A Whitcomb
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Rebecca L Pfeiffer
- Moran Eye Center, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maria José Asensio
- Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José Antonio Rodríguez-Navarro
- Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain; Department of Cell Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Ponce-Mora
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Antolín Canto
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Inma Almansa
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bryan W Jones
- Moran Eye Center, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, USA.
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
16
|
Dobrzycka M, Sulewska A, Biecek P, Charkiewicz R, Karabowicz P, Charkiewicz A, Golaszewska K, Milewska P, Michalska-Falkowska A, Nowak K, Niklinski J, Konopińska J. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:14699. [PMID: 37834147 PMCID: PMC10572595 DOI: 10.3390/ijms241914699] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma, a neurodegenerative disorder that leads to irreversible blindness, remains a challenge because of its complex nature. MicroRNAs (miRNAs) are crucial regulators of gene expression and are associated with glaucoma and other diseases. We aimed to review and discuss the advantages and disadvantages of miRNA-focused molecular studies in glaucoma through discussing their potential as biomarkers for early detection and diagnosis; offering insights into molecular pathways and mechanisms; and discussing their potential utility with respect to personalized medicine, their therapeutic potential, and non-invasive monitoring. Limitations, such as variability, small sample sizes, sample specificity, and limited accessibility to ocular tissues, are also addressed, underscoring the need for robust protocols and collaboration. Reproducibility and validation are crucial to establish the credibility of miRNA research findings, and the integration of bioinformatics tools for miRNA database creation is a valuable component of a comprehensive approach to investigate miRNA aberrations in patients with glaucoma. Overall, miRNA research in glaucoma has provided significant insights into the molecular mechanisms of the disease, offering potential biomarkers, diagnostic tools, and therapeutic targets. However, addressing challenges such as variability and limited tissue accessibility is essential, and further investigations and validation will contribute to a deeper understanding of the functional significance of miRNAs in glaucoma.
Collapse
Affiliation(s)
- Margarita Dobrzycka
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland;
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Angelika Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Kinga Golaszewska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | | | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| |
Collapse
|
17
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye lens organoids going simple: characterization of a new 3-dimensional organoid model for lens development and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548679. [PMID: 37503005 PMCID: PMC10370037 DOI: 10.1101/2023.07.12.548679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ocular lens, along with the cornea, focuses light on the retina to generate sharp images. Opacification of the lens, or cataract, is the leading cause of blindness worldwide. Presently, the best approach for cataract treatment is to surgically remove the diseased lens and replace it with an artificial implant. Although effective, this is costly and can have post-surgical complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and anti-cataract drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined 3-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization at the tissue, cellular and transcriptomic levels. These 3D cultured lens organoids can be rapidly produced in large amounts. High-throughput RNA-sequencing (RNA-seq) on specific organoid regions isolated by laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display spatiotemporal expression of key lens genes, e.g. , Jag1 , Pax6 , Prox1 , Hsf4 and Cryab . Further, these lens organoids are amenable to induction of opacities. Finally, knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1 , induces opacities in these organoids, indicating their use in rapidly screening for genes functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology, and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataract.
Collapse
|
18
|
Tangeman JA, Rebull SM, Grajales-Esquivel E, Weaver JM, Bendezu-Sayas S, Robinson ML, Lachke SA, Rio-Tsonis KD. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548451. [PMID: 37502967 PMCID: PMC10369908 DOI: 10.1101/2023.07.10.548451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataract. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq, and CUT&RUN-seq to discover novel mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Further, we divulge a conserved epigenetic paradigm of cellular differentiation, defined by progressive loss of H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.
Collapse
Affiliation(s)
- Jared A Tangeman
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| | - Sofia M Rebull
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
| | - Jacob M Weaver
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| | - Stacy Bendezu-Sayas
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| | - Michael L Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| |
Collapse
|
19
|
Aryal S, Anand D, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. Hum Genet 2023; 142:927-947. [PMID: 37191732 PMCID: PMC10680127 DOI: 10.1007/s00439-023-02570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3300 proteins per sample (n = 5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ≥ 2.5 average spectral counts, ≥ 2.0 fold-enrichment, false discovery rate < 0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE ( https://research.bioinformatics.udel.edu/iSyTE/ ), to allow effective visualization of this information and facilitate eye gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
20
|
Wishart TFL, Lovicu FJ. Spatiotemporal Localisation of Heparan Sulphate Proteoglycans throughout Mouse Lens Morphogenesis. Cells 2023; 12:1364. [PMID: 37408198 DOI: 10.3390/cells12101364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Heparan sulphate proteoglycans (HSPGs) consist of a core protein decorated with sulphated HS-glycosaminoglycan (GAG) chains. These negatively charged HS-GAG chains rely on the activity of PAPSS synthesising enzymes for their sulfation, which allows them to bind to and regulate the activity of many positively charged HS-binding proteins. HSPGs are found on the surfaces of cells and in the pericellular matrix, where they interact with various components of the cell microenvironment, including growth factors. By binding to and regulating ocular morphogens and growth factors, HSPGs are positioned to orchestrate growth factor-mediated signalling events that are essential for lens epithelial cell proliferation, migration, and lens fibre differentiation. Previous studies have shown that HS sulfation is essential for lens development. Moreover, each of the full-time HSPGs, differentiated by thirteen different core proteins, are differentially localised in a cell-type specific manner with regional differences in the postnatal rat lens. Here, the same thirteen HSPG-associated GAGs and core proteins as well as PAPSS2, are shown to be differentially regulated throughout murine lens development in a spatiotemporal manner. These findings suggest that HS-GAG sulfation is essential for growth factor-induced cellular processes during embryogenesis, and the unique and divergent localisation of different lens HSPG core proteins indicates that different HSPGs likely play specialized roles during lens induction and morphogenesis.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Disatham J, Brennan L, Cvekl A, Kantorow M. Multiomics Analysis Reveals Novel Genetic Determinants for Lens Differentiation, Structure, and Transparency. Biomolecules 2023; 13:693. [PMID: 37189439 PMCID: PMC10136076 DOI: 10.3390/biom13040693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Recent advances in next-generation sequencing and data analysis have provided new gateways for identification of novel genome-wide genetic determinants governing tissue development and disease. These advances have revolutionized our understanding of cellular differentiation, homeostasis, and specialized function in multiple tissues. Bioinformatic and functional analysis of these genetic determinants and the pathways they regulate have provided a novel basis for the design of functional experiments to answer a wide range of long-sought biological questions. A well-characterized model for the application of these emerging technologies is the development and differentiation of the ocular lens and how individual pathways regulate lens morphogenesis, gene expression, transparency, and refraction. Recent applications of next-generation sequencing analysis on well-characterized chicken and mouse lens differentiation models using a variety of omics techniques including RNA-seq, ATAC-seq, whole-genome bisulfite sequencing (WGBS), chip-seq, and CUT&RUN have revealed a wide range of essential biological pathways and chromatin features governing lens structure and function. Multiomics integration of these data has established new gene functions and cellular processes essential for lens formation, homeostasis, and transparency including the identification of novel transcription control pathways, autophagy remodeling pathways, and signal transduction pathways, among others. This review summarizes recent omics technologies applied to the lens, methods for integrating multiomics data, and how these recent technologies have advanced our understanding ocular biology and function. The approach and analysis are relevant to identifying the features and functional requirements of more complex tissues and disease states.
Collapse
Affiliation(s)
- Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| | - Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| |
Collapse
|
22
|
Siddam AD, Duot M, Coomson SY, Anand D, Aryal S, Weatherbee BAT, Audic Y, Paillard L, Lachke SA. High-Throughput Transcriptomics of Celf1 Conditional Knockout Lens Identifies Downstream Networks Linked to Cataract Pathology. Cells 2023; 12:1070. [PMID: 37048143 PMCID: PMC10093462 DOI: 10.3390/cells12071070] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Defects in the development of the ocular lens can cause congenital cataracts. To understand the various etiologies of congenital cataracts, it is important to characterize the genes linked to this developmental defect and to define their downstream pathways that are relevant to lens biology and pathology. Deficiency or alteration of several RNA-binding proteins, including the conserved RBP Celf1 (CUGBP Elav-like family member 1), has been described to cause lens defects and early onset cataracts in animal models and/or humans. Celf1 is involved in various aspects of post-transcriptional gene expression control, including regulation of mRNA stability/decay, alternative splicing and translation. Celf1 germline knockout mice and lens conditional knockout (Celf1cKO) mice develop fully penetrant cataracts in early postnatal stages. To define the genome-level changes in RNA transcripts that result from Celf1 deficiency, we performed high-throughput RNA-sequencing of Celf1cKO mouse lenses at postnatal day (P) 0. Celf1cKO lenses exhibit 987 differentially expressed genes (DEGs) at cut-offs of >1.0 log2 counts per million (CPM), ≥±0.58 log2 fold-change and <0.05 false discovery rate (FDR). Of these, 327 RNAs were reduced while 660 were elevated in Celf1cKO lenses. The DEGs were subjected to various downstream analyses including iSyTE lens enriched-expression, presence in Cat-map, and gene ontology (GO) and representation of regulatory pathways. Further, a comparative analysis was done with previously generated microarray datasets on Celf1cKO lenses P0 and P6. Together, these analyses validated and prioritized several key genes mis-expressed in Celf1cKO lenses that are relevant to lens biology, including known cataract-linked genes (e.g., Cryab, Cryba2, Cryba4, Crybb1, Crybb2, Cryga, Crygb, Crygc, Crygd, Cryge, Crygf, Dnase2b, Bfsp1, Gja3, Pxdn, Sparc, Tdrd7, etc.) as well as novel candidates (e.g., Ell2 and Prdm16). Together, these data have defined the alterations in lens transcriptome caused by Celf1 deficiency, in turn uncovering downstream genes and pathways (e.g., structural constituents of eye lenses, lens fiber cell differentiation, etc.) associated with lens development and early-onset cataracts.
Collapse
Affiliation(s)
- Archana D. Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Matthieu Duot
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ. Rennes, UMR 6290, Rennes, F-35000 Rennes, France
| | - Sarah Y. Coomson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Yann Audic
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ. Rennes, UMR 6290, Rennes, F-35000 Rennes, France
| | - Luc Paillard
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ. Rennes, UMR 6290, Rennes, F-35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
23
|
Aryal S, Anand D, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. RESEARCH SQUARE 2023:rs.3.rs-2652395. [PMID: 36993571 PMCID: PMC10055508 DOI: 10.21203/rs.3.rs-2652395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3,300 proteins per sample (n=5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ³2.5 average spectral counts, ³2.0 fold-enrichment, False Discovery Rate <0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), to allow effective visualization of this information and facilitate eye gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Hongzhan Huang
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| | - Ashok P. Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Larry L. David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| |
Collapse
|
24
|
A tapt1 knock-out zebrafish line with aberrant lens development and impaired vision models human early-onset cataract. Hum Genet 2023; 142:457-476. [PMID: 36697720 DOI: 10.1007/s00439-022-02518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023]
Abstract
Bi-allelic mutations in the gene coding for human trans-membrane anterior-posterior transformation protein 1 (TAPT1) result in a broad phenotypic spectrum, ranging from syndromic disease with severe skeletal and congenital abnormalities to isolated early-onset cataract. We present here the first patient with a frameshift mutation in the TAPT1 gene, resulting in both bilateral early-onset cataract and skeletal abnormalities, in addition to several dysmorphic features, in this way further expanding the phenotypic spectrum associated with TAPT1 mutations. A tapt1a/tapt1b double knock-out (KO) zebrafish model generated by CRISPR/Cas9 gene editing revealed an early larval phenotype with eye malformations, loss of vision, increased photokinetics and hyperpigmentation, without visible skeletal involvement. Ultrastructural analysis of the eyes showed a smaller condensed lens, loss of integrity of the lens capsule with formation of a secondary lens and hyperplasia of the cells in the ganglion and inner plexiform layers of the retina. Transcriptomic analysis pointed to an impaired lens development with aberrant expression of many of the crystallin and other lens-specific genes. Furthermore, the phototransduction and visual perception pathways were found to be significantly disturbed. Differences in light perception are likely the cause of the increased dark photokinetics and generalized hyperpigmentation observed in this zebrafish model. In conclusion, this study validates TAPT1 as a new gene for early-onset cataract and sheds light on its ultrastructural and molecular characteristics.
Collapse
|
25
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
26
|
Wolf J, Lapp T, Reinhard T, Agostini H, Schlunck G, Lange C. Web-based gene expression analysis-paving the way to decode healthy and diseased ocular tissue. DIE OPHTHALMOLOGIE 2023; 120:59-65. [PMID: 36098765 PMCID: PMC9469811 DOI: 10.1007/s00347-022-01721-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Gene expression analysis using RNA sequencing has helped to improve the understanding of many diseases. Databases, such as the Gene Expression Omnibus database of the National Center for Biotechnology Information provide RNA sequencing raw data from various diseased tissue types but their analysis requires advanced bioinformatics skills. Therefore, specific ocular databases provide the transcriptional profiles of different ocular tissues and in addition enable intuitive web-based data analysis. OBJECTIVE The aim of this narrative review is to provide an overview of ocular transcriptome databases and to compare them with the Human Eye Transcriptome Atlas newly established in Freiburg. METHODS PubMed literature search. RESULTS A total of nine ocular transcriptome databases focusing on different aspects were identified. The iSyTE and Express platforms specialize in gene expression during lens and retinal development in mice, whereas retina.tigem.it, Eye in a Disk, and Spectacle focus on selected ocular tissues such as the retina. Spectacle, UCSC Cell Browser and Single Cell Portal allow intuitive exploration of single cell RNA sequencing data derived from retinal, choroid, cornea, iris, trabecular meshwork and sclera specimens. The microarray profiles of a variety of healthy ocular tissues are included in the Ocular Tissue Database. The Human Eye Transcriptome Atlas provides the largest collection of different ocular tissue types, contains the highest number of ocular diseases and is characterized by a high level of quality achieved by methodological consistency. CONCLUSION Ocular transcriptome databases provide comprehensive and intuitive insights into the transcriptional profiles of a variety of healthy and diseased ocular tissues. Thus, they improve our understanding of the underlying molecular mediators, support hypothesis generation and help in the search for new diagnostic and therapeutic targets for various ocular diseases.
Collapse
Affiliation(s)
- Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital Muenster, Münster, Germany.
| |
Collapse
|
27
|
Shinozaki Y, Saito K, Kashiwagi K, Koizumi S. Ocular P2 receptors and glaucoma. Neuropharmacology 2023; 222:109302. [PMID: 36341810 DOI: 10.1016/j.neuropharm.2022.109302] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Adenosine triphosphate (ATP), an energy source currency in cells, is released or leaked to the extracellular space under both physiological and pathological conditions. Extracellular ATP functions as an intercellular signaling molecule through activation of purinergic P2 receptors. Ocular tissue and cells release ATP in response to physiological stimuli such as intraocular pressure (IOP), and P2 receptor activation regulates IOP elevation or reduction. Dysregulated purinergic signaling may cause abnormally elevated IOP, which is one of the major risk factors for glaucoma. Glaucoma, a leading cause of blindness worldwide, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs), which are essential retinal neurons that transduce visual information to the brain. An elevation in IOP may stress RGCs and increase the risk for glaucoma pathogenesis. In the aqueous humor of human patients with glaucoma, the ATP level is significantly elevated. Such excess amount of ATP may directly cause RGC death via a specific subtype of P2 receptors. Dysregulated purinergic signaling may also trigger inflammation, oxidative stress, and excitotoxicity via activating non-neuronal cell types such as glial cells. In this review, we discussed the physiological roles of extracellular nucleotides in the ocular tissue and their potential role in the pathogenesis of glaucoma. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
28
|
Lin X, Yang T, Liu X, Fan F, Zhou X, Li H, Luo Y. TGF-β/Smad Signalling Activation by HTRA1 Regulates the Function of Human Lens Epithelial Cells and Its Mechanism in Posterior Subcapsular Congenital Cataract. Int J Mol Sci 2022; 23:14431. [PMID: 36430917 PMCID: PMC9692351 DOI: 10.3390/ijms232214431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital cataract is the leading cause of blindness among children worldwide. Patients with posterior subcapsular congenital cataract (PSC) in the central visual axis can result in worsening vision and stimulus deprivation amblyopia. However, the pathogenesis of PSC remains unclear. This study aims to explore the functional regulation and mechanism of HTRA1 in human lens epithelial cells (HLECs). HTRA1 was significantly downregulated in the lens capsules of children with PSC compared to normal controls. HTRA1 is a suppression factor of transforming growth factor-β (TGF-β) signalling pathway, which plays a key role in cataract formation. The results showed that the TGF-β/Smad signalling pathway was activated in the lens tissue of PSC. The effect of HTRA1 on cell proliferation, migration and apoptosis was measured in HLECs. In primary HLECs, the downregulation of HTRA1 can promote the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway and can significantly upregulate the TGF-β/Smad downstream target genes FN1 and α-SMA. HTRA1 was also knocked out in the eyes of C57BL/6J mice via adeno-associated virus-mediated RNA interference. The results showed that HTRA1 knockout can significantly upregulate p-Smad2/3 and activate the TGF-β/Smad signalling pathway, resulting in abnormal proliferation and irregular arrangement of lens epithelial cells and leading to the occurrence of subcapsular cataract. To conclude, HTRA1 was significantly downregulated in children with PSC, and the downregulation of HTRA1 enhanced the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway, which led to the occurrence of PSC.
Collapse
Affiliation(s)
- Xiaolei Lin
- Department of Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China;
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Tianke Yang
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xin Liu
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Fan Fan
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xiyue Zhou
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Hongzhe Li
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Yi Luo
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| |
Collapse
|
29
|
Zheng Y, Yang X, Wu S, Yi G, Huang X, Feng Z, Qu L, Liu L, Li Q, Xia Z. Paired Box Gene 6 Regulates Heme Oxygenase-1 Expression and Mitigates Hydrogen Peroxide-Induced Oxidative Stress in Lens Epithelial Cells. Curr Eye Res 2022; 47:1516-1524. [PMID: 36149046 DOI: 10.1080/02713683.2022.2110266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aimed to investigate the regulation of heme oxygenase-1 (HO-1) by paired box gene 6 (Pax6) and their roles in hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in lens epithelial cells (LECs) (SRA01/04, HLE-B3). METHODS Lens anterior capsule membranes of mice of different ages were obtained to compare differences in the expression of Pax6 and HO-1 using Western blotting. Pax6-overexpressing plasmid and small interfering RNA were designed to overexpress and silence Pax6, respectively. Cobalt protoporphyrin (CoPP) was used to promote the expression of HO-1. Oxidative damage in LECs was induced by treatment with H2O2 (400 µM) for 24 h. Cell viability was measured using the Cell Counting Kit-8 assay. Intracellular reactive oxygen species (ROS) were detected using flow cytometry and immunofluorescence. Superoxide dismutase (SOD) level was measured using SOD Assay Kit and apoptotic cells were quantified using annexin V-fluorescein isothiocyanate/propidium iodide staining. RESULTS Pax6 and HO-1 expression levels showed an age-dependent decrease in LECs of mouse. Overexpressing Pax6 upregulated HO-1 expression level. Silencing Pax6 downregulated the HO-1 expression level, resulting in increased generation of ROS, reduced SOD activity, decreased cell viability, and increased apoptotic cells of LECs under H2O2-induced oxidative stress. Overexpressing Pax6 and CoPP both mitigates H2O2-induced oxidative stress by increasing the expression of HO-1 of LECs. CONCLUSION Pax6 and HO-1 expression levels showed an age-dependent decrease in LECs in mouse anterior capsules. Pax6 could regulate the expression of HO-1 in LECs. The decrease of Pax6 weakened the antioxidant ability of LECs under H2O2-induced oxidative stress by downregulating HO-1, which may be a potential mechanism for the formation of age-related cataract.
Collapse
Affiliation(s)
- Yuxing Zheng
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxi Yang
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuduan Wu
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Huang
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhizhen Feng
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Qu
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linyu Liu
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qianyun Li
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaoxia Xia
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Mapping the Universe of Eph Receptor and Ephrin Ligand Transcripts in Epithelial and Fiber Cells of the Eye Lens. Cells 2022; 11:cells11203291. [PMID: 36291158 PMCID: PMC9600312 DOI: 10.3390/cells11203291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
The eye lens is a transparent, ellipsoid organ in the anterior chamber of the eye that is required for fine focusing of light onto the retina to transmit a clear image. Cataracts, defined as any opacity in the lens, remains the leading cause of blindness in the world. Recent studies in humans and mice indicate that Eph–ephrin bidirectional signaling is important for maintaining lens transparency. Specifically, mutations and polymorphisms in the EphA2 receptor and the ephrin-A5 ligand have been linked to congenital and age-related cataracts. It is unclear what other variants of Ephs and ephrins are expressed in the lens or whether there is preferential expression in epithelial vs. fiber cells. We performed a detailed analysis of Eph receptor and ephrin ligand mRNA transcripts in whole mouse lenses, epithelial cell fractions, and fiber cell fractions using a new RNA isolation method. We compared control samples with EphA2 knockout (KO) and ephrin-A5 KO samples. Our results revealed the presence of transcripts for 12 out of 14 Eph receptors and 8 out of 8 ephrin ligands in various fractions of lens cells. Using specific primer sets, RT-PCR, and sequencing, we verified the variant of each gene that is expressed, and we found two epithelial-cell-specific genes. Surprisingly, we also identified one Eph receptor variant that is expressed in KO lens fibers but is absent from control lens fibers. We also identified one low expression ephrin variant that is only expressed in ephrin-A5 control samples. These results indicate that the lens expresses almost all Ephs and ephrins, and there may be many receptor–ligand pairs that play a role in lens homeostasis.
Collapse
|
31
|
Li M, Olotu J, Buxo-Martinez CJ, Mossey PA, Anand D, Busch T, Alade A, Gowans LJJ, Eshete M, Adeyemo WL, Naicker T, Awotoye WO, Gupta S, Adeleke C, Bravo V, Huang S, Adamson OO, Toraño AM, Bello CA, Soto M, Soto M, Ledesma R, Marquez M, Cordero JF, Lopez-Del Valle LM, Salcedo MI, Debs N, Petrin A, Malloy H, Elhadi K, James O, Ogunlewe MO, Abate F, Hailu A, Mohammed I, Gravem P, Deribew M, Gesses M, Hassan M, Pape J, Obiri-Yeboah S, Arthur FKN, Oti AA, Donkor P, Marazita ML, Lachke SA, Adeyemo AA, Murray JC, Butali A. Variant analyses of candidate genes in orofacial clefts in multi-ethnic populations. Oral Dis 2022; 28:1921-1935. [PMID: 34061439 PMCID: PMC9733635 DOI: 10.1111/odi.13932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cleft lip with/without cleft palate and cleft palate only is congenital birth defects where the upper lip and/or palate fail to fuse properly during embryonic facial development. Affecting ~1.2/1000 live births worldwide, these orofacial clefts impose significant social and financial burdens on affected individuals and their families. Orofacial clefts have a complex etiology resulting from genetic variants combined with environmental covariates. Recent genome-wide association studies and whole-exome sequencing for orofacial clefts identified significant genetic associations and variants in several genes. Of these, we investigated the role of common/rare variants in SHH, RORA, MRPL53, ACVR1, and GDF11. MATERIALS AND METHODS We sequenced these five genes in 1255 multi-ethnic cleft lip with/without palate and cleft palate only samples in order to find variants that may provide potential explanations for the missing heritability of orofacial clefts. Rare and novel variants were further analyzed using in silico predictive tools. RESULTS Ninteen total variants of interest were found, with variant types including stop-gain, missense, synonymous, intronic, and splice-site variants. Of these, 3 novel missense variants were found, one in SHH, one in RORA, and one in GDF11. CONCLUSION This study provides evidence that variants in SHH, RORA, MRPL53, ACVR1, and GDF11 may contribute to risk of orofacial clefts in various populations.
Collapse
Affiliation(s)
- Mary Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Joy Olotu
- Department of Anatomy, University of Health Sciences, University of Port Harcourt, Choba, Nigeria
| | - Carmen J Buxo-Martinez
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Peter A Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Lord J J Gowans
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mekonen Eshete
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Thirona Naicker
- Genetics, Department of Pediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Waheed O Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Sagar Gupta
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Valeria Bravo
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Siyong Huang
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olatunbosun O Adamson
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | | | - Mairim Soto
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Marilyn Soto
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Ricardo Ledesma
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Myrellis Marquez
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Jose F Cordero
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Lydia M Lopez-Del Valle
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Maria I Salcedo
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Natalio Debs
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Aline Petrin
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Hannah Malloy
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Khalid Elhadi
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olutayo James
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Mobolanle O Ogunlewe
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Fekir Abate
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abiye Hailu
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ibrahim Mohammed
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Paul Gravem
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Milliard Deribew
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulualem Gesses
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohaned Hassan
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - John Pape
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Solomon Obiri-Yeboah
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fareed K N Arthur
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander A Oti
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Peter Donkor
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Departments of Oral Biology and Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Adebowale A Adeyemo
- Department of Orthodontics, University of Dundee, Dundee, UK
- National Human Genomic Research Institute, Bethesda, MD, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
32
|
Patel SD, Anand D, Motohashi H, Katsuoka F, Yamamoto M, Lachke SA. Deficiency of the bZIP transcription factors Mafg and Mafk causes misexpression of genes in distinct pathways and results in lens embryonic developmental defects. Front Cell Dev Biol 2022; 10:981893. [PMID: 36092713 PMCID: PMC9459095 DOI: 10.3389/fcell.2022.981893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 01/11/2023] Open
Abstract
Deficiency of the small Maf proteins Mafg and Mafk cause multiple defects, namely, progressive neuronal degeneration, cataract, thrombocytopenia and mid-gestational/perinatal lethality. Previous data shows Mafg -/-:Mafk +/- compound knockout (KO) mice exhibit cataracts age 4-months onward. Strikingly, Mafg -/-:Mafk -/- double KO mice develop lens defects significantly early in life, during embryogenesis, but the pathobiology of these defects is unknown, and is addressed here. At embryonic day (E)16.5, the epithelium of lens in Mafg -/-:Mafk -/- animals appears abnormally multilayered as demonstrated by E-cadherin and nuclear staining. Additionally, Mafg -/-:Mafk -/- lenses exhibit abnormal distribution of F-actin near the "fulcrum" region where epithelial cells undergo apical constriction prior to elongation and reorientation as early differentiating fiber cells. To identify the underlying molecular changes, we performed high-throughput RNA-sequencing of E16.5 Mafg -/-:Mafk -/- lenses and identified a cohort of differentially expressed genes that were further prioritized using stringent filtering criteria and validated by RT-qPCR. Several key factors associated with the cytoskeleton, cell cycle or extracellular matrix (e.g., Cdk1, Cdkn1c, Camsap1, Col3a1, Map3k12, Sipa1l1) were mis-expressed in Mafg -/-:Mafk -/- lenses. Further, the congenital cataract-linked extracellular matrix peroxidase Pxdn was significantly overexpressed in Mafg -/-:Mafk -/- lenses, which may cause abnormal cell morphology. These data also identified the ephrin signaling receptor Epha5 to be reduced in Mafg -/-:Mafk -/- lenses. This likely contributes to the Mafg -/-:Mafk -/- multilayered lens epithelium pathology, as loss of an ephrin ligand, Efna5 (ephrin-A5), causes similar lens defects. Together, these findings uncover a novel early function of Mafg and Mafk in lens development and identify their new downstream regulatory relationships with key cellular factors.
Collapse
Affiliation(s)
- Shaili D. Patel
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States,*Correspondence: Salil A. Lachke,
| |
Collapse
|
33
|
Wolf J, Lapp T, Reinhard T, Agostini H, Schlunck G, Lange C. [Web-based gene expression analysis-paving the way to decode healthy and diseased ocular tissue]. Ophthalmologe 2022; 119:929-936. [PMID: 35194679 PMCID: PMC8863098 DOI: 10.1007/s00347-022-01592-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Gene expression analysis using RNA sequencing has helped to improve the understanding of many diseases. Databases, such as the Gene Expression Omnibus database of the National Center for Biotechnology Information provide RNA sequencing raw data from various diseased tissue types but their analysis requires advanced bioinformatics skills. Therefore, specific ocular databases provide the transcriptional profiles of different ocular tissues and in addition enable intuitive web-based data analysis. OBJECTIVE The aim of this narrative review is to provide an overview of ocular transcriptome databases and to compare them with the Human Eye Transcriptome Atlas newly established in Freiburg. METHODS PubMed literature search. RESULTS A total of nine ocular transcriptome databases focusing on different aspects were identified. The iSyTE and Express platforms specialize in gene expression during lens and retinal development in mice, whereas retina.tigem.it, Eye in a Disk, and Spectacle focus on selected ocular tissues such as the retina. Spectacle, UCSC Cell Browser and Single Cell Portal allow intuitive exploration of single cell RNA sequencing data derived from retinal, choroid, cornea, iris, trabecular meshwork and sclera specimens. The microarray profiles of a variety of healthy ocular tissues are included in the Ocular Tissue Database. The Human Eye Transcriptome Atlas provides the largest collection of different ocular tissue types, contains the highest number of ocular diseases and is characterized by a high level of quality achieved by methodological consistency. CONCLUSION Ocular transcriptome databases provide comprehensive and intuitive insights into the transcriptional profiles of a variety of healthy and diseased ocular tissues. Thus, they improve our understanding of the underlying molecular mediators, support hypothesis generation and help in the search for new diagnostic and therapeutic targets for various ocular diseases.
Collapse
Affiliation(s)
- Julian Wolf
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland.
| | - Thabo Lapp
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - Thomas Reinhard
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - Hansjürgen Agostini
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - Günther Schlunck
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - Clemens Lange
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland. .,Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, Muenster, Muenster, Deutschland.
| |
Collapse
|
34
|
Wolf J, Boneva S, Schlecht A, Lapp T, Auw-Haedrich C, Lagrèze W, Agostini H, Reinhard T, Schlunck G, Lange C. The Human Eye Transcriptome Atlas: A searchable comparative transcriptome database for healthy and diseased human eye tissue. Genomics 2022; 114:110286. [DOI: 10.1016/j.ygeno.2022.110286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 11/25/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
|
35
|
Lachke SA. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp Eye Res 2022; 214:108889. [PMID: 34906599 PMCID: PMC8792301 DOI: 10.1016/j.exer.2021.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023]
Abstract
Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.
Collapse
Affiliation(s)
- Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
36
|
Rowan S, Jiang S, Francisco SG, Pomatto LCD, Ma Z, Jiao X, Campos MM, Aryal S, Patel SD, Mahaling B, Riazuddin SA, Duh EJ, Lachke SA, Hejtmancik JF, de Cabo R, FitzGerald PG, Taylor A. Aged Nrf2-Null Mice Develop All Major Types of Age-Related Cataracts. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 34882206 PMCID: PMC8665303 DOI: 10.1167/iovs.62.15.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Age-related cataracts affect the majority of older adults and are a leading cause of blindness worldwide. Treatments that delay cataract onset or severity have the potential to delay cataract surgery, but require relevant animal models that recapitulate the major types of cataracts for their development. Unfortunately, few such models are available. Here, we report the lens phenotypes of aged mice lacking the critical antioxidant transcription factor Nfe2l2 (designated as Nrf2 −/−). Methods Three independent cohorts of Nrf2 −/− and wild-type C57BL/6J mice were evaluated for cataracts using combinations of slit lamp imaging, photography of freshly dissected lenses, and histology. Mice were fed high glycemic diets, low glycemic diets, regular chow ad libitum, or regular chow with 30% caloric restriction. Results Nrf2 −/− mice developed significant opacities between 11 and 15 months and developed advanced cortical, posterior subcapsular, anterior subcapsular, and nuclear cataracts. Cataracts occurred similarly in male mice fed high or low glycemic diets, and were also observed in 21-month male and female Nrf2 −/− mice fed ad libitum or 30% caloric restriction. Histological observation of 18-month cataractous lenses revealed significant disruption to fiber cell architecture and the retention of nuclei throughout the cortical region of the lens. However, fiber cell denucleation and initiation of lens differentiation was normal at birth, with the first abnormalities observed at 3 months. Conclusions Nrf2 −/− mice offer a tool to understand how defective antioxidant signaling causes multiple forms of cataract and may be useful for screening drugs to prevent or delay cataractogenesis in susceptible adults.
Collapse
Affiliation(s)
- Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| | - Shuhong Jiang
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Sarah G Francisco
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Maria M Campos
- NEI Histology Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Binapani Mahaling
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elia J Duh
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| |
Collapse
|
37
|
Lin X, Li H, Yang T, Liu X, Fan F, Zhou X, Luo Y. Transcriptomics Analysis of Lens from Patients with Posterior Subcapsular Congenital Cataract. Genes (Basel) 2021; 12:1904. [PMID: 34946854 PMCID: PMC8702110 DOI: 10.3390/genes12121904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 01/30/2023] Open
Abstract
To gain insight into the aetiology of posterior subcapsular congenital cataract from the perspective of transcriptional changes, we conducted an mRNA sequencing analysis of the lenses in posterior subcapsular congenital cataract patients and in normal children. There were 1533 differentially expressed genes from 19,072 genes in the lens epithelial cells of the posterior subcapsular congenital cataract patients compared to in the normal controls at a cut-off criteria of |log2 fold change| of >1 and a p-value of <0.05, including 847 downregulated genes and 686 upregulated genes. To further narrow down the DEGs, we utilised the stricter criteria of |log2 fold change| of >1 and an FDR value of <0.05, and we identified 551 DEGs, including 97 upregulated genes and 454 downregulated genes. This study also identified 1263 differentially expressed genes of the 18,755 genes in lens cortex and nuclear fibres, including 646 downregulated genes and 617 upregulated genes. The downregulated genes in epithelial cells were significantly enriched in the structural constituent of lenses, lens development and lens fibre cell differentiation. After filtering the DEGs using the databases iSyTE and Cat-Map, several high-priority candidate genes related to posterior subcapsular congenital cataract such as GRIFIN, HTRA1 and DAPL1 were identified. The findings of our study may provide a deeper understanding of the mechanisms of posterior subcapsular congenital cataract and help in the prevention and treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Luo
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (X.L.); (H.L.); (T.Y.); (X.L.); (F.F.); (X.Z.)
| |
Collapse
|
38
|
Wishart TFL, Lovicu FJ. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34730792 PMCID: PMC8572486 DOI: 10.1167/iovs.62.14.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods Semiquantitative real-time (RT)‐PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.
Collapse
Affiliation(s)
- Tayler F L Wishart
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Karnam S, Maddala R, Stiber JA, Rao PV. Drebrin, an actin-binding protein, is required for lens morphogenesis and growth. Dev Dyn 2021; 250:1600-1617. [PMID: 33896079 PMCID: PMC8542647 DOI: 10.1002/dvdy.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Lens morphogenesis, architecture, and clarity are known to be critically dependent on actin cytoskeleton organization and cell adhesive interactions. There is limited knowledge, however regarding the identity and role of key proteins regulating actin cytoskeletal organization in the lens. This study investigated the role of drebrin, a developmentally regulated actin-binding protein, in mouse lens development by generating and characterizing a conditional knockout (cKO) mouse model using the Cre-LoxP recombination approach. RESULTS Drebrin E, a splice variant of DBN1 is a predominant isoform expressed in the mouse lens and exhibits a maturation-dependent downregulation. Drebrin co-distributes with actin in both epithelium and fibers. Conditional deficiency (both haploinsufficiency and complete absence) of drebrin results in disrupted lens morphogenesis leading to cataract and microphthalmia. The drebrin cKO lens reveals a dramatic decrease in epithelial height and width, E-cadherin, and proliferation, and increased apoptotic cell death and expression of α-smooth muscle actin, together with severely impaired fiber cell organization, polarity, and cell-cell adhesion. CONCLUSIONS This study demonstrates the requirement of drebrin in lens development and growth, with drebrin deficiency leading to impaired lens morphogenesis and microphthalmia.
Collapse
Affiliation(s)
- Shruthi Karnam
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
| | - Jonathan A Stiber
- Department of Medicine, Duke University School of Medicine, Durham, NC. USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC. USA
| |
Collapse
|
40
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
41
|
Saikia SJ, Nirmala SR. Identification of disease genes and assessment of eye-related diseases caused by disease genes using JMFC and GDLNN. Comput Methods Biomech Biomed Engin 2021; 25:359-370. [PMID: 34384296 DOI: 10.1080/10255842.2021.1955358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early detection of disease genes helps humans to recover from certain gene-related diseases, like genetic eye diseases. This work identifies the possibility of eye diseasesfor the disease genes utilizing a Gaussian-activation function (G)-centric deeplearning neural network (GDLNN) model. In this work, human genes are selected by computing structural similarity and genes are clustered as disease genesand normal genes by using the JMFC clustering algorithm. Levy flight and Crossover and Mutation (LCM) centric Chicken Swarm Optimization (LCM-CSO) is employed for feature selection and GDLNN classifies the eye-related diseases for the input genes using the selected features.
Collapse
Affiliation(s)
- Samar Jyoti Saikia
- Department of Electronics and Communication Engineering, Gauhati University, Guwahati, Assam, India.,Department of Electronics and Communication Engineering, Assam Don Bosco University, Guwahati, Assam, India
| | - S R Nirmala
- Department of Electronics and Communication Engineering, Gauhati University, Guwahati, Assam, India.,School of Electronics and Communication Engineering, KLE Technological University, Hubli, Karnataka, India
| |
Collapse
|
42
|
A Novel Mutation in Cse1l Disrupts Brain and Eye Development with Specific Effects on Pax6 Expression. J Dev Biol 2021; 9:jdb9030027. [PMID: 34287339 PMCID: PMC8293161 DOI: 10.3390/jdb9030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Forward genetics in the mouse continues to be a useful and unbiased approach to identifying new genes and alleles with previously unappreciated roles in mammalian development and disease. Here, we report a new mouse allele of Cse1l that was recovered from an ENU mutagenesis screen. Embryos homozygous for the anteater allele of Cse1l display a number of variable phenotypes, with craniofacial and ocular malformations being the most obvious. We provide evidence that Cse1l is the causal gene through complementation with a novel null allele of Cse1l generated by CRISPR-Cas9 editing. While the variability in the anteater phenotype was high enough to preclude a detailed molecular analysis, we demonstrate a very penetrant reduction in Pax6 levels in the developing eye along with significant ocular developmental phenotypes. The eye gene discovery tool iSyTE shows Cse1l to be significantly expressed in the lens from early eye development stages in embryos through adulthood. Cse1l has not previously been shown to be required for organogenesis as homozygosity for a null allele results in very early lethality. Future detailed studies of Cse1l function in craniofacial and neural development will be best served with a conditional allele to circumvent the variable phenotypes we report here. We suggest that human next-generation (whole genome or exome) sequencing studies yielding variants of unknown significance in CSE1L could consider these findings as part of variant analysis.
Collapse
|
43
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The effect of sex on the mouse lens transcriptome. Exp Eye Res 2021; 209:108676. [PMID: 34146586 DOI: 10.1016/j.exer.2021.108676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The transcriptome of mammalian tissues differs between males and females, and these differences can change across the lifespan, likely regulating known sexual dimorphisms in disease prevalence and severity. Cataract, the most prevalent disease of the ocular lens, occurs at similar rates in young individuals, but its incidence is elevated in older women compared to men of the same age. However, the influence of sex on the lens transcriptome was unknown. RNAseq based transcriptomic profiling of young adult C57BL/6J mouse lens epithelial and fiber cells revealed that few genes are differentially expressed between the sexes. In contrast, lens cells from aged (24 month old) male and female C57BL/6J mice differentially expressed many genes, including several whose expression is lens preferred. Like cataracts, posterior capsular opacification (PCO), a major sequela of cataract surgery, may also be more prevalent in women. Lens epithelial cells isolated from mouse eyes 24 h after lens fiber cell removal exhibited numerous transcriptomic differences between the sexes, including genes implicated in complement cascades and extracellular matrix regulation, and these differences are much more pronounced in aged mice than in young mice. These results provide an unbiased basis for future studies on how sex affects the lens response to aging, cataract development, and cataract surgery.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
44
|
Choquet H, Melles RB, Anand D, Yin J, Cuellar-Partida G, Wang W, Hoffmann TJ, Nair KS, Hysi PG, Lachke SA, Jorgenson E. A large multiethnic GWAS meta-analysis of cataract identifies new risk loci and sex-specific effects. Nat Commun 2021; 12:3595. [PMID: 34127677 PMCID: PMC8203611 DOI: 10.1038/s41467-021-23873-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Cataract is the leading cause of blindness among the elderly worldwide and cataract surgery is one of the most common operations performed in the United States. As the genetic etiology of cataract formation remains unclear, we conducted a multiethnic genome-wide association meta-analysis, combining results from the GERA and UK Biobank cohorts, and tested for replication in the 23andMe research cohort. We report 54 genome-wide significant loci, 37 of which were novel. Sex-stratified analyses identified CASP7 as an additional novel locus specific to women. We show that genes within or near 80% of the cataract-associated loci are significantly expressed and/or enriched-expressed in the mouse lens across various spatiotemporal stages as per iSyTE analysis. Furthermore, iSyTE shows 32 candidate genes in the associated loci have altered gene expression in 9 different gene perturbation mouse models of lens defects/cataract, suggesting their relevance to lens biology. Our work provides further insight into the complex genetic architecture of cataract susceptibility.
Collapse
Affiliation(s)
- Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA.
| | | | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Jie Yin
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | | | | | | | - Thomas J Hoffmann
- Institute for Human Genetics, UCSF, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - K Saidas Nair
- Departments of Ophthalmology and Anatomy, School of Medicine, UCSF, San Francisco, CA, USA
| | - Pirro G Hysi
- King's College London, Section of Ophthalmology, School of Life Course Sciences, London, UK.,King's College London, Department of Twin Research and Genetic Epidemiology, London, UK.,University College London, Great Ormond Street Hospital Institute of Child Health, London, UK
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Eric Jorgenson
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| |
Collapse
|
45
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The aging mouse lens transcriptome. Exp Eye Res 2021; 209:108663. [PMID: 34119483 DOI: 10.1016/j.exer.2021.108663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Age is a major risk factor for cataract (ARC). However, the influence of aging on the lens transcriptome is under studied. Lens epithelial (LEC) and fiber cells (LFC) were isolated from young (3 month old) and aged (24 month old) C57BL/6J mice, and the transcriptome elucidated via RNAseq. EdgeR estimated differential gene expression in pairwise contrasts, and Advaita's Ipathway guide and custom R scripts were used to evaluate the potential biological significance of differentially expressed genes (DEGs). This analysis revealed age-dependent decreases in lens differentiation marker expression in both LECs and LFCs, with gamma crystallin transcripts downregulating nearly 50 fold in aged LFCs. The expression of the transcription factors Hsf4 and Maf, which are known to activate lens fiber cell preferred genes, are downregulated, while FoxE3, which represses gamma crystallin expression, is upregulated in aged fibers. Aged LECs upregulate genes controlling the immune response, complement pathways, and cellular stress responses, including glutathione peroxidase 3 (Gpx3). Aged LFCs exhibit broad changes in the expression of genes regulating cell communication, and upregulate genes involved in antigen processing/presentation and cholesterol metabolism, while changes in the expression of mitochondrial respiratory chain genes are consistent with mitochondrial stress, including upregulation of NDufa4l2, which encodes an alternate electron transport chain protein. However, age did not profoundly affect the response of LECs to injury as both young and aged LECs upregulate inflammatory gene signatures at 24 h post injury to similar extents. These RNAseq profiles provide a rich data set that can be mined to understand the genetic regulation of lens aging and how this impinges on the pathophysiology of age related cataract.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA.
| |
Collapse
|
46
|
Dash S, Brastrom LK, Patel SD, Scott CA, Slusarski DC, Lachke SA. The master transcription factor SOX2, mutated in anophthalmia/microphthalmia, is post-transcriptionally regulated by the conserved RNA-binding protein RBM24 in vertebrate eye development. Hum Mol Genet 2021; 29:591-604. [PMID: 31814023 DOI: 10.1093/hmg/ddz278] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 11/14/2022] Open
Abstract
Mutations in the key transcription factor, SOX2, alone account for 20% of anophthalmia (no eye) and microphthalmia (small eye) birth defects in humans-yet its regulation is not well understood, especially on the post-transcription level. We report the unprecedented finding that the conserved RNA-binding motif protein, RBM24, positively controls Sox2 mRNA stability and is necessary for optimal SOX2 mRNA and protein levels in development, perturbation of which causes ocular defects, including microphthalmia and anophthalmia. RNA immunoprecipitation assay indicates that RBM24 protein interacts with Sox2 mRNA in mouse embryonic eye tissue. and electrophoretic mobility shift assay shows that RBM24 directly binds to the Sox2 mRNA 3'UTR, which is dependent on AU-rich elements (ARE) present in the Sox2 mRNA 3'UTR. Further, we demonstrate that Sox2 3'UTR AREs are necessary for RBM24-based elevation of Sox2 mRNA half-life. We find that this novel RBM24-Sox2 regulatory module is essential for early eye development in vertebrates. We show that Rbm24-targeted deletion using a constitutive CMV-driven Cre in mouse, and rbm24a-CRISPR/Cas9-targeted mutation or morpholino knockdown in zebrafish, results in Sox2 downregulation and causes the developmental defects anophthalmia or microphthalmia, similar to human SOX2-deficiency defects. We further show that Rbm24 deficiency leads to apoptotic defects in mouse ocular tissue and downregulation of eye development markers Lhx2, Pax6, Jag1, E-cadherin and gamma-crystallins. These data highlight the exquisite specificity that conserved RNA-binding proteins like RBM24 mediate in the post-transcriptional control of key transcription factors, namely, SOX2, associated with organogenesis and human developmental defects.
Collapse
Affiliation(s)
- Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Lindy K Brastrom
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
47
|
Farnsworth DR, Posner M, Miller AC. Single cell transcriptomics of the developing zebrafish lens and identification of putative controllers of lens development. Exp Eye Res 2021; 206:108535. [PMID: 33705730 PMCID: PMC8092445 DOI: 10.1016/j.exer.2021.108535] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 01/10/2023]
Abstract
The vertebrate lens is a valuable model system for investigating the gene expression changes that coordinate tissue differentiation due to its inclusion of two spatially separated cell types, the outer epithelial cells and the deeper denucleated fiber cells that they support. Zebrafish are a useful model system for studying lens development given the organ's rapid development in the first several days of life in an accessible, transparent embryo. While we have strong foundational knowledge of the diverse lens crystallin proteins and the basic gene regulatory networks controlling lens development, no study has detailed gene expression in a vertebrate lens at single cell resolution. Here we report an atlas of lens gene expression in zebrafish embryos and larvae at single cell resolution through five days of development, identifying a number of novel putative regulators of lens development. Our data address open questions about the temperospatial expression of α-crystallins during lens development that will support future studies of their function and provide the first detailed view of β- and γ-crystallin expression in and outside the lens. We describe divergent expression in transcription factor genes that occur as paralog pairs in the zebrafish. Finally, we examine the expression dynamics of cytoskeletal, membrane associated, RNA-binding, and transcription factor genes, identifying a number of novel patterns. Overall these data provide a foundation for identifying and characterizing lens developmental regulatory mechanisms and revealing targets for future functional studies with potential therapeutic impact.
Collapse
Affiliation(s)
| | - Mason Posner
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA.
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| |
Collapse
|
48
|
Cvekl A, Eliscovich C. Crystallin gene expression: Insights from studies of transcriptional bursting. Exp Eye Res 2021; 207:108564. [PMID: 33894228 DOI: 10.1016/j.exer.2021.108564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 01/26/2023]
Abstract
Cellular differentiation is marked by temporally and spatially regulated gene expression. The ocular lens is one of the most powerful mammalian model system since it is composed from only two cell subtypes, called lens epithelial and fiber cells. Lens epithelial cells differentiate into fiber cells through a series of spatially and temporally orchestrated processes, including massive production of crystallins, cellular elongation and the coordinated degradation of nuclei and other organelles. Studies of transcriptional and posttranscriptional gene regulatory mechanisms in lens provide a wide range of opportunities to understand global molecular mechanisms of gene expression as steady-state levels of crystallin mRNAs reach very high levels comparable to globin genes in erythrocytes. Importantly, dysregulation of crystallin gene expression results in lens structural abnormalities and cataracts. The mRNA life cycle is comprised of multiple stages, including transcription, splicing, nuclear export into cytoplasm, stabilization, localization, translation and ultimate decay. In recent years, development of modern mRNA detection methods with single molecule and single cell resolution enabled transformative studies to visualize the mRNA life cycle to generate novel insights into the sequential regulatory mechanisms of gene expression during embryogenesis. This review is focused on recent major advancements in studies of transcriptional bursting in differentiating lens fiber cells, analysis of nascent mRNA expression from bi-directional promoters, transient nuclear accumulation of specific mRNAs, condensation of chromatin prior lens fiber cell denucleation, and outlines future studies to probe the interactions of individual mRNAs with specific RNA-binding proteins (RBPs) in the cytoplasm and regulation of translation and mRNA decay.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and VIsual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Carolina Eliscovich
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
49
|
Ping X, Cheng Y, Bao J, Shi K, Zou J, Shentu X. KPNA4 is involved in cataract formation via the nuclear import of p53. Gene 2021; 786:145621. [PMID: 33798680 DOI: 10.1016/j.gene.2021.145621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
KPNA4 (also called importin-α3) belongs to the importin α adaptor proteins family, which orchestrates classical nuclear transport processes, importin-α/importin-β1 pathway, and involves in cellular homeostasis. Disruption of balanced transport pathways may result in ectopic nuclear proteins and eventually cause diseases, mainly under the situation of cellular stress, such as oxidative stress. Little evidence is available on its cellular functions for high specific expression in lens. We firstly studied the role of KPNA4 in cataract formation. Lens defects were observed at an early age in kpna4 gene knockout zebrafish, generated by the CRISPR/Cas9 system. Those phenotype, including cloudy center part of the lens, via bright field microscopy, and the thinning of the LE layer, wider space between the adjacent LE and LF cells, irregular cells morphology and the increased number of holes inside the LE cells, which were detected by transmission electron microscopy, recapitulate the clinical features of cataract patients. As the p53-specific adaptor of the nuclear import, KPNA4 upregulated with the same pattern of p53 in hydrogen peroxide-induced apoptosis in human lens epithelia cells. Furthermore, the loss of Kpna4 resulted in the accumulation of p53 in the center of lens. Taken together, we showed that KPNA4 was involved in the formation of cataract, likely by mediating p53 nuclear transport.
Collapse
Affiliation(s)
- Xiyuan Ping
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China
| | - Yalan Cheng
- Ninghai First Hospital, Ningbo 315600, China
| | - Jing Bao
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China
| | - Kexin Shi
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xingchao Shentu
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310009, China.
| |
Collapse
|
50
|
Anand D, Al Saai S, Shrestha SK, Barnum CE, Chuma S, Lachke SA. Genome-Wide Analysis of Differentially Expressed miRNAs and Their Associated Regulatory Networks in Lenses Deficient for the Congenital Cataract-Linked Tudor Domain Containing Protein TDRD7. Front Cell Dev Biol 2021; 9:615761. [PMID: 33665188 PMCID: PMC7921330 DOI: 10.3389/fcell.2021.615761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations/deficiency of TDRD7, encoding a tudor domain protein involved in post-transcriptional gene expression control, causes early onset cataract in humans. While Tdrd7 is implicated in the control of key lens mRNAs, the impact of Tdrd7 deficiency on microRNAs (miRNAs) and how this contributes to transcriptome misexpression and to cataracts, is undefined. We address this critical knowledge-gap by investigating Tdrd7-targeted knockout (Tdrd7-/-) mice that exhibit fully penetrant juvenile cataracts. We performed Affymetrix miRNA 3.0 microarray analysis on Tdrd7-/- mouse lenses at postnatal day (P) 4, a stage preceding cataract formation. This analysis identifies 22 miRNAs [14 over-expressed (miR-15a, miR-19a, miR-138, miR-328, miR-339, miR-345, miR-378b, miR-384, miR-467a, miR-1224, miR-1935, miR-1946a, miR-3102, miR-3107), 8 reduced (let-7b, miR-34c, miR-298, miR-382, miR-409, miR-1198, miR-1947, miR-3092)] to be significantly misexpressed (fold-change ≥ ± 1.2, p-value < 0.05) in Tdrd7-/- lenses. To understand how these misexpressed miRNAs impact Tdrd7-/- cataract, we predicted their mRNA targets and examined their misexpression upon Tdrd7-deficiency by performing comparative transcriptomics analysis on P4 and P30 Tdrd7-/- lens. To prioritize these target mRNAs, we used various stringency filters (e.g., fold-change in Tdrd7-/- lens, iSyTE-based lens-enriched expression) and identified 98 reduced and 89 elevated mRNA targets for overexpressed and reduced miRNAs, respectively, which were classified as “top-priority” “high-priority,” and “promising” candidates. For Tdrd7-/- lens overexpressed miRNAs, this approach identified 18 top-priority reduced target mRNAs: Alad, Ankrd46, Ceacam10, Dgat2, Ednrb, H2-Eb1, Klhl22, Lin7a, Loxl1, Lpin1, Npc1, Olfm1, Ppm1e, Ppp1r1a, Rgs8, Shisa4, Snx22 and Wnk2. Majority of these targets were also altered in other gene-specific perturbation mouse models (e.g., Brg1, E2f1/E2f2/E2f3, Foxe3, Hsf4, Klf4, Mafg/Mafk, Notch) of lens defects/cataract, suggesting their importance to lens biology. Gene ontology (GO) provided further insight into their relevance to lens pathology. For example, the Tdrd7-deficient lens capsule defect may be explained by reduced mRNA targets (e.g., Col4a3, Loxl1, Timp2, Timp3) associated with “basement membrane”. GO analysis also identified new genes (e.g., Casz1, Rasgrp1) recently linked to lens biology/pathology. Together, these analyses define a new Tdrd7-downstream miRNA-mRNA network, in turn, uncovering several new mRNA targets and their associated pathways relevant to lens biology and offering molecular insights into the pathology of congenital cataract.
Collapse
Affiliation(s)
- Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Salma Al Saai
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.,Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, United States
| | - Sanjaya K Shrestha
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.,Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, United States
| |
Collapse
|