1
|
Feliciello I, Ljubić S, Đermić E, Ivanković S, Zahradka D, Đermić D. Single-strand DNA-binding protein suppresses illegitimate recombination in Escherichia coli, acting in synergy with RecQ helicase. Sci Rep 2024; 14:20476. [PMID: 39227621 PMCID: PMC11372144 DOI: 10.1038/s41598-024-70817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Single-strand DNA-binding proteins SSB/RPA are ubiquitous and essential proteins that bind ssDNA in bacteria/eukaryotes and coordinate DNA metabolic processes such as replication, repair, and recombination. SSB protects ssDNA from degradation by nucleases, while also facilitating/regulating the activity of multiple partner proteins involved in DNA processes. Using Spi- assay, which detects aberrantly excised λ prophage from the E. coli chromosome as a measure of illegitimate recombination (IR) occurrence, we have shown that SSB inhibits IR in several DSB resection pathways. The conditional ssb-1 mutation produced a higher IR increase at the nonpermissive temperature than the recQ inactivation. A double ssb-1 recQ mutant had an even higher level of IR, while showing reduced homologous recombination (HR). Remarkably, the ssb gene overexpression complemented recQ deficiency in suppressing IR, indicating that the SSB function is epistatic to RecQ. Overproduced truncated SSBΔC8 protein, which binds to ssDNA, but does not interact with partner proteins, only partially complemented recQ and ssb-1 mutations, while causing an IR increase in otherwise wild-type bacteria, suggesting that ssDNA binding of SSB is required but not sufficient for effective IR inhibition, which rather entails interaction with RecQ and likely some other protein(s). Our results depict SSB as the main genome caretaker in E. coli, which facilitates HR while inhibiting IR. In enabling high-fidelity DSB repair under physiological conditions SSB is assisted by RecQ helicase, whose activity it controls. Conversely, an excess of SSB renders RecQ redundant for IR suppression.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Sven Ljubić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Edyta Đermić
- Division of Phytomedicine, Department of Plant Pathology, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Siniša Ivanković
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Zahradka
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Damir Đermić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
2
|
Weeks-Pollenz SJ, Petrides MJ, Davis R, Harris KK, Bloom LB. Single-stranded DNA binding protein hitches a ride with the Escherichia coli YoaA-χ helicase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600097. [PMID: 38948847 PMCID: PMC11213134 DOI: 10.1101/2024.06.21.600097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Escherichia coli XPD/Rad3-like helicase, YoaA, and DNA polymerase III subunit, χ, are involved in E. coli DNA damage tolerance and repair. YoaA and χ promote tolerance to the DNA chain-terminator, 3 -azidothymidine (AZT), and together form the functional helicase complex, YoaA-χ. How YoaA-χ contributes to DNA damage tolerance is not well understood. E. coli single-stranded DNA binding protein (SSB) accumulates at stalled replication forks, and the SSB-χ interaction is required to promote AZT tolerance via an unknown mechanism. YoaA-χ and SSB interactions were investigated in vitro to better understand this DNA damage tolerance mechanism, and we discovered YoaA-χ and SSB have a functional interaction. SSB confers a substrate-specific effect on the helicase activity of YoaA-χ, barely affecting YoaA-χ on an overhang DNA substrate but inhibiting YoaA-χ on forked DNA. A paralog helicase, DinG, unwinds SSB-bound DNA in a similar manner to YoaA-χ on the substrates tested. Through use of ensemble experiments, we believe SSB binds behind YoaA-χ relative to the DNA ds/ss junction and show via single-molecule assays that SSB translocates along ssDNA with YoaA-χ. This is, to our knowledge, the first demonstration of a mechanoenzyme pulling SSB along ssDNA.
Collapse
Affiliation(s)
| | | | | | | | - Linda B. Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610-0245, USA
| |
Collapse
|
3
|
Martucci M, Moretton A, Tarrés-Solé A, Ropars V, Lambert L, Vernet P, Solà M, Falkenberg M, Farge G, van den Wildenberg S. The mutation R107Q alters mtSSB ssDNA compaction ability and binding dynamics. Nucleic Acids Res 2024; 52:5912-5927. [PMID: 38742632 PMCID: PMC11162770 DOI: 10.1093/nar/gkae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondrial single-stranded DNA-binding protein (mtSSB) is essential for mitochondrial DNA (mtDNA) replication. Recently, several mtSSB variants have been associated with autosomal dominant mitochondrial optic atrophy and retinal dystrophy. Here, we have studied at the molecular level the functional consequences of one of the most severe mtSSB variants, R107Q. We first studied the oligomeric state of this variant and observed that the mtSSBR107Q mutant forms stable tetramers in vitro. On the other hand, we showed, using complementary single-molecule approaches, that mtSSBR107Q displays a lower intramolecular ssDNA compaction ability and a higher ssDNA dissociation rate than the WT protein. Real-time competition experiments for ssDNA-binding showed a marked advantage of mtSSBWT over mtSSBR107Q. Combined, these results show that the R107Q mutation significantly impaired the ssDNA-binding and compacting ability of mtSSB, likely by weakening mtSSB ssDNA wrapping efficiency. These features are in line with our molecular modeling of ssDNA on mtSSB showing that the R107Q mutation may destabilize local interactions and results in an electronegative spot that interrupts an ssDNA-interacting-electropositive patch, thus reducing the potential mtSSB-ssDNA interaction sites.
Collapse
Affiliation(s)
- Martial Martucci
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Amandine Moretton
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Aleix Tarrés-Solé
- Structural MitoLab, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Louise Lambert
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Patrick Vernet
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Maria Solà
- Structural MitoLab, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Geraldine Farge
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Siet van den Wildenberg
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, IRD, Université Jean Monnet Saint Etienne, LMV, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Dulin D. An Introduction to Magnetic Tweezers. Methods Mol Biol 2024; 2694:375-401. [PMID: 37824014 DOI: 10.1007/978-1-0716-3377-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Magnetic tweezers are a single-molecule force and torque spectroscopy technique that enable the mechanical interrogation in vitro of biomolecules, such as nucleic acids and proteins. They use a magnetic field originating from either permanent magnets or electromagnets to attract a magnetic particle, thus stretching the tethering biomolecule. They nicely complement other force spectroscopy techniques such as optical tweezers and atomic force microscopy (AFM) as they operate as a very stable force clamp, enabling long-duration experiments over a very broad range of forces spanning from 10 fN to 1 nN, with 1-10 milliseconds time and sub-nanometer spatial resolution. Their simplicity, robustness, and versatility have made magnetic tweezers a key technique within the field of single-molecule biophysics, being broadly applied to study the mechanical properties of, e.g., nucleic acids, genome processing molecular motors, protein folding, and nucleoprotein filaments. Furthermore, magnetic tweezers allow for high-throughput single-molecule measurements by tracking hundreds of biomolecules simultaneously both in real-time and at high spatiotemporal resolution. Magnetic tweezers naturally combine with surface-based fluorescence spectroscopy techniques, such as total internal reflection fluorescence microscopy, enabling correlative fluorescence and force/torque spectroscopy on biomolecules. This chapter presents an introduction to magnetic tweezers including a description of the hardware, the theory behind force calibration, its spatiotemporal resolution, combining it with other techniques, and a (non-exhaustive) overview of biological applications.
Collapse
Affiliation(s)
- David Dulin
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
6
|
Shinn MK, Chaturvedi SK, Kozlov AG, Lohman T. Allosteric effects of E. coli SSB and RecR proteins on RecO protein binding to DNA. Nucleic Acids Res 2023; 51:2284-2297. [PMID: 36808259 PMCID: PMC10018359 DOI: 10.1093/nar/gkad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Escherichia coli single stranded (ss) DNA binding protein (SSB) plays essential roles in DNA maintenance. It binds ssDNA with high affinity through its N-terminal DNA binding core and recruits at least 17 different SSB interacting proteins (SIPs) that are involved in DNA replication, recombination, and repair via its nine amino acid acidic tip (SSB-Ct). E. coli RecO, a SIP, is an essential recombination mediator protein in the RecF pathway of DNA repair that binds ssDNA and forms a complex with E. coli RecR protein. Here, we report ssDNA binding studies of RecO and the effects of a 15 amino acid peptide containing the SSB-Ct monitored by light scattering, confocal microscope imaging, and analytical ultracentrifugation (AUC). We find that one RecO monomer can bind the oligodeoxythymidylate, (dT)15, while two RecO monomers can bind (dT)35 in the presence of the SSB-Ct peptide. When RecO is in molar excess over ssDNA, large RecO-ssDNA aggregates occur that form with higher propensity on ssDNA of increasing length. Binding of RecO to the SSB-Ct peptide inhibits RecO-ssDNA aggregation. RecOR complexes can bind ssDNA via RecO, but aggregation is suppressed even in the absence of the SSB-Ct peptide, demonstrating an allosteric effect of RecR on RecO binding to ssDNA. Under conditions where RecO binds ssDNA but does not form aggregates, SSB-Ct binding enhances the affinity of RecO for ssDNA. For RecOR complexes bound to ssDNA, we also observe a shift in RecOR complex equilibrium towards a RecR4O complex upon binding SSB-Ct. These results suggest a mechanism by which SSB recruits RecOR to facilitate loading of RecA onto ssDNA gaps.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sumit K Chaturvedi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- To whom correspondence should be addressed. Tel: +1 314 362 4393; Fax: +1 314 362 7183;
| |
Collapse
|
7
|
Newcomb ESP, Douma LG, Morris LA, Bloom LB. The Escherichia coli clamp loader rapidly remodels SSB on DNA to load clamps. Nucleic Acids Res 2022; 50:12872-12884. [PMID: 36511874 PMCID: PMC9825162 DOI: 10.1093/nar/gkac1169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Single-stranded DNA binding proteins (SSBs) avidly bind ssDNA and yet enzymes that need to act during DNA replication and repair are not generally impeded by SSB, and are often stimulated by SSB. Here, the effects of Escherichia coli SSB on the activities of the DNA polymerase processivity clamp loader were investigated. SSB enhances binding of the clamp loader to DNA by increasing the lifetime on DNA. Clamp loading was measured on DNA substrates that differed in length of ssDNA overhangs to permit SSB binding in different binding modes. Even though SSB binds DNA adjacent to single-stranded/double-stranded DNA junctions where clamps are loaded, the rate of clamp loading on DNA was not affected by SSB on any of the DNA substrates. Direct measurements of the relative timing of DNA-SSB remodeling and enzyme-DNA binding showed that the clamp loader rapidly remodels SSB on DNA such that SSB has little effect on DNA binding rates. However, when SSB was mutated to reduce protein-protein interactions with the clamp loader, clamp loading was inhibited by impeding binding of the clamp loader to DNA. Thus, protein-protein interactions between the clamp loader and SSB facilitate rapid DNA-SSB remodeling to allow rapid clamp loader-DNA binding and clamp loading.
Collapse
Affiliation(s)
- Elijah S P Newcomb
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Leslie A Morris
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Linda B Bloom
- To whom correspondence should be addressed. Tel: +1 352 294 8379; Fax: +1 352 392 2953;
| |
Collapse
|
8
|
Zhang S, Xiao X, Kong J, Lu K, Dou SX, Wang PY, Ma L, Liu Y, Li G, Li W, Zhang H. DNA polymerase Gp90 activities and regulations on strand displacement DNA synthesis revealed at single-molecule level. FASEB J 2021; 35:e21607. [PMID: 33908664 DOI: 10.1096/fj.202100033rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 11/11/2022]
Abstract
Strand displacement DNA synthesis (SDDS) is an essential step in DNA replication. With magnetic tweezers, we investigated SDDS kinetics of wild-type gp90 and its exonuclease-deficient polymerase gp90 exo- at single-molecule level. A novel binding state of gp90 to the fork flap was confirmed prior to SDDS, suggesting an intermediate in the initiation of SDDS. The rate and processivity of SDDS by gp90 exo- or wt-gp90 are increased with force and dNTP concentration. The rate and processivity of exonuclease by wt-gp90 are decreased with force. High GC content decreases SDDS and exonuclease processivity but increases exonuclease rate for wt-gp90. The high force and dNTP concentration and low GC content facilitate the successive SDDS but retard the successive exonuclease for wt-gp90. Furthermore, increasing GC content accelerates the transition from SDDS or exonuclease to exonuclease. This work reveals the kinetics of SDDS in detail and offers a broader cognition on the regulation of various factors on SDDS at single-polymerase level.
Collapse
Affiliation(s)
- Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China.,National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingwei Kong
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Lu
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo-Xing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Songshan Lake Materials Laboratory, Dongguan, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuru Liu
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,Songshan Lake Materials Laboratory, Dongguan, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
9
|
Magnetic Tweezers-Based Single-Molecule Assays to Study Interaction of E. coli SSB with DNA and RecQ Helicase. Methods Mol Biol 2021; 2281:93-115. [PMID: 33847954 DOI: 10.1007/978-1-0716-1290-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability of magnetic tweezers to apply forces and measure molecular displacements has resulted in its extensive use to study the activity of enzymes involved in various aspects of nucleic acid metabolism. These studies have led to the discovery of key aspects of protein-protein and protein-nucleic acid interaction, uncovering dynamic heterogeneities that are lost to ensemble averaging in bulk experiments. The versatility of magnetic tweezers lies in the possibility and ease of tracking multiple parallel single-molecule events to yield statistically relevant single-molecule data. Moreover, they allow tracking both fast millisecond dynamics and slow processes (spanning several hours). In this chapter, we present the protocols used to study the interaction between E. coli SSB, single-stranded DNA (ssDNA), and E. coli RecQ helicase using magnetic tweezers. In particular, we propose constant force and force modulation assays to investigate SSB binding to DNA, as well as to characterize various facets of RecQ helicase activity stimulation by SSB.
Collapse
|
10
|
Shinn MK, Kozlov AG, Lohman TM. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res 2021; 49:1987-2004. [PMID: 33450019 PMCID: PMC7913777 DOI: 10.1093/nar/gkaa1291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli RecO is a recombination mediator protein that functions in the RecF pathway of homologous recombination, in concert with RecR, and interacts with E. coli single stranded (ss) DNA binding (SSB) protein via the last 9 amino acids of the C-terminal tails (SSB-Ct). Structures of the E. coli RecR and RecOR complexes are unavailable; however, crystal structures from other organisms show differences in RecR oligomeric state and RecO stoichiometry. We report analytical ultracentrifugation studies of E. coli RecR assembly and its interaction with RecO for a range of solution conditions using both sedimentation velocity and equilibrium approaches. We find that RecR exists in a pH-dependent dimer-tetramer equilibrium that explains the different assembly states reported in previous studies. RecO binds with positive cooperativity to a RecR tetramer, forming both RecR4O and RecR4O2 complexes. We find no evidence of a stable RecO complex with RecR dimers. However, binding of RecO to SSB-Ct peptides elicits an allosteric effect, eliminating the positive cooperativity and shifting the equilibrium to favor a RecR4O complex. These studies suggest a mechanism for how SSB binding to RecO influences the distribution of RecOR complexes to facilitate loading of RecA onto SSB coated ssDNA to initiate homologous recombination.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Phase separation by ssDNA binding protein controlled via protein-protein and protein-DNA interactions. Proc Natl Acad Sci U S A 2020; 117:26206-26217. [PMID: 33020264 PMCID: PMC7584906 DOI: 10.1073/pnas.2000761117] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells must rapidly and efficiently react to DNA damage to avoid its harmful consequences. Here we report a molecular mechanism that gives rise to a model of how bacterial cells mobilize DNA repair proteins for timely response to genomic stress and initiation of DNA repair upon exposure of single-stranded DNA. We found that bacterial single-stranded DNA binding protein (SSB), a central player in genome metabolism, can undergo dynamic phase separation under physiological conditions. SSB condensates can store a wide array of DNA repair proteins that specifically interact with SSB. However, elevated levels of single-stranded DNA during genomic stress can dissolve SSB condensates, enabling rapid mobilization of SSB and SSB-interacting proteins to sites of DNA damage. Bacterial single-stranded (ss)DNA-binding proteins (SSB) are essential for the replication and maintenance of the genome. SSBs share a conserved ssDNA-binding domain, a less conserved intrinsically disordered linker (IDL), and a highly conserved C-terminal peptide (CTP) motif that mediates a wide array of protein−protein interactions with DNA-metabolizing proteins. Here we show that the Escherichia coli SSB protein forms liquid−liquid phase-separated condensates in cellular-like conditions through multifaceted interactions involving all structural regions of the protein. SSB, ssDNA, and SSB-interacting molecules are highly concentrated within the condensates, whereas phase separation is overall regulated by the stoichiometry of SSB and ssDNA. Together with recent results on subcellular SSB localization patterns, our results point to a conserved mechanism by which bacterial cells store a pool of SSB and SSB-interacting proteins. Dynamic phase separation enables rapid mobilization of this protein pool to protect exposed ssDNA and repair genomic loci affected by DNA damage.
Collapse
|
12
|
Wang Y, Sun Z, Bianco PR, Lyubchenko YL. Atomic force microscopy-based characterization of the interaction of PriA helicase with stalled DNA replication forks. J Biol Chem 2020; 295:6043-6052. [PMID: 32209655 DOI: 10.1074/jbc.ra120.013013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/21/2020] [Indexed: 01/31/2023] Open
Abstract
In bacteria, the restart of stalled DNA replication forks requires the DNA helicase PriA. PriA can recognize and remodel abandoned DNA replication forks, unwind DNA in the 3'-to-5' direction, and facilitate the loading of the helicase DnaB onto the DNA to restart replication. Single-stranded DNA-binding protein (SSB) is typically present at the abandoned forks, but it is unclear how SSB and PriA interact, although it has been shown that the two proteins interact both physically and functionally. Here, we used atomic force microscopy to visualize the interaction of PriA with DNA substrates with or without SSB. These experiments were done in the absence of ATP to delineate the substrate recognition pattern of PriA before its ATP-catalyzed DNA-unwinding reaction. These analyses revealed that in the absence of SSB, PriA binds preferentially to a fork substrate with a gap in the leading strand. Such a preference has not been observed for 5'- and 3'-tailed duplexes, suggesting that it is the fork structure that plays an essential role in PriA's selection of DNA substrates. Furthermore, we found that in the absence of SSB, PriA binds exclusively to the fork regions of the DNA substrates. In contrast, fork-bound SSB loads PriA onto the duplex DNA arms of forks, suggesting a remodeling of PriA by SSB. We also demonstrate that the remodeling of PriA requires a functional C-terminal domain of SSB. In summary, our atomic force microscopy analyses reveal key details in the interactions between PriA and stalled DNA replication forks with or without SSB.
Collapse
Affiliation(s)
- Yaqing Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025
| | - Piero R Bianco
- Center for Single Molecule Biophysics, University at Buffalo, SUNY, Buffalo, New York 14214
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025.
| |
Collapse
|
13
|
Qin Z, Bi L, Hou XM, Zhang S, Zhang X, Lu Y, Li M, Modesti M, Xi XG, Sun B. Human RPA activates BLM's bidirectional DNA unwinding from a nick. eLife 2020; 9:54098. [PMID: 32101168 PMCID: PMC7065910 DOI: 10.7554/elife.54098] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
BLM is a multifunctional helicase that plays critical roles in maintaining genome stability. It processes distinct DNA substrates, but not nicked DNA, during many steps in DNA replication and repair. However, how BLM prepares itself for diverse functions remains elusive. Here, using a combined single-molecule approach, we find that a high abundance of BLMs can indeed unidirectionally unwind dsDNA from a nick when an external destabilizing force is applied. Strikingly, human replication protein A (hRPA) not only ensures that limited quantities of BLMs processively unwind nicked dsDNA under a reduced force but also permits the translocation of BLMs on both intact and nicked ssDNAs, resulting in a bidirectional unwinding mode. This activation necessitates BLM targeting on the nick and the presence of free hRPAs in solution whereas direct interactions between them are dispensable. Our findings present novel DNA unwinding activities of BLM that potentially facilitate its function switching in DNA repair.
Collapse
Affiliation(s)
- Zhenheng Qin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lulu Bi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Siqi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- University of Chinese Academy of Sciences, Beijing, China.,Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Xu-Guang Xi
- The LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, Gif-sur-Yvette, France
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
14
|
Shinn MK, Kozlov AG, Nguyen B, Bujalowski WM, Lohman TM. Are the intrinsically disordered linkers involved in SSB binding to accessory proteins? Nucleic Acids Res 2019; 47:8581-8594. [PMID: 31329947 PMCID: PMC7145534 DOI: 10.1093/nar/gkz606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli single strand (ss) DNA binding (SSB) protein protects ssDNA intermediates and recruits at least 17 SSB interacting proteins (SIPs) during genome maintenance. The SSB C-termini contain a 9 residue acidic tip and a 56 residue intrinsically disordered linker (IDL). The acidic tip interacts with SIPs; however a recent proposal suggests that the IDL may also interact with SIPs. Here we examine the binding to four SIPs (RecO, PriC, PriA and χ subunit of DNA polymerase III) of three peptides containing the acidic tip and varying amounts of the IDL. Independent of IDL length, we find no differences in peptide binding to each individual SIP indicating that binding is due solely to the acidic tip. However, the tip shows specificity, with affinity decreasing in the order: RecO > PriA ∼ χ > PriC. Yet, RecO binding to the SSB tetramer and an SSB–ssDNA complex show significant thermodynamic differences compared to the peptides alone, suggesting that RecO interacts with another region of SSB, although not the IDL. SSB containing varying IDL deletions show different binding behavior, with the larger linker deletions inhibiting RecO binding, likely due to increased competition between the acidic tip interacting with DNA binding sites within SSB.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Binh Nguyen
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Wlodek M Bujalowski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Timothy M Lohman
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
16
|
Seol Y, Harami GM, Kovács M, Neuman KC. Homology sensing via non-linear amplification of sequence-dependent pausing by RecQ helicase. eLife 2019; 8:e45909. [PMID: 31464683 PMCID: PMC6773442 DOI: 10.7554/elife.45909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
RecQ helicases promote genomic stability through their unique ability to suppress illegitimate recombination and resolve recombination intermediates. These DNA structure-specific activities of RecQ helicases are mediated by the helicase-and-RNAseD like C-terminal (HRDC) domain, via unknown mechanisms. Here, employing single-molecule magnetic tweezers and rapid kinetic approaches we establish that the HRDC domain stabilizes intrinsic, sequence-dependent, pauses of the core helicase (lacking the HRDC) in a DNA geometry-dependent manner. We elucidate the core unwinding mechanism in which the unwinding rate depends on the stability of the duplex DNA leading to transient sequence-dependent pauses. We further demonstrate a non-linear amplification of these transient pauses by the controlled binding of the HRDC domain. The resulting DNA sequence- and geometry-dependent pausing may underlie a homology sensing mechanism that allows rapid disruption of unstable (illegitimate) and stabilization of stable (legitimate) DNA strand invasions, which suggests an intrinsic mechanism of recombination quality control by RecQ helicases.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule BiophysicsNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Gábor M Harami
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research GroupEötvös Loránd UniversityBudapestHungary
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research GroupEötvös Loránd UniversityBudapestHungary
- Department of Biochemistry, MTA-ELTE Motor Pharmacology Research GroupEötvös Loránd UniversityBudapestHungary
| | - Keir C Neuman
- Laboratory of Single Molecule BiophysicsNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
17
|
Bagchi D, Manosas M, Zhang W, Manthei KA, Hodeib S, Ducos B, Keck JL, Croquette V. Single molecule kinetics uncover roles for E. coli RecQ DNA helicase domains and interaction with SSB. Nucleic Acids Res 2019; 46:8500-8515. [PMID: 30053104 PMCID: PMC6144805 DOI: 10.1093/nar/gky647] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022] Open
Abstract
Most RecQ DNA helicases share a conserved domain arrangement that mediates their activities in genomic stability. This arrangement comprises a helicase motor domain, a RecQ C-terminal (RecQ-C) region including a winged-helix (WH) domain, and a ‘Helicase and RNase D C-terminal’ (HRDC) domain. Single-molecule real-time translocation and DNA unwinding by full-length Escherichia coli RecQ and variants lacking either the HRDC or both the WH and HRDC domains was analyzed. RecQ operated under two interconvertible kinetic modes, ‘slow’ and ‘normal’, as it unwound duplex DNA and translocated on single-stranded (ss) DNA. Consistent with a crystal structure of bacterial RecQ bound to ssDNA by base stacking, abasic sites blocked RecQ unwinding. Removal of the HRDC domain eliminates the slow mode while preserving the normal mode of activity. Unexpectedly, a RecQ variant lacking both the WH and HRDC domains retains weak helicase activity. The inclusion of E. coli ssDNA-binding protein (SSB) induces a third ‘fast’ unwinding mode four times faster than the normal RecQ mode and enhances the overall helicase activity (affinity, rate, and processivity). SSB stimulation was, furthermore, observed in the RecQ deletion variants, including the variant missing the WH domain. Our results support a model in which RecQ and SSB have multiple interacting modes.
Collapse
Affiliation(s)
- Debjani Bagchi
- Physics Department, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat - 390002, India
| | - Maria Manosas
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Barcelona 08028, Spain.,CIBER-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain
| | - Weiting Zhang
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Kelly A Manthei
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706-1532, USA
| | - Samar Hodeib
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Bertrand Ducos
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706-1532, USA
| | - Vincent Croquette
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
18
|
Kasaciunaite K, Fettes F, Levikova M, Daldrop P, Anand R, Cejka P, Seidel R. Competing interaction partners modulate the activity of Sgs1 helicase during DNA end resection. EMBO J 2019; 38:e101516. [PMID: 31268598 PMCID: PMC6601037 DOI: 10.15252/embj.2019101516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 11/09/2022] Open
Abstract
DNA double-strand break repair by homologous recombination employs long-range resection of the 5' DNA ends at the break points. In Saccharomyces cerevisiae, this process can be performed by the RecQ helicase Sgs1 and the helicase-nuclease Dna2. Though functional interplay between them has been shown, it remains unclear whether and how these proteins cooperate on the molecular level. Here, we resolved the dynamics of DNA unwinding by Sgs1 at the single-molecule level and investigated Sgs1 regulation by Dna2, the single-stranded DNA-binding protein RPA, and the Top3-Rmi1 complex. We found that Dna2 modulates the velocity of Sgs1, indicating that during end resection both proteins form a functional complex and couple their activities. Sgs1 drives DNA unwinding and feeds single-stranded DNA to Dna2 for degradation. RPA was found to regulate the processivity and the affinity of Sgs1 to the DNA fork, while Top3-Rmi1 modulated the velocity of Sgs1. We hypothesize that the differential regulation of Sgs1 activity by its protein partners is important to support diverse cellular functions of Sgs1 during the maintenance of genome stability.
Collapse
Affiliation(s)
- Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Fergus Fettes
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Maryna Levikova
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Peter Daldrop
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Mills M, Tse-Dinh YC, Neuman KC. Direct observation of topoisomerase IA gate dynamics. Nat Struct Mol Biol 2018; 25:1111-1118. [PMID: 30478267 PMCID: PMC6379066 DOI: 10.1038/s41594-018-0158-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Type IA topoisomerases cleave single-stranded DNA and relieve negative supercoils in discrete steps corresponding to the passage of the intact DNA strand through the cleaved strand. Although type IA topoisomerases are assumed to accomplish this strand passage via a protein-mediated DNA gate, opening of this gate has never been observed. We developed a single-molecule assay to directly measure gate opening of the Escherichia coli type IA topoisomerases I and III. We found that after cleavage of single-stranded DNA, the protein gate opens by as much as 6.6 nm and can close against forces in excess of 16 pN. Key differences in the cleavage, ligation, and gate dynamics of these two enzymes provide insights into their different cellular functions. The single-molecule results are broadly consistent with conformational changes obtained from molecular dynamics simulations. These results allowed us to develop a mechanistic model of interactions between type IA topoisomerases and single-stranded DNA.
Collapse
Affiliation(s)
- Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Antony E, Lohman TM. Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Semin Cell Dev Biol 2018; 86:102-111. [PMID: 29588158 DOI: 10.1016/j.semcdb.2018.03.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/25/2023]
Abstract
Single stranded DNA binding proteins (SSB) are essential to the cell as they stabilize transiently open single stranded DNA (ssDNA) intermediates, recruit appropriate DNA metabolism proteins, and coordinate fundamental processes such as replication, repair and recombination. Escherichia coli single stranded DNA binding protein (EcSSB) has long served as the prototype for the study of SSB function. The structure, functions, and DNA binding properties of EcSSB are well established: The protein is a stable homotetramer with each subunit possessing an N-terminal DNA binding core, a C-terminal protein-protein interaction tail, and an intervening intrinsically disordered linker (IDL). EcSSB wraps ssDNA in multiple DNA binding modes and can diffuse along DNA to remove secondary structures and remodel other protein-DNA complexes. This review provides an update on these features based on recent findings, with special emphasis on the functional and mechanistic relevance of the IDL and DNA binding modes.
Collapse
Affiliation(s)
- Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|