1
|
Marillonnet S, Werner S. Golden Gate Cloning of Multigene Constructs Using the Modular Cloning System MoClo. Methods Mol Biol 2025; 2850:21-39. [PMID: 39363064 DOI: 10.1007/978-1-0716-4220-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for construct engineering for biological research and synthetic biology. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the modular cloning system MoClo. Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Collapse
Affiliation(s)
- Sylvestre Marillonnet
- Leibniz-Institut für Pflanzenbiochemie, Department of Cell and Metabolic Biology, Halle, Germany.
| | | |
Collapse
|
2
|
de Vries ST, Kley L, Schindler D. Use of a Golden Gate Plasmid Set Enabling Scarless MoClo-Compatible Transcription Unit Assembly. Methods Mol Biol 2025; 2850:105-131. [PMID: 39363069 DOI: 10.1007/978-1-0716-4220-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Golden Gate cloning has become a powerful and widely used DNA assembly method. Its modular nature and the reusability of standardized parts allow rapid construction of transcription units and multi-gene constructs. Importantly, its modular structure makes it compatible with laboratory automation, allowing for systematic and highly complex DNA assembly. Golden Gate cloning relies on type IIS enzymes that cleave an adjacent undefined sequence motif at a defined distance from the directed enzyme recognition motif. This feature has been used to define hierarchical Golden Gate assembly standards with defined overhangs ("fusion sites") for defined part libraries. The simplest Golden Gate standard would consist of three-part libraries, namely promoter, coding and terminator sequences, respectively. Each library would have defined fusion sites, allowing a hierarchical Golden Gate assembly to generate transcription units. Typically, type IIS enzymes are used, which generate four nucleotide overhangs. This results in small scar sequences in hierarchical DNA assemblies, which can affect the functionality of transcription units. However, there are enzymes that generate three nucleotide overhangs, such as SapI. Here we provide a step-by-step protocol on how to use SapI to assemble transcription units using the start and stop codon for scarless transcription unit assembly. The protocol also provides guidance on how to perform multi-gene Golden Gate assemblies with the resulting transcription units using the Modular Cloning standard. The transcription units expressing fluorophores are used as an example.
Collapse
Affiliation(s)
- Stijn T de Vries
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Laura Kley
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Laborda-Mansilla J, García-Ruiz E. Advancements in Golden Gate Cloning: A Comprehensive Review. Methods Mol Biol 2025; 2850:481-500. [PMID: 39363089 DOI: 10.1007/978-1-0716-4220-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Researchers have dedicated efforts to refining genetic part assembly techniques, responding to the demand for complex DNA constructs. The optimization efforts, targeting enhanced efficiency, fidelity, and modularity, have yielded streamlined protocols. Among these, Golden Gate cloning has gained prominence, offering a modular and hierarchical approach for constructing complex DNA fragments. This method is instrumental in establishing a repository of reusable parts, effectively reducing the costs and proving highly valuable for high-throughput DNA assembly projects. In this review, we delve into the main protocol of Golden Gate cloning, providing refined insights to enhance protocols and address potential challenges. Additionally, we perform a thorough evaluation of the primary modular cloning toolkits adopted by the scientific community. The discussion includes an exploration of recent advances and challenges in the field, providing a comprehensive overview of the current state of Golden Gate cloning.
Collapse
Affiliation(s)
- Jesús Laborda-Mansilla
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Madrid, Spain
| | - Eva García-Ruiz
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Madrid, Spain.
| |
Collapse
|
4
|
Brück M, Köbel TS, Dittmar S, Ramírez Rojas AA, Georg J, Berghoff BA, Schindler D. A library-based approach allows systematic and rapid evaluation of seed region length and reveals design rules for synthetic bacterial small RNAs. iScience 2024; 27:110774. [PMID: 39280619 PMCID: PMC11402225 DOI: 10.1016/j.isci.2024.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
All organisms must respond to environmental changes. In bacteria, small RNAs (sRNAs) are an important aspect of the regulation network underlying the adaptation to such changes. sRNAs base-pair with their target mRNAs, allowing rapid modulation of the proteome. This post-transcriptional regulation is usually facilitated by RNA chaperones, such as Hfq. sRNAs have a potential as synthetic regulators that can be modulated by rational design. In this study, we use a library-based approach and oxacillin susceptibility assays to investigate the importance of the seed region length for synthetic sRNAs based on RybB and SgrS scaffolds in Escherichia coli. In the presence of Hfq we show that 12 nucleotides are sufficient for regulation. Furthermore, we observe a scaffold-specific Hfq-dependency and processing by RNase E. Our results provide information for design considerations of synthetic sRNAs in basic and applied research.
Collapse
Affiliation(s)
- Michel Brück
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Tania S Köbel
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Sophie Dittmar
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Adán A Ramírez Rojas
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Jens Georg
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Daniel Schindler
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany
| |
Collapse
|
5
|
Roehner N, Roberts J, Lapets A, Gould D, Akavoor V, Qin L, Gordon DB, Voigt C, Densmore D. GOLDBAR: A Framework for Combinatorial Biological Design. ACS Synth Biol 2024; 13:2899-2911. [PMID: 39162314 DOI: 10.1021/acssynbio.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
With the rise of new DNA part libraries and technologies for assembling DNA, synthetic biologists are increasingly constructing and screening combinatorial libraries to optimize their biological designs. As combinatorial libraries are used to generate data on design performance, new rules for composing biological designs will emerge. Most formal frameworks for combinatorial design, however, do not yet support formal comparison of design composition, which is needed to facilitate automated analysis and machine learning in massive biological design spaces. To address this need, we introduce a combinatorial design framework called GOLDBAR. Compared with existing frameworks, GOLDBAR enables synthetic biologists to intersect and merge the rules for entire classes of biological designs to extract common design motifs and infer new ones. Here, we demonstrate the application of GOLDBAR to refine/validate design spaces for TetR-homologue transcriptional logic circuits, verify the assembly of a partial nif gene cluster, and infer novel gene clusters for the biosynthesis of rebeccamycin. We also discuss how GOLDBAR could be used to facilitate grammar-based machine learning in synthetic biology.
Collapse
Affiliation(s)
- Nicholas Roehner
- RTX BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - James Roberts
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | | - Dany Gould
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - Vidya Akavoor
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - Lucy Qin
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - D Benjamin Gordon
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher Voigt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Douglas Densmore
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Fang H, Zhao J, Zhao X, Dong N, Zhao Y, Zhang D. Standardized Iterative Genome Editing Method for Escherichia coli Based on CRISPR-Cas9. ACS Synth Biol 2024; 13:613-623. [PMID: 38243901 DOI: 10.1021/acssynbio.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The introduction of complex biosynthetic pathways into the hosts' chromosomes is gaining attention with the development of synthetic biology. While CRISPR-Cas9 has been widely employed for gene knock-in, the process of multigene insertion remains cumbersome due to laborious and empirical gene cloning procedures. To address this, we devised a standardized iterative genome editing system for Escherichia coli, harnessing the power of CRISPR-Cas9 and MetClo assembly. This comprehensive toolkit comprises two fundamental elements based on the Golden Gate standard for modular assembly of sgRNA or CRISPR arrays and donor DNAs. We achieved a gene insertion efficiency of up to 100%, targeting a single locus. Expression of tracrRNA using a strong promoter enhances multiplex genomic insertion efficiency to 7.3%, compared with 0.76% when a native promoter is used. To demonstrate the robust capabilities of this genome editing toolbox, we successfully integrated 5-10 genes from the coenzyme B12 biosynthetic pathway ranging from 5.3 to 8 Kb in length into the chromosome of E. coli chassis cells, resulting in 14 antibiotic-free, plasmid-free producers. Following an extensive screening process involving genes from diverse sources, cistronic design modifications, and chromosome repositioning, we obtained a recombinant strain yielding 1.49 mg L-1 coenzyme B12, the highest known titer achieved by using E. coli as the producer. Illuminating its user-friendliness, this genome editing system is an exceedingly versatile tool for expediently integrating complex biosynthetic pathway genes into hosts' genomes, thus facilitating pathway optimization for chemical production.
Collapse
Affiliation(s)
- Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Science, Beijing 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jianghua Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xinfang Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ning Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ying Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Science, Beijing 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
7
|
Blázquez B, León DS, Torres-Bacete J, Gómez-Luengo Á, Kniewel R, Martínez I, Sordon S, Wilczak A, Salgado S, Huszcza E, Popłoński J, Prieto A, Nogales J. Golden Standard: a complete standard, portable, and interoperative MoClo tool for model and non-model proteobacteria. Nucleic Acids Res 2023; 51:e98. [PMID: 37718823 PMCID: PMC10602866 DOI: 10.1093/nar/gkad758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Modular cloning has become a benchmark technology in synthetic biology. However, a notable disparity exists between its remarkable development and the need for standardization to facilitate seamless interoperability among systems. The field is thus impeded by an overwhelming proliferation of organism-specific systems that frequently lack compatibility. To overcome these issues, we present Golden Standard (GS), a Type IIS assembly method underpinned by the Standard European Vector Architecture. GS unlocks modular cloning applications for most bacteria, and delivers combinatorial multi-part assembly to create genetic circuits of up to twenty transcription units (TUs). Reliance on MoClo syntax renders GS fully compatible with many existing tools and it sets the path towards efficient reusability of available part libraries and assembled TUs. GS was validated in terms of DNA assembly, portability, interoperability and phenotype engineering in α-, β-, γ- and δ-proteobacteria. Furthermore, we provide a computational pipeline for parts characterization that was used to assess the performance of GS parts. To promote community-driven development of GS, we provide a dedicated web-portal including a repository of parts, vectors, and Wizard and Setup tools that guide users in designing constructs. Overall, GS establishes an open, standardized framework propelling the progress of synthetic biology as a whole.
Collapse
Affiliation(s)
- Blas Blázquez
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Álvaro Gómez-Luengo
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Ryan Kniewel
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Igor Martínez
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Sandra Sordon
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Aleksandra Wilczak
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Sergio Salgado
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Ewa Huszcza
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Jarosław Popłoński
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
8
|
Du B, Sun M, Hui W, Xie C, Xu X. Recent Advances on Key Enzymes of Microbial Origin in the Lycopene Biosynthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12927-12942. [PMID: 37609695 DOI: 10.1021/acs.jafc.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene is a common carotenoid found mainly in ripe red fruits and vegetables that is widely used in the food industry due to its characteristic color and health benefits. Microbial synthesis of lycopene is gradually replacing the traditional methods of plant extraction and chemical synthesis as a more economical and productive manufacturing strategy. The biosynthesis of lycopene is a typical multienzyme cascade reaction, and it is important to understand the characteristics of each key enzyme involved and how they are regulated. In this paper, the catalytic characteristics of the key enzymes involved in the lycopene biosynthesis pathway and related studies are first discussed in detail. Then, the strategies applied to the key enzymes of lycopene synthesis, including fusion proteins, enzyme screening, combinatorial engineering, CRISPR/Cas9-based gene editing, DNA assembly, and scaffolding technologies are purposefully illustrated and compared in terms of both traditional and emerging multienzyme regulatory strategies. Finally, future developments and regulatory options for multienzyme synthesis of lycopene and similar secondary metabolites are also discussed.
Collapse
Affiliation(s)
- Bangmian Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Mengjuan Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| |
Collapse
|
9
|
Bailey TS, Hittmeyer P, Zhang Y, Kubiak AM. Streamlined assembly of cloning and genome editing vectors for genus Clostridium. iScience 2023; 26:107484. [PMID: 37599836 PMCID: PMC10432817 DOI: 10.1016/j.isci.2023.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Reported herein is a new set of vectors designed to streamline molecular cloning and genome editing by exploiting modern cloning methods. The new vectors build on the existing pMTL8000 vectors that have been a staple of Clostridium research for more than a decade. The introduction of two pairs of type IIS restriction sites flanking an insulated multiple cloning site in both a cloning vector and a CRISPR-Cas9 gene editing vector enables plasmid construction in a "one-pot" reaction, avoiding the more laborious steps of conventional cloning. A synthetic lacZα expression cassette introduced between the cloning sites enables visual detection of background colonies. In addition, distinct selection markers on each vector permit selection of the desired clones according to antibiotic resistance. An example of strain development using the new vectors is demonstrated.
Collapse
Affiliation(s)
- Tom S. Bailey
- GROW - School for Oncology and Reproduction, Faculty of Health and Medical Life Sciences, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Philip Hittmeyer
- GROW - School for Oncology and Reproduction, Faculty of Health and Medical Life Sciences, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Yanchao Zhang
- GROW - School for Oncology and Reproduction, Faculty of Health and Medical Life Sciences, Maastricht University, Maastricht, Limburg, the Netherlands
| | | |
Collapse
|
10
|
Taunt HN, Jackson HO, Gunnarsson ÍN, Pervaiz R, Purton S. Accelerating Chloroplast Engineering: A New System for Rapid Generation of Marker-Free Transplastomic Lines of Chlamydomonas reinhardtii. Microorganisms 2023; 11:1967. [PMID: 37630526 PMCID: PMC10457852 DOI: 10.3390/microorganisms11081967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
'Marker-free' strategies for creating transgenic microorganisms avoid the issue of potential transmission of antibiotic resistance genes to other microorganisms. An already-established strategy for engineering the chloroplast genome (=plastome) of the green microalga Chlamydomonas reinhardtii involves the restoration of photosynthetic function using a recipient strain carrying a plastome mutation in a key photosynthesis gene. Selection for transformant colonies is carried out on minimal media, such that only those cells in which the mutated gene has been replaced with a wild-type copy carried on the transgenic DNA are capable of phototrophic growth. However, this approach can suffer from issues of efficiency due to the slow growth of C. reinhardtii on minimal media and the slow die-back of the untransformed lawn of cells when using mutant strains with a limited photosensitivity phenotype. Furthermore, such phototrophic rescue has tended to rely on existing mutants that are not necessarily ideal for transformation and targeted transgene insertion: Mutants carrying point mutations can easily revert, and those with deletions that do not extend to the intended transgene insertion site can give rise to a sub-population of rescued lines that lack the transgene. In order to improve and accelerate the transformation pipeline for C. reinhardtii, we have created a novel recipient line, HNT6, carrying an engineered deletion in exon 3 of psaA, which encodes one of the core subunits of photosystem I (PSI). Such PSI mutants are highly light-sensitive allowing faster recovery of transformant colonies by selecting for light-tolerance on acetate-containing media, rather than phototrophic growth on minimal media. The deletion extends to a site upstream of psaA-3 that serves as a neutral locus for transgene insertion, thereby ensuring that all of the recovered colonies are transformants containing the transgene. We demonstrate the application of HNT6 using a luciferase reporter.
Collapse
Affiliation(s)
- Henry N. Taunt
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Harry O. Jackson
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ísarr N. Gunnarsson
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rabbia Pervaiz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
11
|
Charoonnart P, Taunt HN, Yang L, Webb C, Robinson C, Saksmerprome V, Purton S. Transgenic Microalgae Expressing Double-Stranded RNA as Potential Feed Supplements for Controlling White Spot Syndrome in Shrimp Aquaculture. Microorganisms 2023; 11:1893. [PMID: 37630453 PMCID: PMC10459155 DOI: 10.3390/microorganisms11081893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Viral infection of farmed fish and shellfish represents a major issue within the aquaculture industry. One potential control strategy involves RNA interference of viral gene expression through the oral delivery of specific double-stranded RNA (dsRNA). In previous work, we have shown that recombinant dsRNA can be produced in the chloroplast of the edible microalga Chlamydomonas reinhardtii and used to control disease in shrimp. Here, we report a significant improvement in antiviral dsRNA production and its use to protect shrimp against white spot syndrome virus (WSSV). A new strategy for dsRNA synthesis was developed that uses two convergent copies of the endogenous rrnS promoter to drive high-level transcription of both strands of the WSSV gene element in the chloroplast. Quantitative RT-PCR indicated that ~119 ng dsRNA was produced per liter of culture of the transgenic microalga. This represents an ~10-fold increase in dsRNA relative to our previous report. The engineered alga was assessed for its ability to prevent WSSV infection when fed to shrimp larvae prior to a challenge with the virus. The survival of shrimp given feed supplemented with dried alga containing the dsRNA was significantly enhanced (~69% survival) relative to a negative control (<10% survival). The findings suggest that this new dsRNA production platform could be employed as a low-cost, low-tech control method for aquaculture.
Collapse
Affiliation(s)
- Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Henry Nicholas Taunt
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Luyao Yang
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Conner Webb
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Xu S, Gao S, An Y. Research progress of engineering microbial cell factories for pigment production. Biotechnol Adv 2023; 65:108150. [PMID: 37044266 DOI: 10.1016/j.biotechadv.2023.108150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Pigments are widely used in people's daily life, such as food additives, cosmetics, pharmaceuticals, textiles, etc. In recent years, the natural pigments produced by microorganisms have attracted increased attention because these processes cannot be affected by seasons like the plant extraction methods, and can also avoid the environmental pollution problems caused by chemical synthesis. Synthetic biology and metabolic engineering have been used to construct and optimize metabolic pathways for production of natural pigments in cellular factories. Building microbial cell factories for synthesis of natural pigments has many advantages, including well-defined genetic background of the strains, high-density and rapid culture of cells, etc. Until now, the technical means about engineering microbial cell factories for pigment production and metabolic regulation processes have not been systematically analyzed and summarized. Therefore, the studies about construction, modification and regulation of synthetic pathways for microbial synthesis of pigments in recent years have been reviewed, aiming to provide an up-to-date summary of engineering strategies for microbial synthesis of natural pigments including carotenoids, melanins, riboflavins, azomycetes and quinones. This review should provide new ideas for further improving microbial production of natural pigments in the future.
Collapse
Affiliation(s)
- Shumin Xu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resources Mining and Molecular Breeding, Shenyang, China; Liaoning Provincial Key Laboratory of Agricultural Biotechnology, Shenyang, China.
| |
Collapse
|
13
|
Sellés Vidal L, Isalan M, Heap JT, Ledesma-Amaro R. A primer to directed evolution: current methodologies and future directions. RSC Chem Biol 2023; 4:271-291. [PMID: 37034405 PMCID: PMC10074555 DOI: 10.1039/d2cb00231k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Directed evolution is one of the most powerful tools for protein engineering and functions by harnessing natural evolution, but on a shorter timescale. It enables the rapid selection of variants of biomolecules with properties that make them more suitable for specific applications. Since the first in vitro evolution experiments performed by Sol Spiegelman in 1967, a wide range of techniques have been developed to tackle the main two steps of directed evolution: genetic diversification (library generation), and isolation of the variants of interest. This review covers the main modern methodologies, discussing the advantages and drawbacks of each, and hence the considerations for designing directed evolution experiments. Furthermore, the most recent developments are discussed, showing how advances in the handling of ever larger library sizes are enabling new research questions to be tackled.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
- School of Life Sciences, The University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
14
|
Fages-Lartaud M, Mueller Y, Elie F, Courtade G, Hohmann-Marriott MF. Standard Intein Gene Expression Ramps (SIGER) for Protein-Independent Expression Control. ACS Synth Biol 2023; 12:1058-1071. [PMID: 36920366 PMCID: PMC10127266 DOI: 10.1021/acssynbio.2c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Coordination of multigene expression is one of the key challenges of metabolic engineering for the development of cell factories. Constraints on translation initiation and early ribosome kinetics of mRNA are imposed by features of the 5'UTR in combination with the start of the gene, referred to as the "gene ramp", such as rare codons and mRNA secondary structures. These features strongly influence the translation yield and protein quality by regulating the ribosome distribution on mRNA strands. The utilization of genetic expression sequences, such as promoters and 5'UTRs in combination with different target genes, leads to a wide variety of gene ramp compositions with irregular translation rates, leading to unpredictable levels of protein yield and quality. Here, we present the Standard Intein Gene Expression Ramp (SIGER) system for controlling protein expression. The SIGER system makes use of inteins to decouple the translation initiation features from the gene of a target protein. We generated sequence-specific gene expression sequences for two inteins (DnaB and DnaX) that display defined levels of protein expression. Additionally, we used inteins that possess the ability to release the C-terminal fusion protein in vivo to avoid the impairment of protein functionality by the fused intein. Overall, our results show that SIGER systems are unique tools to mitigate the undesirable effects of gene ramp variation and to control the relative ratios of enzymes involved in molecular pathways. As a proof of concept of the potential of the system, we also used a SIGER system to express two difficult-to-produce proteins, GumM and CBM73.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Yasmin Mueller
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Florence Elie
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Gaston Courtade
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway.,United Scientists CORE (Limited), Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
15
|
Passmore IJ, Faulds-Pain A, Abouelhadid S, Harrison MA, Hall CL, Hitchen P, Dell A, Heap JT, Wren BW. A combinatorial DNA assembly approach to biosynthesis of N-linked glycans in E. coli. Glycobiology 2023; 33:138-149. [PMID: 36637423 PMCID: PMC9990991 DOI: 10.1093/glycob/cwac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Glycoengineering of recombinant glycans and glycoconjugates is a rapidly evolving field. However, the production and exploitation of glycans has lagged behind that of proteins and nucleic acids. Biosynthetic glycoconjugate production requires the coordinated cooperation of three key components within a bacterial cell: a substrate protein, a coupling oligosaccharyltransferase, and a glycan biosynthesis locus. While the acceptor protein and oligosaccharyltransferase are the products of single genes, the glycan is a product of a multigene metabolic pathway. Typically, the glycan biosynthesis locus is cloned and transferred en bloc from the native organism to a suitable Escherichia coli strain. However, gene expression within these pathways has been optimized by natural selection in the native host and is unlikely to be optimal for heterologous production in an unrelated organism. In recent years, synthetic biology has addressed the challenges in heterologous expression of multigene systems by deconstructing these pathways and rebuilding them from the bottom up. The use of DNA assembly methods allows the convenient assembly of such pathways by combining defined parts with the requisite coding sequences in a single step. In this study, we apply combinatorial assembly to the heterologous biosynthesis of the Campylobacter jejuni N-glycosylation (pgl) pathway in E. coli. We engineered reconstructed biosynthesis clusters that faithfully reproduced the C. jejuni heptasaccharide glycan. Furthermore, following a single round of combinatorial assembly and screening, we identified pathway clones that outperform glycan and glycoconjugate production of the native unmodified pgl cluster. This platform offers a flexible method for optimal engineering of glycan structures in E. coli.
Collapse
Affiliation(s)
- Ian J Passmore
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| | | | - Sherif Abouelhadid
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| | - Mark A Harrison
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| | - Catherine L Hall
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| | - Paul Hitchen
- Imperial College London, Department of Life Sciences, London, SW7 2AZ, UK
| | - Anne Dell
- Imperial College London, Department of Life Sciences, London, SW7 2AZ, UK
| | - John T Heap
- University of Nottingham, School of Life Sciences, Nottingham, NG7 2RD, UK
| | - Brendan W Wren
- London School of Hygiene & Tropical Medicine, Department of Infection Biology, London, WC1E 7HT, UK
| |
Collapse
|
16
|
Vilatte A, Spencer-Milnes X, Jackson HO, Purton S, Parker B. Spray Drying Is a Viable Technology for the Preservation of Recombinant Proteins in Microalgae. Microorganisms 2023; 11:microorganisms11020512. [PMID: 36838478 PMCID: PMC9967251 DOI: 10.3390/microorganisms11020512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Microalgae are promising host organisms for the production of encapsulated recombinant proteins such as vaccines. However, bottlenecks in bioprocess development, such as the drying stage, need to be addressed to ensure feasibility at scale. In this study, we investigated the potential of spray drying to produce a recombinant vaccine in microalgae. A transformant line of Chlamydomonas reinhardtii carrying a subunit vaccine against salmonid alphavirus was created via chloroplast engineering. The integrity of the recombinant protein after spray drying and its stability after 27 months storage at -80 °C, +4 °C and room temperature were assessed by immunoblotting. The protein withstood spray drying without significant losses. Long-term storage at +4 °C and room temperature resulted in 50% and 92% degradation, respectively. Optimizing spray drying and storage conditions should minimize degradation and favour short-term storage at positive temperatures. Using data on yield and productivity, the economics of spray drying- and freeze drying-based bioprocesses were compared. The drying stage corresponded to 41% of the total production cost. Process optimization, genetic engineering and new market strategies were identified as potential targets for cost reduction. Overall, this study successfully demonstrates the suitability of spray drying as a process option for recombinant protein production in microalgae at the industrial scale.
Collapse
Affiliation(s)
- Anaëlle Vilatte
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Xenia Spencer-Milnes
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Harry Oliver Jackson
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Brenda Parker
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- Correspondence:
| |
Collapse
|
17
|
Bird J, Marles-Wright J, Giachino A. A User's Guide to Golden Gate Cloning Methods and Standards. ACS Synth Biol 2022; 11:3551-3563. [PMID: 36322003 PMCID: PMC9680027 DOI: 10.1021/acssynbio.2c00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/06/2022]
Abstract
The continual demand for specialized molecular cloning techniques that suit a broad range of applications has driven the development of many different cloning strategies. One method that has gained significant traction is Golden Gate assembly, which achieves hierarchical assembly of DNA parts by utilizing Type IIS restriction enzymes to produce user-specified sticky ends on cut DNA fragments. This technique has been modularized and standardized, and includes different subfamilies of methods, the most widely adopted of which are the MoClo and Golden Braid standards. Moreover, specialized toolboxes tailored to specific applications or organisms are also available. Still, the quantity and range of assembly methods can constitute a barrier to adoption for new users, and even experienced scientists might find it difficult to discern which tools are best suited toward their goals. In this review, we provide a beginner-friendly guide to Golden Gate assembly, compare the different available standards, and detail the specific features and quirks of commonly used toolboxes. We also provide an update on the state-of-the-art in Golden Gate technology, discussing recent advances and challenges to inform existing users and promote standard practices.
Collapse
Affiliation(s)
- Jasmine
E. Bird
- School
of Computing, Faculty of Science Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Jon Marles-Wright
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Andrea Giachino
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
- School
of Science, Engineering & Environment, University of Salford, Salford, M5 4NT, United Kingdom
| |
Collapse
|
18
|
Jackson HO, Taunt HN, Mordaka PM, Kumari S, Smith AG, Purton S. CpPosNeg: A positive-negative selection strategy allowing multiple cycles of marker-free engineering of the Chlamydomonas plastome. Biotechnol J 2022; 17:e2200088. [PMID: 35509114 DOI: 10.1002/biot.202200088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 02/02/2023]
Abstract
The chloroplast represents an attractive compartment for light-driven biosynthesis of recombinant products, and advanced synthetic biology tools are available for engineering the chloroplast genome ( = plastome) of several algal and plant species. However, producing commercial lines will likely require several plastome manipulations. This presents issues with respect to selectable markers, since there are a limited number available, they can be used only once in a serial engineering strategy, and it is undesirable to retain marker genes for antibiotic resistance in the final transplastome. To address these problems, we have designed a rapid iterative selection system, known as CpPosNeg, for the green microalga Chlamydomonas reinhardtii that allows creation of marker-free transformants starting from wild-type strains. The system employs a dual marker encoding a fusion protein of E. coli aminoglycoside adenyltransferase (AadA: conferring spectinomycin resistance) and a variant of E. coli cytosine deaminase (CodA: conferring sensitivity to 5-fluorocytosine). Initial selection on spectinomycin allows stable transformants to be established and driven to homoplasmy. Subsequent selection on 5-fluorocytosine results in rapid loss of the dual marker through intramolecular recombination between the 3'UTR of the marker and the 3'UTR of the introduced transgene. We demonstrate the versatility of the CpPosNeg system by serial introduction of reporter genes into the plastome.
Collapse
Affiliation(s)
- Harry O Jackson
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Henry N Taunt
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Paweł M Mordaka
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Sujata Kumari
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
19
|
Sechkar K, A Tuza Z, Stan GB. A Linear Programming-Based Strategy to Save Pipette Tips in Automated DNA Assembly. Synth Biol (Oxf) 2022; 7:ysac004. [PMID: 35540864 PMCID: PMC9074407 DOI: 10.1093/synbio/ysac004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/05/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
Laboratory automation and mathematical optimization are key to improving the efficiency of synthetic biology research. While there are algorithms optimizing the construct designs and synthesis strategies for DNA assembly, the optimization of how DNA assembly reaction mixes are prepared remains largely unexplored. Here, we focus on reducing the pipette tip consumption of a liquid-handling robot as it delivers DNA parts across a multi-well plate where several constructs are being assembled in parallel. We propose a linear programming formulation of this problem based on the capacitated vehicle routing problem, as well as an algorithm which applies a linear programming solver to our formulation, hence providing a strategy to prepare a given set of DNA assembly mixes using fewer pipette tips. The algorithm performed well in randomly generated and real-life scenarios concerning several modular DNA assembly standards, proving to be capable of reducing the pipette tip consumption by up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$59\%$\end{document} in large-scale cases. Combining automatic process optimization and robotic liquid handling, our strategy promises to greatly improve the efficiency of DNA assembly, either used alone or combined with other algorithmic DNA assembly optimization methods.
Graphical Abstract
Collapse
Affiliation(s)
- Kirill Sechkar
- Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
| | - Zoltan A Tuza
- Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
| |
Collapse
|
20
|
Casas A, Bultelle M, Motraghi C, Kitney R. PASIV: A Pooled Approach-Based Workflow to Overcome Toxicity-Induced Design of Experiments Failures and Inefficiencies. ACS Synth Biol 2022; 11:1272-1291. [PMID: 35261238 PMCID: PMC8938949 DOI: 10.1021/acssynbio.1c00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We present here a
newly developed workflow—which we have
called PASIV—designed to provide a solution to a practical
problem with design of experiments (DoE) methodology: i.e., what can
be done if the scoping phase of the DoE cycle is severely hampered
by burden and toxicity issues (caused by either the metabolite or
an intermediary), making it unreliable or impossible to proceed to
the screening phase? PASIV—standing for pooled approach, screening,
identification, and visualization—was designed so the (viable)
region of interest can be made to appear through an interplay between
biology and software. This was achieved by combining multiplex construction
in a pooled approach (one-pot reaction) with a viability assay and
with a range of bioinformatics tools (including a novel construct
matching tool). PASIV was tested on the exemplar of the lycopene pathway—under
stressful constitutive expression—yielding a region of interest
with comparatively stronger producers.
Collapse
Affiliation(s)
- Alexis Casas
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2BX, United Kingdom
| | - Matthieu Bultelle
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2BX, United Kingdom
| | - Charles Motraghi
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2BX, United Kingdom
| | - Richard Kitney
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2BX, United Kingdom
| |
Collapse
|
21
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
22
|
Casas A, Bultelle M, Motraghi C, Kitney R. Removing the Bottleneck: Introducing cMatch - A Lightweight Tool for Construct-Matching in Synthetic Biology. Front Bioeng Biotechnol 2022; 9:785131. [PMID: 35083201 PMCID: PMC8784771 DOI: 10.3389/fbioe.2021.785131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
We present a software tool, called cMatch, to reconstruct and identify synthetic genetic constructs from their sequences, or a set of sub-sequences—based on two practical pieces of information: their modular structure, and libraries of components. Although developed for combinatorial pathway engineering problems and addressing their quality control (QC) bottleneck, cMatch is not restricted to these applications. QC takes place post assembly, transformation and growth. It has a simple goal, to verify that the genetic material contained in a cell matches what was intended to be built - and when it is not the case, to locate the discrepancies and estimate their severity. In terms of reproducibility/reliability, the QC step is crucial. Failure at this step requires repetition of the construction and/or sequencing steps. When performed manually or semi-manually QC is an extremely time-consuming, error prone process, which scales very poorly with the number of constructs and their complexity. To make QC frictionless and more reliable, cMatch performs an operation we have called “construct-matching” and automates it. Construct-matching is more thorough than simple sequence-matching, as it matches at the functional level-and quantifies the matching at the individual component level and across the whole construct. Two algorithms (called CM_1 and CM_2) are presented. They differ according to the nature of their inputs. CM_1 is the core algorithm for construct-matching and is to be used when input sequences are long enough to cover constructs in their entirety (e.g., obtained with methods such as next generation sequencing). CM_2 is an extension designed to deal with shorter data (e.g., obtained with Sanger sequencing), and that need recombining. Both algorithms are shown to yield accurate construct-matching in a few minutes (even on hardware with limited processing power), together with a set of metrics that can be used to improve the robustness of the decision-making process. To ensure reliability and reproducibility, cMatch builds on the highly validated pairwise-matching Smith-Waterman algorithm. All the tests presented have been conducted on synthetic data for challenging, yet realistic constructs - and on real data gathered during studies on a metabolic engineering example (lycopene production).
Collapse
Affiliation(s)
- Alexis Casas
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Matthieu Bultelle
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Charles Motraghi
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Richard Kitney
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Taylor GM, Hitchcock A, Heap JT. Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria. Nucleic Acids Res 2021; 49:e123. [PMID: 34554258 PMCID: PMC8643660 DOI: 10.1093/nar/gkab791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.,School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
24
|
Sellés Vidal L, Murray JW, Heap JT. Versatile selective evolutionary pressure using synthetic defect in universal metabolism. Nat Commun 2021; 12:6859. [PMID: 34824282 PMCID: PMC8616928 DOI: 10.1038/s41467-021-27266-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - James W. Murray
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - John T. Heap
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK ,grid.4563.40000 0004 1936 8868School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
25
|
Synthetic Biology Advanced Natural Product Discovery. Metabolites 2021; 11:metabo11110785. [PMID: 34822443 PMCID: PMC8617713 DOI: 10.3390/metabo11110785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
A wide variety of bacteria, fungi and plants can produce bioactive secondary metabolites, which are often referred to as natural products. With the rapid development of DNA sequencing technology and bioinformatics, a large number of putative biosynthetic gene clusters have been reported. However, only a limited number of natural products have been discovered, as most biosynthetic gene clusters are not expressed or are expressed at extremely low levels under conventional laboratory conditions. With the rapid development of synthetic biology, advanced genome mining and engineering strategies have been reported and they provide new opportunities for discovery of natural products. This review discusses advances in recent years that can accelerate the design, build, test, and learn (DBTL) cycle of natural product discovery, and prospects trends and key challenges for future research directions.
Collapse
|
26
|
Bradley RW. An easy-to-use CRISPRi plasmid tool for inducible knockdown in E. coli. ACTA ACUST UNITED AC 2021; 32:e00680. [PMID: 34703773 PMCID: PMC8524100 DOI: 10.1016/j.btre.2021.e00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022]
Abstract
An easy-to-use plasmid tool for CRISPRi transcription repression in bacteria. Dual inducible promoters for tight control of CRISPRi components. One-day cloning protocol to insert targeting spacer sequences. Strong repression of plasmid-borne and chromosomal targets.
CRISPR-interference (CRISPRi) is a powerful genetic tool with wide application in bacteria. In this work a single plasmid system is presented which expresses deactivated Cas9 and a short guide RNA sequence from separate inducible promoters, enabling up to 40-fold repression of target genes with minimal leaky repression in the uninduced state. The plasmid is designed for rapid spacer insertion with easy screening for correct clones, and a simple one-day protocol with >99.9% assembly efficiency is described. This plasmid is made available to the research community with a view to facilitating wider use of CRISPRi in bacterial systems.
Collapse
Affiliation(s)
- Robert W Bradley
- Department of Life Sciences, Imperial College London, SW2 5LU, United Kingdom
| |
Collapse
|
27
|
Currin A, Parker S, Robinson CJ, Takano E, Scrutton NS, Breitling R. The evolving art of creating genetic diversity: From directed evolution to synthetic biology. Biotechnol Adv 2021; 50:107762. [PMID: 34000294 PMCID: PMC8299547 DOI: 10.1016/j.biotechadv.2021.107762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
The ability to engineer biological systems, whether to introduce novel functionality or improved performance, is a cornerstone of biotechnology and synthetic biology. Typically, this requires the generation of genetic diversity to explore variations in phenotype, a process that can be performed at many levels, from single molecule targets (i.e., in directed evolution of enzymes) to whole organisms (e.g., in chassis engineering). Recent advances in DNA synthesis technology and automation have enhanced our ability to create variant libraries with greater control and throughput. This review highlights the latest developments in approaches to create such a hierarchy of diversity from the enzyme level to entire pathways in vitro, with a focus on the creation of combinatorial libraries that are required to navigate a target's vast design space successfully to uncover significant improvements in function.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.
| | - Steven Parker
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Christopher J Robinson
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S Scrutton
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
28
|
Taylor GM, Heap JT. Design and Implementation of Multi-protein Expression Constructs and Combinatorial Libraries using Start-Stop Assembly. Methods Mol Biol 2021; 2205:219-237. [PMID: 32809202 DOI: 10.1007/978-1-0716-0908-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Start-Stop Assembly is a multi-part, modular, Golden Gate-based DNA assembly system with two key features which distinguish it from previous DNA assembly methods. Firstly, coding sequences are assembled with upstream and downstream sequences via overhangs corresponding to start and stop codons, avoiding unwanted 'scars' in assembled constructs at coding sequence boundaries. Scars at these crucial, sensitive locations can affect mRNA structure, activity of the ribosome binding site, and potentially other functional RNA features. Start-Stop Assembly is therefore both functionally scarless (an advantage usually only achieved using bespoke, overlap-based assembly methods) and suitable for efficient, unbiased and combinatorial assembly (a general advantage of Golden Gate-based methods). Secondly, Start-Stop Assembly has a new, streamlined assembly hierarchy, meaning that typically only one new vector is required in order to assemble constructs for any new destination context, such as a new organism or genomic location. This should facilitate more rapid and convenient development of engineered metabolic pathways for diverse nonmodel organisms in order to exploit their applied potential. This chapter explains both design considerations and practical procedures to implement multi-part, hierarchical assembly of multi-protein expression constructs, either individually or as combinatorial libraries, using Start-Stop Assembly.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom. .,School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
29
|
Jodlbauer J, Rohr T, Spadiut O, Mihovilovic MD, Rudroff F. Biocatalysis in Green and Blue: Cyanobacteria. Trends Biotechnol 2021; 39:875-889. [PMID: 33468423 DOI: 10.1016/j.tibtech.2020.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Recently, several studies have proven the potential of cyanobacteria as whole-cell biocatalysts for biotransformation. Compared to heterotrophic hosts, cyanobacteria show unique advantages thanks to their photoautotrophic metabolism. Their ability to use light as energy and CO2 as carbon source promises a truly sustainable production platform. Their photoautotrophic metabolism offers an encouraging source of reducing power, which makes them attractive for redox-based biotechnological purposes. To exploit the full potential of these whole-cell biocatalysts, cyanobacterial cells must be considered in their entirety. With this emphasis, this review summarizes the latest developments in cyanobacteria research with a strong focus on the benefits associated with their unique metabolism. Remaining bottlenecks and recent strategies to overcome them are evaluated for their potential in future applications.
Collapse
Affiliation(s)
- Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Thomas Rohr
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, research area Biochemical Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria.
| |
Collapse
|
30
|
Sarvari P, Ingram D, Stan GB. A Modelling Framework Linking Resource-Based Stochastic Translation to the Optimal Design of Synthetic Constructs. BIOLOGY 2021; 10:biology10010037. [PMID: 33430483 PMCID: PMC7826857 DOI: 10.3390/biology10010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/04/2022]
Abstract
Simple Summary In synthetic biology, it is commonplace to design and insert gene expression constructs into cells for the production of useful proteins. In order to maximise production yield, it is useful to predict the performance of these “engineered cells” in advance of conducting experiments. This is typically a complex task, which in recent years has motivated the use of “whole-cell models” (WCMs) that act as computational tools for predicting different aspects of cell growth. Many useful WCMs exist, however a common problem is their over-simplification of ribosome movement on mRNA transcripts during translation. WCMs typically don’t consider that, for constructs with inefficient (“slow”) codons, ribosomes can stall and form “traffic jams”, thereby becoming unavailable for translation of other proteins. To more accurately address these scenarios, we have built a computational framework that combines whole-cell modelling with a detailed account of ribosome movement on mRNA. We show how our framework can be used to link the modular design of a gene expression construct (via its promoter, ribosome binding site and codon composition) to protein yield during continuous cell culture, with a particular focus on how the optimal design can change over time in the presence or absence of “slow” codons. Abstract The effect of gene expression burden on engineered cells has motivated the use of “whole-cell models” (WCMs) that use shared cellular resources to predict how unnatural gene expression affects cell growth. A common problem with many WCMs is their inability to capture translation in sufficient detail to consider the impact of ribosomal queue formation on mRNA transcripts. To address this, we have built a “stochastic cell calculator” (StoCellAtor) that combines a modified TASEP with a stochastic implementation of an existing WCM. We show how our framework can be used to link a synthetic construct’s modular design (promoter, ribosome binding site (RBS) and codon composition) to protein yield during continuous culture, with a particular focus on the effects of low-efficiency codons and their impact on ribosomal queues. Through our analysis, we recover design principles previously established in our work on burden-sensing strategies, namely that changing promoter strength is often a more efficient way to increase protein yield than RBS strength. Importantly, however, we show how these design implications can change depending on both the duration of protein expression, and on the presence of ribosomal queues.
Collapse
Affiliation(s)
- Peter Sarvari
- Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Duncan Ingram
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2BU, UK;
- Department of Bioengineering, Imperial College London, London SW7 2BU, UK
| | - Guy-Bart Stan
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2BU, UK;
- Department of Bioengineering, Imperial College London, London SW7 2BU, UK
- Correspondence: ; Tel.: +44-020-7594-6375
| |
Collapse
|
31
|
Jackson HO, Taunt HN, Mordaka PM, Smith AG, Purton S. The Algal Chloroplast as a Testbed for Synthetic Biology Designs Aimed at Radically Rewiring Plant Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:708370. [PMID: 34630459 PMCID: PMC8497815 DOI: 10.3389/fpls.2021.708370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 05/04/2023]
Abstract
Sustainable and economically viable support for an ever-increasing global population requires a paradigm shift in agricultural productivity, including the application of biotechnology to generate future crop plants. Current genetic engineering approaches aimed at enhancing the photosynthetic efficiency or composition of the harvested tissues involve relatively simple manipulations of endogenous metabolism. However, radical rewiring of central metabolism using new-to-nature pathways, so-called "synthetic metabolism", may be needed to really bring about significant step changes. In many cases, this will require re-programming the metabolism of the chloroplast, or other plastids in non-green tissues, through a combination of chloroplast and nuclear engineering. However, current technologies for sophisticated chloroplast engineering ("transplastomics") of plants are limited to just a handful of species. Moreover, the testing of metabolic rewiring in the chloroplast of plant models is often impractical given their obligate phototrophy, the extended time needed to create stable non-chimeric transplastomic lines, and the technical challenges associated with regeneration of whole plants. In contrast, the unicellular green alga, Chlamydomonas reinhardtii is a facultative heterotroph that allows for extensive modification of chloroplast function, including non-photosynthetic designs. Moreover, chloroplast engineering in C. reinhardtii is facile, with the ability to generate novel lines in a matter of weeks, and a well-defined molecular toolbox allows for rapid iterations of the "Design-Build-Test-Learn" (DBTL) cycle of modern synthetic biology approaches. The recent development of combinatorial DNA assembly pipelines for designing and building transgene clusters, simple methods for marker-free delivery of these clusters into the chloroplast genome, and the pre-existing wealth of knowledge regarding chloroplast gene expression and regulation in C. reinhardtii further adds to the versatility of transplastomics using this organism. Herein, we review the inherent advantages of the algal chloroplast as a simple and tractable testbed for metabolic engineering designs, which could then be implemented in higher plants.
Collapse
Affiliation(s)
- Harry O. Jackson
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Henry N. Taunt
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Pawel M. Mordaka
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- *Correspondence: Saul Purton
| |
Collapse
|
32
|
Young R, Haines M, Storch M, Freemont PS. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab Eng 2020; 63:81-101. [PMID: 33301873 DOI: 10.1016/j.ymben.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.
Collapse
Affiliation(s)
- Rosanna Young
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Matthew Haines
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Marko Storch
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK
| | - Paul S Freemont
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK; UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
33
|
Pryor JM, Potapov V, Kucera RB, Bilotti K, Cantor EJ, Lohman GJS. Enabling one-pot Golden Gate assemblies of unprecedented complexity using data-optimized assembly design. PLoS One 2020; 15:e0238592. [PMID: 32877448 PMCID: PMC7467295 DOI: 10.1371/journal.pone.0238592] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
DNA assembly is an integral part of modern synthetic biology, as intricate genetic engineering projects require robust molecular cloning workflows. Golden Gate assembly is a frequently employed DNA assembly methodology that utilizes a Type IIS restriction enzyme and a DNA ligase to generate recombinant DNA constructs from smaller DNA fragments. However, the utility of this methodology has been limited by a lack of resources to guide experimental design. For example, selection of the DNA sequences at fusion sites between fragments is based on broad assembly guidelines or pre-vetted sets of junctions, rather than being customized for a particular application or cloning project. To facilitate the design of robust assembly reactions, we developed a high-throughput DNA sequencing assay to examine reaction outcomes of Golden Gate assembly with T4 DNA ligase and the most commonly used Type IIS restriction enzymes that generate three-base and four-base overhangs. Next, we incorporated these findings into a suite of webtools that design assembly reactions using the experimental data. These webtools can be used to create customized assemblies from a target DNA sequence or a desired number of fragments. Lastly, we demonstrate how using these tools expands the limits of current assembly systems by carrying out one-pot assemblies of up to 35 DNA fragments. Full implementation of the tools developed here enables direct expansion of existing assembly standards for modular cloning systems (e.g. MoClo) as well as the formation of robust new high-fidelity standards.
Collapse
Affiliation(s)
- John M. Pryor
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Vladimir Potapov
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Rebecca B. Kucera
- Applications and Product Development, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Katharina Bilotti
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Eric J. Cantor
- Applications and Product Development, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Gregory J. S. Lohman
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
35
|
Thomas GH. Microbial Musings – June 2020. Microbiology (Reading) 2020; 166:498-500. [PMID: 32633711 PMCID: PMC7376269 DOI: 10.1099/mic.0.000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Larrea-Alvarez M, Purton S. Multigenic engineering of the chloroplast genome in the green alga Chlamydomonas reinhardtii. MICROBIOLOGY (READING, ENGLAND) 2020; 166:510-515. [PMID: 32250732 PMCID: PMC7376270 DOI: 10.1099/mic.0.000910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Abstract
The chloroplast of microalgae such as Chlamydomonas reinhardtii represents an attractive chassis for light-driven production of novel recombinant proteins and metabolites. Methods for the introduction and expression of transgenes in the chloroplast genome (=plastome) of C. reinhardtii are well-established and over 100 different proteins have been successfully produced. However, in almost all reported cases the complexity of the genetic engineering is low, and typically involves introduction into the plastome of just a single transgene together with a selectable marker. In order to exploit fully the potential of the algal chassis it is necessary to establish methods for multigenic engineering in which many transgenes can be stably incorporated into the plastome. This would allow the synthesis of multi-subunit proteins and the introduction into the chloroplast of whole new metabolic pathways. In this short communication we report a proof-of-concept study involving both a combinatorial and serial approach, with the goal of synthesizing five different test proteins in the C. reinhardtii chloroplast. Analysis of the various transgenic lines confirmed the successful integration of the transgenes and accumulation of the gene products. However, the work also highlights an issue of genetic instability when using the same untranslated region for each of the transgenes. Our findings therefore help to define appropriate strategies for robust multigenic engineering of the algal chloroplast.
Collapse
Affiliation(s)
- Marco Larrea-Alvarez
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Present address: School of Biological Sciences and Engineering. Yachay-Tech University Hacienda San José, Urcuquí-Imbabura, Ecuador
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
37
|
Naseri G, Koffas MAG. Application of combinatorial optimization strategies in synthetic biology. Nat Commun 2020; 11:2446. [PMID: 32415065 PMCID: PMC7229011 DOI: 10.1038/s41467-020-16175-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
In the first wave of synthetic biology, genetic elements, combined into simple circuits, are used to control individual cellular functions. In the second wave of synthetic biology, the simple circuits, combined into complex circuits, form systems-level functions. However, efforts to construct complex circuits are often impeded by our limited knowledge of the optimal combination of individual circuits. For example, a fundamental question in most metabolic engineering projects is the optimal level of enzymes for maximizing the output. To address this point, combinatorial optimization approaches have been established, allowing automatic optimization without prior knowledge of the best combination of expression levels of individual genes. This review focuses on current combinatorial optimization methods and emerging technologies facilitating their applications.
Collapse
Affiliation(s)
- Gita Naseri
- Institut für Chemie, Humboldt Universität zu Berlin, 12489, Berlin, Germany.
| | - Mattheos A G Koffas
- Center for Biotechnology, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
38
|
Gräwe A, Ranglack J, Weyrich A, Stein V. iFLinkC: an iterative functional linker cloning strategy for the combinatorial assembly and recombination of linker peptides with functional domains. Nucleic Acids Res 2020; 48:e24. [PMID: 31925441 PMCID: PMC7039005 DOI: 10.1093/nar/gkz1210] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 02/02/2023] Open
Abstract
Recent years have witnessed increasing efforts to engineer artificial biological functions through recombination of modular-organized toolboxes of protein scaffolds and parts. A critical, yet frequently neglected aspect concerns the identity of peptide linkers or spacers connecting individual domains which remain poorly understood and challenging to assemble. Addressing these limitations, iFlinkC comprises a highly scalable DNA assembly process that facilitates the combinatorial recombination of functional domains with linkers of varying length and flexibility, thereby overcoming challenges with high GC-content and the repeat nature of linker elements. The capacity of iFLinkC is demonstrated in the construction of synthetic protease switches featuring PDZ-FN3-based affinity clamps and single-chain FKBP12-FRB receptors as allosteric inputs. Library screening experiments demonstrate that linker space is highly plastic as the induction of allosterically regulated protease switches can vary from >150-fold switch-ON to >13-fold switch-OFF solely depending on the identity of the connecting linkers and relative orientation of functional domains. In addition, Pro-rich linkers yield the most potent switches contradicting the conventional use of flexible Gly-Ser linkers. Given the ease and efficiency how functional domains can be readily recombined with any type of linker, iFLinkC is anticipated to be widely applicable to the assembly of any type of fusion protein.
Collapse
Affiliation(s)
- Alexander Gräwe
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| | - Jan Ranglack
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| | - Anastasia Weyrich
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Viktor Stein
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
39
|
Gowers GOF, Chee SM, Bell D, Suckling L, Kern M, Tew D, McClymont DW, Ellis T. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening. Nat Commun 2020; 11:868. [PMID: 32054834 PMCID: PMC7018806 DOI: 10.1038/s41467-020-14708-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/24/2020] [Indexed: 02/08/2023] Open
Abstract
Synthetic biology, genome engineering and directed evolution offer innumerable tools to expedite engineering of strains for optimising biosynthetic pathways. One of the most radical is SCRaMbLE, a system of inducible in vivo deletion and rearrangement of synthetic yeast chromosomes, diversifying the genotype of millions of Saccharomyces cerevisiae cells in hours. SCRaMbLE can yield strains with improved biosynthetic phenotypes but is limited by screening capabilities. To address this bottleneck, we combine automated sample preparation, an ultra-fast 84-second LC-MS method, and barcoded nanopore sequencing to rapidly isolate and characterise the best performing strains. Here, we use SCRaMbLE to optimise yeast strains engineered to produce the triterpenoid betulinic acid. Our semi-automated workflow screens 1,000 colonies, identifying and sequencing 12 strains with between 2- to 7-fold improvement in betulinic acid titre. The broad applicability of this workflow to rapidly isolate improved strains from a variant library makes this a valuable tool for biotechnology.
Collapse
Affiliation(s)
- G-O F Gowers
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - S M Chee
- London Biofoundry, Imperial College London, London, SW7 2AZ, UK
- SynbiCITE, Imperial College London, London, SW7 2AZ, UK
| | - D Bell
- London Biofoundry, Imperial College London, London, SW7 2AZ, UK
- SynbiCITE, Imperial College London, London, SW7 2AZ, UK
- Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - L Suckling
- London Biofoundry, Imperial College London, London, SW7 2AZ, UK
- SynbiCITE, Imperial College London, London, SW7 2AZ, UK
- Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - M Kern
- GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - D Tew
- GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - D W McClymont
- London Biofoundry, Imperial College London, London, SW7 2AZ, UK
- SynbiCITE, Imperial College London, London, SW7 2AZ, UK
| | - T Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
40
|
Abstract
Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for complex pathway engineering. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the Modular Cloning system MoClo. Making constructs using the MoClo system requires users to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Collapse
Affiliation(s)
- Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany.
| | | |
Collapse
|
41
|
Vecchione S, Fritz G. CRIMoClo plasmids for modular assembly and orthogonal chromosomal integration of synthetic circuits in Escherichia coli. J Biol Eng 2019; 13:92. [PMID: 31798686 PMCID: PMC6883643 DOI: 10.1186/s13036-019-0218-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Background Synthetic biology heavily depends on rapid and simple techniques for DNA engineering, such as Ligase Cycling Reaction (LCR), Gibson assembly and Golden Gate assembly, all of which allow for fast, multi-fragment DNA assembly. A major enhancement of Golden Gate assembly is represented by the Modular Cloning (MoClo) system that allows for simple library propagation and combinatorial construction of genetic circuits from reusable parts. Yet, one limitation of the MoClo system is that all circuits are assembled in low- and medium copy plasmids, while a rapid route to chromosomal integration is lacking. To overcome this bottleneck, here we took advantage of the conditional-replication, integration, and modular (CRIM) plasmids, which can be integrated in single copies into the chromosome of Escherichia coli and related bacteria by site-specific recombination at different phage attachment (att) sites. Results By combining the modularity of the MoClo system with the CRIM plasmids features we created a set of 32 novel CRIMoClo plasmids and benchmarked their suitability for synthetic biology applications. Using CRIMoClo plasmids we assembled and integrated a given genetic circuit into four selected phage attachment sites. Analyzing the behavior of these circuits we found essentially identical expression levels, indicating orthogonality of the loci. Using CRIMoClo plasmids and four different reporter systems, we illustrated a framework that allows for a fast and reliable sequential integration at the four selected att sites. Taking advantage of four resistance cassettes the procedure did not require recombination events between each round of integration. Finally, we assembled and genomically integrated synthetic ECF σ factor/anti-σ switches with high efficiency, showing that the growth defects observed for circuits encoded on medium-copy plasmids were alleviated. Conclusions The CRIMoClo system enables the generation of genetic circuits from reusable, MoClo-compatible parts and their integration into 4 orthogonal att sites into the genome of E. coli. Utilizing four different resistance modules the CRIMoClo system allows for easy, fast, and reliable multiple integrations. Moreover, utilizing CRIMoClo plasmids and MoClo reusable parts, we efficiently integrated and alleviated the toxicity of plasmid-borne circuits. Finally, since CRIMoClo framework allows for high flexibility, it is possible to utilize plasmid-borne and chromosomally integrated circuits simultaneously. This increases our ability to permute multiple genetic modules and allows for an easier design of complex synthetic metabolic pathways in E. coli.
Collapse
Affiliation(s)
- Stefano Vecchione
- LOEWE Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, 35032 Marburg, Germany
| | - Georg Fritz
- LOEWE Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, 35032 Marburg, Germany
| |
Collapse
|
42
|
Kelly CL, Taylor GM, Šatkutė A, Dekker L, Heap JT. Transcriptional Terminators Allow Leak-Free Chromosomal Integration of Genetic Constructs in Cyanobacteria. Microorganisms 2019; 7:microorganisms7080263. [PMID: 31426276 PMCID: PMC6723963 DOI: 10.3390/microorganisms7080263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023] Open
Abstract
Cyanobacteria are promising candidates for sustainable bioproduction of chemicals from sunlight and carbon dioxide. However, the genetics and metabolism of cyanobacteria are less well understood than those of model heterotrophic organisms, and the suite of well-characterised cyanobacterial genetic tools and parts is less mature and complete. Transcriptional terminators use specific RNA structures to halt transcription and are routinely used in both natural and recombinant contexts to achieve independent control of gene expression and to ‘insulate’ genes and operons from one another. Insulating gene expression can be particularly important when heterologous or synthetic genetic constructs are inserted at genomic locations where transcriptional read-through from chromosomal promoters occurs, resulting in poor control of expression of the introduced genes. To date, few terminators have been described and characterised in cyanobacteria. In this work, nineteen heterologous, synthetic or putative native Rho-independent (intrinsic) terminators were tested in the model freshwater cyanobacterium, Synechocystis sp. PCC 6803, from which eleven strong terminators were identified. A subset of these strong terminators was then used to successfully insulate a chromosomally–integrated, rhamnose-inducible rhaBAD expression system from hypothesised ‘read-through’ from a neighbouring chromosomal promoter, resulting in greatly improved inducible control. The addition of validated strong terminators to the cyanobacterial toolkit will allow improved independent control of introduced genes.
Collapse
Affiliation(s)
- Ciarán L Kelly
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Aistė Šatkutė
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Linda Dekker
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
43
|
Santos-Moreno J, Schaerli Y. A Framework for the Modular and Combinatorial Assembly of Synthetic Gene Circuits. ACS Synth Biol 2019; 8:1691-1697. [PMID: 31185158 DOI: 10.1021/acssynbio.9b00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synthetic gene circuits emerge from iterative design-build-test cycles. Most commonly, the time-limiting step is the circuit construction process. Here, we present a hierarchical cloning scheme based on the widespread Gibson assembly method and make the set of constructed plasmids freely available. Our two-step modular cloning scheme allows for simple, fast, efficient, and accurate assembly of gene circuits and combinatorial circuit libraries in Escherichia coli. The first step involves Gibson assembly of transcriptional units from constituent parts into individual intermediate plasmids. In the second step, these plasmids are digested with specific sets of restriction enzymes. The resulting flanking regions have overlaps that drive a second Gibson assembly into a single plasmid to yield the final circuit. This approach substantially reduces time and sequencing costs associated with gene circuit construction and allows for modular and combinatorial assembly of circuits. We demonstrate the usefulness of our framework by assembling a CRISPR-based double-inverter circuit and a combinatorial library of 3-node networks.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Liu S, Xiao H, Zhang F, Lu Z, Zhang Y, Deng A, Li Z, Yang C, Wen T. A seamless and iterative DNA assembly method named PS-Brick and its assisted metabolic engineering for threonine and 1-propanol production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:180. [PMID: 31338122 PMCID: PMC6628500 DOI: 10.1186/s13068-019-1520-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND DNA assembly is an essential technique enabling metabolic engineering and synthetic biology. Combining novel DNA assembly technologies with rational metabolic engineering can facilitate the construction of microbial cell factories. Amino acids and derived biochemicals are important products in industrial biotechnology with wide application and huge markets. DNA assembly scenarios encountered in metabolic engineering for the construction of amino acid and related compound producers, such as design-build-test-learn cycles, construction of precise genetic circuits and repetitive DNA molecules, usually require for iterative, scarless and repetitive sequence assembly methods, respectively. RESULTS Restriction endonuclease (RE)-assisted strategies constitute one of the major categories of DNA assembly. Here, we developed a Type IIP and IIS RE-assisted method named PS-Brick that comprehensively takes advantage of the properties of PCR fragments and REs for iterative, seamless and repetitive sequence assembly. One round of PS-Brick reaction using purified plasmids and PCR fragments was accomplished within several hours, and transformation of the resultant reaction product from this PS-Brick assembly reaction exhibited high efficiency (104-105 CFUs/µg DNA) and high accuracy (~ 90%). An application of metabolic engineering to threonine production, including the release of feedback regulation, elimination of metabolic bottlenecks, intensification of threonine export and inactivation of threonine catabolism, was stepwise resolved in E. coli by rounds of "design-build-test-learn" cycles through the iterative PS-Brick paradigm, and 45.71 g/L threonine was obtained through fed-batch fermentation. In addition to the value of the iterative character of PS-Brick for sequential strain engineering, seamless cloning enabled precise in-frame fusion for codon saturation mutagenesis and bicistronic design, and the repetitive sequence cloning ability of PS-Brick enabled construction of tandem CRISPR sgRNA arrays for genome editing. Moreover, the heterologous pathway deriving 1-propanol pathway from threonine, composed of Lactococcus lactis kivD and Saccharomyces cerevisiae ADH2, was assembled by one cycle of PS-Brick, resulting in 1.35 g/L 1-propanol in fed-batch fermentation. CONCLUSIONS To the best of our knowledge, the PS-Brick framework is the first RE-assisted DNA assembly method using the strengths of both Type IIP and IIS REs. In this study, PS-Brick was demonstrated to be an efficient DNA assembly method for pathway construction and genome editing and was successfully applied in design-build-test-learn (DBTL) cycles of metabolic engineering for the production of threonine and threonine-derived 1-propanol. The PS-Brick presents a valuable addition to the current toolbox of synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haihan Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fangfang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230039 China
| | - Zheng Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhongcai Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Cui Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|