1
|
Majidiani H, Pourseif MM, Kordi B, Sadeghi MR, Najafi A. TgVax452, an epitope-based candidate vaccine targeting Toxoplasma gondii tachyzoite-specific SAG1-related sequence (SRS) proteins: immunoinformatics, structural simulations and experimental evidence-based approaches. BMC Infect Dis 2024; 24:886. [PMID: 39210269 PMCID: PMC11361240 DOI: 10.1186/s12879-024-09807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The highly expressed surface antigen 1 (SAG1)-related sequence (SRS) proteins of T. gondii tachyzoites, as a widespread zoonotic parasite, are critical for host cell invasion and represent promising vaccine targets. In this study, we employed a computer-aided multi-method approach for in silico design and evaluation of TgVax452, an epitope-based candidate vaccine against T. gondii tachyzoite-specific SRS proteins. METHODS Using immunoinformatics web-based tools, structural modeling, and static/dynamic molecular simulations, we identified and screened B- and T-cell immunodominant epitopes and predicted TgVax452's antigenicity, stability, safety, adjuvanticity, and physico-chemical properties. RESULTS The designed protein possessed 452 residues, a MW of 44.07 kDa, an alkaline pI (6.7), good stability (33.20), solubility (0.498), and antigenicity (0.9639) with no allergenicity. Comprehensive molecular dynamic (MD) simulation analyses confirmed the stable interaction (average potential energy: 3.3799 × 106 KJ/mol) between the TLR4 agonist residues (RS09 peptide) of the TgVax452 in interaction with human TLR4, potentially activating innate immune responses. Also, a dramatic increase was observed in specific antibodies (IgM and IgG), cytokines (IFN-γ), and lymphocyte responses, based on C-ImmSim outputs. Finally, we optimized TgVax452's codon adaptation and mRNA secondary structure for efficient expression in E. coli BL21 expression machinery. CONCLUSION Our findings suggest that TgVax452 is a promising candidate vaccine against T. gondii tachyzoite-specific SRS proteins and requires further experimental studies for its potential use in preclinical trials.
Collapse
MESH Headings
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/chemistry
- Toxoplasma/immunology
- Toxoplasma/genetics
- Toxoplasma/chemistry
- Protozoan Vaccines/immunology
- Protozoan Vaccines/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/chemistry
- Animals
- Computational Biology
- Mice
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Female
- Antibodies, Protozoan/immunology
- Mice, Inbred BALB C
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/chemistry
- Humans
- Molecular Dynamics Simulation
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/chemistry
- Toxoplasmosis/prevention & control
- Toxoplasmosis/immunology
- Immunoinformatics
Collapse
Affiliation(s)
- Hamidreza Majidiani
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Engineered Biomaterial Research Center (EBRC), Khazar University, Baku, Azerbaijan.
| | - Bahareh Kordi
- Department of Agricultural Science, Technical and Vocational University (TVU), Tehran, Iran
| | - Mohammad-Reza Sadeghi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Najafi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Khandia R, Pandey MK, Rzhepakovsky IV, Khan AA, Alexiou A. Synonymous Codon Variant Analysis for Autophagic Genes Dysregulated in Neurodegeneration. Mol Neurobiol 2023; 60:2252-2267. [PMID: 36637744 DOI: 10.1007/s12035-022-03081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative disorders are often a culmination of the accumulation of abnormally folded proteins and defective organelles. Autophagy is a process of removing these defective proteins, organelles, and harmful substances from the body, and it works to maintain homeostasis. If autophagic removal of defective proteins has interfered, it affects neuronal health. Some of the autophagic genes are specifically found to be associated with neurodegenerative phenotypes. Non-functional, mutated, or gene copies having silent mutations, often termed synonymous variants, might explain this. However, these synonymous variant which codes for exactly similar proteins have different translation rates, stability, and gene expression profiling. Hence, it would be interesting to study the pattern of synonymous variant usage. In the study, synonymous variant usage in various transcripts of autophagic genes ATG5, ATG7, ATG8A, ATG16, and ATG17/FIP200 reported to cause neurodegeneration (if dysregulated) is studied. These genes were analyzed for their synonymous variant usage; nucleotide composition; any possible nucleotide skew in a gene; physical properties of autophagic protein including GRAVY and AROMA; hydropathicity; instability index; and frequency of acidic, basic, neutral amino acids; and gene expression level. The study will help understand various evolutionary forces acting on these genes and the possible augmentation of a gene if showing unusual behavior.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, India.
| | - Megha Katare Pandey
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, 462020, India
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med, Wien, Austria
| |
Collapse
|
3
|
Miller JB, Meurs TE, Hodgman MW, Song B, Miller KN, Ebbert MTW, Kauwe JSK, Ridge PG. The Ramp Atlas: facilitating tissue and cell-specific ramp sequence analyses through an intuitive web interface. NAR Genom Bioinform 2022; 4:lqac039. [PMID: 35664804 PMCID: PMC9155233 DOI: 10.1093/nargab/lqac039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Ramp sequences occur when the average translational efficiency of codons near the 5′ end of highly expressed genes is significantly lower than the rest of the gene sequence, which counterintuitively increases translational efficiency by decreasing downstream ribosomal collisions. Here, we show that the relative codon adaptiveness within different tissues changes the existence of a ramp sequence without altering the underlying genetic code. We present the first comprehensive analysis of tissue and cell type-specific ramp sequences and report 3108 genes with ramp sequences that change between tissues and cell types, which corresponds with increased gene expression within those tissues and cells. The Ramp Atlas (https://ramps.byu.edu/) allows researchers to query precomputed ramp sequences in 18 388 genes across 62 tissues and 66 cell types and calculate tissue-specific ramp sequences from user-uploaded FASTA files through an intuitive web interface. We used The Ramp Atlas to identify seven SARS-CoV-2 genes and seven human SARS-CoV-2 entry factor genes with tissue-specific ramp sequences that may help explain viral proliferation within those tissues. We anticipate that The Ramp Atlas will facilitate personalized and creative tissue-specific ramp sequence analyses for both human and viral genes that will increase our ability to utilize this often-overlooked regulatory region.
Collapse
Affiliation(s)
- Justin B Miller
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Taylor E Meurs
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Matthew W Hodgman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Benjamin Song
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kyle N Miller
- Department of Computer Science, Utah Valley University, Orem, UT 84058, USA
| | - Mark T W Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Zhu L, Wang Q, Zhang W, Hu H, Xu K. Evidence for selection on SARS-CoV-2 RNA translation revealed by the evolutionary dynamics of mutations in UTRs and CDSs. RNA Biol 2022; 19:866-876. [PMID: 35762570 PMCID: PMC9584556 DOI: 10.1080/15476286.2022.2092351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA translation is the rate-limiting step when cells synthesize proteins. Elevating translation efficiency (TE) is intuitively beneficial. Particularly, when viruses invade host cells, how to compete with endogenous RNAs for efficient translation is a major issue to be resolved. We collected millions of worldwide SARS-CoV-2 sequences during the past year and traced the dynamics of allele frequency of every mutation. We defined adaptive and deleterious mutations according to the rise and fall of their frequencies along time. For 5ʹUTR and synonymous mutations in SARS-CoV-2, the selection on TE is evident near start codons. Adaptive mutations generally decrease GC content while deleterious mutations increase GC content. This trend fades away with increasing distance to start codons. Mutations decreasing GC content near start codons would unravel the complex RNA structure and facilitate translation initiation, which are beneficial to SARS-CoV-2, and vice versa. During this evolutionary arms race between human and virus, SARS-CoV-2 tries to improve its cis elements to compete with host RNAs for rapid translation.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Urology, Peking University People's Hospital, Xicheng, Beijing, China
| | - Qi Wang
- Department of Urology, Peking University People's Hospital, Xicheng, Beijing, China
| | - Weiyu Zhang
- Department of Urology, Peking University People's Hospital, Xicheng, Beijing, China.,Peking University Applied Lithotripsy Institute, Peking University People's Hospital, Xicheng, Beijing, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, Xicheng, Beijing, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, Xicheng, Beijing, China
| |
Collapse
|
5
|
Whittle CA, Kulkarni A, Chung N, Extavour CG. Adaptation of codon and amino acid use for translational functions in highly expressed cricket genes. BMC Genomics 2021; 22:234. [PMID: 33823803 PMCID: PMC8022432 DOI: 10.1186/s12864-021-07411-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For multicellular organisms, much remains unknown about the dynamics of synonymous codon and amino acid use in highly expressed genes, including whether their use varies with expression in different tissue types and sexes. Moreover, specific codons and amino acids may have translational functions in highly transcribed genes, that largely depend on their relationships to tRNA gene copies in the genome. However, these relationships and putative functions are poorly understood, particularly in multicellular systems. RESULTS Here, we studied codon and amino acid use in highly expressed genes from reproductive and nervous system tissues (male and female gonad, somatic reproductive system, brain and ventral nerve cord, and male accessory glands) in the cricket Gryllus bimaculatus. We report an optimal codon, defined as the codon preferentially used in highly expressed genes, for each of the 18 amino acids with synonymous codons in this organism. The optimal codons were mostly shared among tissue types and both sexes. However, the frequency of optimal codons was highest in gonadal genes. Concordant with translational selection, a majority of the optimal codons had abundant matching tRNA gene copies in the genome, but sometimes obligately required wobble tRNAs. We suggest the latter may comprise a mechanism for slowing translation of abundant transcripts, particularly for cell-cycle genes. Non-optimal codons, defined as those least commonly used in highly transcribed genes, intriguingly often had abundant tRNAs, and had elevated use in a subset of genes with specialized functions (gametic and apoptosis genes), suggesting their use promotes the translational upregulation of particular mRNAs. In terms of amino acids, we found evidence suggesting that amino acid frequency, tRNA gene copy number, and amino acid biosynthetic costs (size/complexity) had all interdependently evolved in this insect model, potentially for translational optimization. CONCLUSIONS Collectively, the results suggest a model whereby codon use in highly expressed genes, including optimal, wobble, and non-optimal codons, and their tRNA abundances, as well as amino acid use, have been influenced by adaptation for various functional roles in translation within this cricket. The effects of expression in different tissue types and the two sexes are discussed.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Nina Chung
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, 02138, MA, USA.
| |
Collapse
|
6
|
McKinnon LM, Miller JB, Whiting MF, Kauwe JSK, Ridge PG. A comprehensive analysis of the phylogenetic signal in ramp sequences in 211 vertebrates. Sci Rep 2021; 11:622. [PMID: 33436653 PMCID: PMC7803996 DOI: 10.1038/s41598-020-78803-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 01/24/2023] Open
Abstract
Ramp sequences increase translational speed and accuracy when rare, slowly-translated codons are found at the beginnings of genes. Here, the results of the first analysis of ramp sequences in a phylogenetic construct are presented. Ramp sequences were compared from 247 vertebrates (114 Mammalian and 133 non-mammalian), where the presence and absence of ramp sequences was analyzed as a binary character in a parsimony and maximum likelihood framework. Additionally, ramp sequences were mapped to the Open Tree of Life synthetic tree to determine the number of parallelisms and reversals that occurred, and those results were compared to random permutations. Parsimony and maximum likelihood analyses of the presence and absence of ramp sequences recovered phylogenies that are highly congruent with established phylogenies. Additionally, 81% of vertebrate mammalian ramps and 81.2% of other vertebrate ramps had less parallelisms and reversals than the mean from 1000 randomly permuted trees. A chi-square analysis of completely orthologous ramp sequences resulted in a p-value < 0.001 as compared to random chance. Ramp sequences recover comparable phylogenies as other phylogenomic methods. Although not all ramp sequences appear to have a phylogenetic signal, more ramp sequences track speciation than expected by random chance. Therefore, ramp sequences may be used in conjunction with other phylogenomic approaches if many orthologs are taken into account. However, phylogenomic methods utilizing few orthologs should be cautious in incorporating ramp sequences because individual ramp sequences may provide conflicting signals.
Collapse
Affiliation(s)
- Lauren M McKinnon
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Justin B Miller
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Michael F Whiting
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
- Monte L. Bean Museum, Brigham Young University, Provo, UT, 84602, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
7
|
Hodgman MW, Miller JB, Meurs TE, Kauwe JSK. CUBAP: an interactive web portal for analyzing codon usage biases across populations. Nucleic Acids Res 2020; 48:11030-11039. [PMID: 33045750 PMCID: PMC7641757 DOI: 10.1093/nar/gkaa863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Synonymous codon usage significantly impacts translational and transcriptional efficiency, gene expression, the secondary structure of both mRNA and proteins, and has been implicated in various diseases. However, population-specific differences in codon usage biases remain largely unexplored. Here, we present a web server, https://cubap.byu.edu, to facilitate analyses of codon usage biases across populations (CUBAP). Using the 1000 Genomes Project, we calculated and visually depict population-specific differences in codon frequencies, codon aversion, identical codon pairing, co-tRNA codon pairing, ramp sequences, and nucleotide composition in 17,634 genes. We found that codon pairing significantly differs between populations in 35.8% of genes, allowing us to successfully predict the place of origin for African and East Asian individuals with 98.8% and 100% accuracy, respectively. We also used CUBAP to identify a significant bias toward decreased CTG pairing in the immunity related GTPase M (IRGM) gene in East Asian and African populations, which may contribute to the decreased association of rs10065172 with Crohn's disease in those populations. CUBAP facilitates in-depth gene-specific and codon-specific visualization that will aid in analyzing candidate genes identified in genome-wide association studies, identifying functional implications of synonymous variants, predicting population-specific impacts of synonymous variants and categorizing genetic biases unique to certain populations.
Collapse
Affiliation(s)
- Matthew W Hodgman
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Justin B Miller
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Taylor E Meurs
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Interplay between Position-Dependent Codon Usage Bias and Hydrogen Bonding at the 5' End of ORFeomes. mSystems 2020; 5:5/4/e00613-20. [PMID: 32788408 PMCID: PMC7426154 DOI: 10.1128/msystems.00613-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Codon usage bias exerts control over a wide variety of molecular processes. The positioning of synonymous codons within coding sequences (CDSs) dictates protein expression by mechanisms such as local translation efficiency, mRNA Gibbs free energy, and protein cotranslational folding. In this work, we explore how codon usage affects the position-dependent content of hydrogen bonding, which in turn influences energy requirements for unwinding double-stranded DNA (dsDNA). We categorized codons according to their hydrogen bond content and found differential effects on hydrogen bonding encoded by codon variants. The specific positional disposition of codon variants within CDSs creates a ramp of hydrogen bonding at the 5' end of the ORFeome in Escherichia coli CDSs occupying the first position of operons are subjected to selective pressure that reduces their hydrogen bonding compared to internal CDSs, and highly transcribed CDSs demand a lower maximum capacity of hydrogen bonds per codon, suggesting that the energetic requirement for unwinding the dsDNA in highly transcribed CDSs has evolved to be minimized in E. coli Subsequent analysis of over 14,000 ORFeomes showed a pervasive ramp of hydrogen bonding at the 5' end in Bacteria and Archaea that positively correlates with the probability of mRNA secondary structure formation. Both the ramp and the correlation were not found in Fungi The position-dependent hydrogen bonding might be part of the mechanism that contributes to the coordination between transcription and translation in Bacteria and Archaea A Web-based application to analyze the position-dependent hydrogen bonding of ORFeomes has been developed and is publicly available (https://juanvillada.shinyapps.io/hbonds/).IMPORTANCE Redundancy of the genetic code creates a vast space of alternatives to encode a protein. Synonymous codons exert control over a variety of molecular and physiological processes of cells mainly through influencing protein biosynthesis. Recent findings have shown that synonymous codon choice affects transcription by controlling mRNA abundance, mRNA stability, transcription termination, and transcript biosynthesis cost. In this work, by analyzing thousands of Bacteria, Archaea, and Fungi genomes, we extend recent findings by showing that synonymous codon choice, corresponding to the number of hydrogen bonds in a codon, can also have an effect on the energetic requirements for unwinding double-stranded DNA in a position-dependent fashion. This report offers new perspectives on the mechanism behind the transcription-translation coordination and complements previous hypotheses on the resource allocation strategies used by Bacteria and Archaea to manage energy efficiency in gene expression.
Collapse
|
9
|
Miller JB, McKinnon LM, Whiting MF, Ridge PG. Codon use and aversion is largely phylogenetically conserved across the tree of life. Mol Phylogenet Evol 2019; 144:106697. [PMID: 31805345 DOI: 10.1016/j.ympev.2019.106697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 04/10/2019] [Accepted: 11/29/2019] [Indexed: 01/11/2023]
Abstract
Using parsimony, we analyzed codon usages across 12,337 species and 25,727 orthologous genes to rank specific genes and codons according to their phylogenetic signal. We examined each codon within each ortholog to determine the codon usage for each species. In total, 890,814 codons were parsimony informative. Next, we compared species that used a codon with species that did not use the codon. We assessed each codon's congruence with species relationships provided in the Open Tree of Life (OTL) and determined the statistical probability of observing these results by random chance. We determined that 25,771 codons had no parallelisms or reversals when mapped to the OTL. Codon usages from orthologous genes spanning many species were 1109× more likely to be congruent with species relationships in the OTL than would be expected by random chance. Using the OTL as a reference, we show that codon usage is phylogenetically conserved within orthologous genes in archaea, bacteria, plants, mammals, and other vertebrates. We also show how to use our provided framework to test different tree hypotheses by confirming the placement of turtles as sister taxa to archosaurs.
Collapse
Affiliation(s)
- Justin B Miller
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Lauren M McKinnon
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Michael F Whiting
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; M.L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|