1
|
Gayen A, Alone P. eIF2β zinc-binding domain interacts with the eIF2γ subunit through the guanine nucleotide binding interface to promote Met-tRNAiMet binding. Biosci Rep 2024; 44:BSR20240438. [PMID: 38873976 PMCID: PMC11230868 DOI: 10.1042/bsr20240438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The heterotrimeric eIF2 complex consists of a core eIF2γ subunit to which binds eIF2α and eIF2β subunits and plays an important role in delivering the Met-tRNAiMet to the 40S ribosome and start codon selection. The intricacies of eIF2β-γ interaction in promoting Met-tRNAiMet binding are not clearly understood. Previously, the zinc-binding domain (ZBD) eIF2βS264Y mutation was reported to cause Met-tRNAiMet binding defect due to the intrinsic GTPase activity. We showed that the eIF2βS264Y mutation has eIF2β-γ interaction defect. Consistently, the eIF2βT238A intragenic suppressor mutation restored the eIF2β-γ and Met-tRNAiMet binding. The eIF2β-ZBD residues Asn252Asp and Arg253Ala mutation caused Met-tRNAiMet binding defect that was partially rescued by the eIF2βT238A mutation, suggesting the eIF2β-ZBD modulates Met-tRNAiMet binding. The suppressor mutation rescued the translation initiation fidelity defect of the eIF2γN135D SW-I mutation and eIF2βF217A/Q221A double mutation in the HTH domain. The eIF2βT238A suppressor mutation could not rescue the eIF2β binding defect of the eIF2γV281K mutation; however, combining the eIF2βS264Y mutation with the eIF2γV281K mutation was lethal. In addition to the previously known interaction of eIF2β with the eIF2γ subunit via its α1-helix, the eIF2β-ZBD also interacts with the eIF2γ subunit via guanine nucleotide-binding interface; thus, the eIF2β-γ interacts via two distinct binding sites.
Collapse
Affiliation(s)
- Aranyadip Gayen
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda 752050, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai 400094, India
| | - Pankaj V. Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda 752050, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
2
|
Ryoo HD. The integrated stress response in metabolic adaptation. J Biol Chem 2024; 300:107151. [PMID: 38462161 PMCID: PMC10998230 DOI: 10.1016/j.jbc.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
3
|
Jia X, He X, Huang C, Li J, Dong Z, Liu K. Protein translation: biological processes and therapeutic strategies for human diseases. Signal Transduct Target Ther 2024; 9:44. [PMID: 38388452 PMCID: PMC10884018 DOI: 10.1038/s41392-024-01749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Protein translation is a tightly regulated cellular process that is essential for gene expression and protein synthesis. The deregulation of this process is increasingly recognized as a critical factor in the pathogenesis of various human diseases. In this review, we discuss how deregulated translation can lead to aberrant protein synthesis, altered cellular functions, and disease progression. We explore the key mechanisms contributing to the deregulation of protein translation, including functional alterations in translation factors, tRNA, mRNA, and ribosome function. Deregulated translation leads to abnormal protein expression, disrupted cellular signaling, and perturbed cellular functions- all of which contribute to disease pathogenesis. The development of ribosome profiling techniques along with mass spectrometry-based proteomics, mRNA sequencing and single-cell approaches have opened new avenues for detecting diseases related to translation errors. Importantly, we highlight recent advances in therapies targeting translation-related disorders and their potential applications in neurodegenerative diseases, cancer, infectious diseases, and cardiovascular diseases. Moreover, the growing interest lies in targeted therapies aimed at restoring precise control over translation in diseased cells is discussed. In conclusion, this comprehensive review underscores the critical role of protein translation in disease and its potential as a therapeutic target. Advancements in understanding the molecular mechanisms of protein translation deregulation, coupled with the development of targeted therapies, offer promising avenues for improving disease outcomes in various human diseases. Additionally, it will unlock doors to the possibility of precision medicine by offering personalized therapies and a deeper understanding of the molecular underpinnings of diseases in the future.
Collapse
Affiliation(s)
- Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Xinyu He
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Chuntian Huang
- Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
4
|
Cardenal Peralta C, Vandroux P, Neumann-Arnold L, Panvert M, Fagart J, Seufert W, Mechulam Y, Schmitt E. Binding of human Cdc123 to eIF2γ. J Struct Biol 2023; 215:108006. [PMID: 37507029 DOI: 10.1016/j.jsb.2023.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Eukaryotic initiation factor 2 (eIF2) plays a key role in protein synthesis and in its regulation. The assembly of this heterotrimeric factor is facilitated by Cdc123, a member of the ATP grasp family that binds the γ subunit of eIF2. Notably, some mutations related to MEHMO syndrome, an X-linked intellectual disability, affect Cdc123-mediated eIF2 assembly. The mechanism of action of Cdc123 is unclear and structural information for the human protein is awaited. Here, the crystallographic structure of human Cdc123 (Hs-Cdc123) bound to domain 3 of human eIF2γ (Hs-eIF2γD3) was determined. The structure shows that the domain 3 of eIF2γ is bound to domain 1 of Cdc123. In addition, the long C-terminal region of Hs-Cdc123 provides a link between the ATP and Hs-eIF2γD3 binding sites. A thermal shift assay shows that ATP is tightly bound to Cdc123 whereas the affinity of ADP is much smaller. Yeast cell viability experiments, western blot analysis and two-hybrid assays show that ATP is important for the function of Hs-Cdc123 in eIF2 assembly. These data and recent findings allow us to propose a refined model to explain the mechanism of action of Cdc123 in eIF2 assembly.
Collapse
Affiliation(s)
- Cristina Cardenal Peralta
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Paul Vandroux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Lea Neumann-Arnold
- Department of Genetics, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michel Panvert
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Jérôme Fagart
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Wolfgang Seufert
- Department of Genetics, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France.
| |
Collapse
|
5
|
Shaydullina MR, Karpova OA, Shakirova AR, Demina NA. MEHMO syndrome: complexity of verifying the diagnosis. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2022. [DOI: 10.21508/1027-4065-2022-67-5-220-224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MEHMO syndrome (OMIM: 300148; ORPHA: 85282) is a disease appears by mental retardation, epilepsy seizures, hypogonadism, microcephaly, and obesity. Pathology is associated with mutations in the EIF2S3 gene located on the X chromosome and leads usually to serious disability of patients. The article presents a clinical observation of the case of the syndrome in two male cousins with microcephaly, manifested by a complex of endocrinopathies (hyperinsulinemic hypoglycemia, multiple adenohypophysis hormone deficiency) and accompanied by severe neurological abnormalities (epilepsy, spastic tetraparesis, optic nerve atrophy). The complexity of the diagnostic due to the rarity of this syndrome, is described.
Collapse
Affiliation(s)
- M. R. Shaydullina
- Republican Сhildren's Clinical Hospital;
Kazan State Medical University
| | | | | | | |
Collapse
|
6
|
Ziegler A, Steindl K, Hanner AS, Kumar Kar R, Prouteau C, Boland A, Deleuze JF, Coubes C, Bézieau S, Küry S, Maystadt I, Le Mao M, Lenaers G, Navet B, Faivre L, Tran Mau-Them F, Zanoni P, Chung WK, Rauch A, Bonneau D, Park MH. Bi-allelic variants in DOHH, catalyzing the last step of hypusine biosynthesis, are associated with a neurodevelopmental disorder. Am J Hum Genet 2022; 109:1549-1558. [PMID: 35858628 PMCID: PMC9388783 DOI: 10.1016/j.ajhg.2022.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Deoxyhypusine hydroxylase (DOHH) is the enzyme catalyzing the second step in the post-translational synthesis of hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] in the eukaryotic initiation factor 5A (eIF5A). Hypusine is formed exclusively in eIF5A by two sequential enzymatic steps catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusinated eIF5A is essential for translation and cell proliferation in eukaryotes, and all three genes encoding eIF5A, DHPS, and DOHH are highly conserved throughout eukaryotes. Pathogenic variants affecting either DHPS or EIF5A have been previously associated with neurodevelopmental disorders. Using trio exome sequencing, we identified rare bi-allelic pathogenic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. The DOHH variants are associated with a neurodevelopmental phenotype that is similar to phenotypes caused by DHPS or EIF5A variants and includes global developmental delay, intellectual disability, facial dysmorphism, and microcephaly. A two-dimensional gel analyses revealed the accumulation of deoxyhypusine-containing eIF5A [eIF5A(Dhp)] and a reduction in the hypusinated eIF5A in fibroblasts derived from affected individuals, providing biochemical evidence for deficiency of DOHH activity in cells carrying the bi-allelic DOHH variants. Our data suggest that rare bi-allelic variants in DOHH result in reduced enzyme activity, limit the hypusination of eIF5A, and thereby lead to a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Alban Ziegler
- Département de Génétique Médicale, Centre Hospitalier Universitaire d’Angers, 49933, Angers France,Université d’Angers, MitoVasc Unit, UMR Centre National de la Recherche Scientifique 6015, INSERM 1083, 49000 Angers, France,Corresponding author
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Ashleigh S. Hanner
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | - Rajesh Kumar Kar
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | - Clément Prouteau
- Département de Génétique Médicale, Centre Hospitalier Universitaire d’Angers, 49933, Angers France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Jean Francois Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Christine Coubes
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, Centre Hospitalier-Universitaire de Montpellier, 34295 Montpellier, France
| | - Stéphane Bézieau
- Nantes Université, Centre Hospitalier Universitaire Nantes, Service de Génétique Médicale, 44000 Nantes, France,Nantes Université, Centre Hospitalier Universitaire Nantes, Centre National de la Recherche Scientifique, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Sébastien Küry
- Nantes Université, Centre Hospitalier Universitaire Nantes, Service de Génétique Médicale, 44000 Nantes, France,Nantes Université, Centre Hospitalier Universitaire Nantes, Centre National de la Recherche Scientifique, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 6041 Gosselies, Belgique
| | - Morgane Le Mao
- Université d’Angers, MitoVasc Unit, UMR Centre National de la Recherche Scientifique 6015, INSERM 1083, 49000 Angers, France
| | - Guy Lenaers
- Université d’Angers, MitoVasc Unit, UMR Centre National de la Recherche Scientifique 6015, INSERM 1083, 49000 Angers, France,Service de Neurologie, Centre Hospitalier Universitaire d’Angers, 49933, Angers France
| | - Benjamin Navet
- Département de Génétique Médicale, Centre Hospitalier Universitaire d’Angers, 49933, Angers France
| | - Laurence Faivre
- Unité de Formation et de Recherche des Sciences de Santé, INSERM-Université de Bourgogne, UMR 1231, Genetics of Developmental Disorders, FHU-TRANSLAD, 21000, Dijon, France,Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU-TRANSLAD, Hôpital d'Enfants, Centre Hospitalier Universitaire Dijon, 21000, Dijon, France
| | - Frédéric Tran Mau-Them
- Unité de Formation et de Recherche des Sciences de Santé, INSERM-Université de Bourgogne, UMR 1231, Genetics of Developmental Disorders, FHU-TRANSLAD, 21000, Dijon, France,Unité Fonctionnelle d’Innovation Diagnostique des Maladies Rares, FHU-TRANSLAD, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Paolo Zanoni
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA,Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland,University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominique Bonneau
- Département de Génétique Médicale, Centre Hospitalier Universitaire d’Angers, 49933, Angers France,Université d’Angers, MitoVasc Unit, UMR Centre National de la Recherche Scientifique 6015, INSERM 1083, 49000 Angers, France
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA,Corresponding author
| |
Collapse
|
7
|
The role of eIF2 phosphorylation in cell and organismal physiology: new roles for well-known actors. Biochem J 2022; 479:1059-1082. [PMID: 35604373 DOI: 10.1042/bcj20220068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Control of protein synthesis (mRNA translation) plays key roles in shaping the proteome and in many physiological, including homeostatic, responses. One long-known translational control mechanism involves phosphorylation of initiation factor, eIF2, which is catalysed by any one of four protein kinases, which are generally activated in response to stresses. They form a key arm of the integrated stress response (ISR). Phosphorylated eIF2 inhibits eIF2B (the protein that promotes exchange of eIF2-bound GDP for GTP) and thus impairs general protein synthesis. However, this mechanism actually promotes translation of certain mRNAs by virtue of specific features they possess. Recent work has uncovered many previously unknown features of this regulatory system. Several studies have yielded crucial insights into the structure and control of eIF2, including that eIF2B is regulated by several metabolites. Recent studies also reveal that control of eIF2 and the ISR helps determine organismal lifespan and surprising roles in sensing mitochondrial stresses and in controlling the mammalian target of rapamycin (mTOR). The latter effect involves an unexpected role for one of the eIF2 kinases, HRI. Phosphoproteomic analysis identified new substrates for another eIF2 kinase, Gcn2, which senses the availability of amino acids. Several genetic disorders arise from mutations in genes for eIF2α kinases or eIF2B (i.e. vanishing white matter disease, VWM and microcephaly, epileptic seizures, microcephaly, hypogenitalism, diabetes and obesity, MEHMO). Furthermore, the eIF2-mediated ISR plays roles in cognitive decline associated with Alzheimer's disease. New findings suggest potential therapeutic value in interfering with the ISR in certain settings, including VWM, for example by using compounds that promote eIF2B activity.
Collapse
|
8
|
Ram AK, Mallik M, Reddy RR, Suryawanshi AR, Alone PV. Altered proteome in translation initiation fidelity defective eIF5 G31R mutant causes oxidative stress and DNA damage. Sci Rep 2022; 12:5033. [PMID: 35322093 PMCID: PMC8943034 DOI: 10.1038/s41598-022-08857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The recognition of the AUG start codon and selection of an open reading frame (ORF) is fundamental to protein biosynthesis. Defect in the fidelity of start codon selection adversely affect proteome and have a pleiotropic effect on cellular function. Using proteomic techniques, we identified differential protein abundance in the translation initiation fidelity defective eIF5G31R mutant that initiates translation using UUG codon in addition to the AUG start codon. Consistently, the eIF5G31R mutant altered proteome involved in protein catabolism, nucleotide biosynthesis, lipid biosynthesis, carbohydrate metabolism, oxidation–reduction pathway, autophagy and re-programs the cellular pathways. The utilization of the upstream UUG codons by the eIF5G31R mutation caused downregulation of uridylate kinase expression, sensitivity to hydroxyurea, and DNA damage. The eIF5G31R mutant cells showed lower glutathione levels, high ROS activity, and sensitivity to H2O2.
Collapse
Affiliation(s)
- Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - Monalisha Mallik
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - R Rajendra Reddy
- Clinical Proteomics, DBT-Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | | | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India. .,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
9
|
Ivanova N, Serzhanova V, Demina N, Guseva D, Skoblov M. mRNA analysis revealed a novel pathogenic EIF2S3 variant causing MEHMO syndrome. Eur J Med Genet 2022; 65:104421. [PMID: 34999262 DOI: 10.1016/j.ejmg.2022.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
Abstract
EIF2S3 pathogenic variants have been shown to cause MEHMO syndrome - a rare X-linked intellectual disability syndrome. In most cases, DNA diagnostics of MEHMO syndrome is performed using exome sequencing. We describe two cousins with profound intellectual disability, severe microcephaly, microgenitalism, hypoglycemia, epileptic seizures, and hypertrichosis, whose clinical symptoms allowed us to suspect MEHMO syndrome. To confirm this diagnosis, we designed an mRNA analysis for the EIF2S3 gene. It is a cost-effective method to detect coding sequence variants in multi-exonic genes, as well as splicing defects and allelic imbalance. Our mRNA sequence analysis revealed a novel EIF2S3 variant c.820C>G in both cousins. We also found the same variant in female family members in the heterozygous state. To investigate the pathogenicity of the c.820C>G variant, we performed expression analysis, which showed that the DDIT3 transcript level was significantly increased in the patient relative to the controls. We, thus, demonstrate that mRNA analysis is an efficient tool for performing genetic testing in patients with distinct phenotypic features.
Collapse
Affiliation(s)
- Nadezda Ivanova
- Research Centre for Medical Genetics, 115522, Moscow, Russia.
| | | | - Nina Demina
- Research Centre for Medical Genetics, 115522, Moscow, Russia
| | - Darya Guseva
- Research Centre for Medical Genetics, 115522, Moscow, Russia
| | - Mikhail Skoblov
- Research Centre for Medical Genetics, 115522, Moscow, Russia
| |
Collapse
|
10
|
Liu W, Li N, Zhang M, Arisha AH, Hua J. The role of Eif2s3y in mouse spermatogenesis. Curr Stem Cell Res Ther 2021; 17:750-755. [PMID: 34727865 DOI: 10.2174/1574888x16666211102091513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x(its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.
Collapse
Affiliation(s)
- Wenqing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Ahmed H Arisha
- Department of physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig El_Sharkia 44519 . Egypt
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| |
Collapse
|
11
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
12
|
Lu J, Chen S, Tan H, Huang Z, Li B, Liu L, Chen Y, Zeng X, Zou Y, Xu L. Eukaryotic initiation factor-2, gamma subunit, suppresses proliferation and regulates the cell cycle via the MAPK/ERK signaling pathway in acute myeloid leukemia. J Cancer Res Clin Oncol 2021; 147:3157-3168. [PMID: 34232382 DOI: 10.1007/s00432-021-03712-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The expression of eukaryotic translation initiation factor-2 subunit 3 (EIF2S3) in patients with non-small cell lung and colorectal cancer is lower than that in healthy individuals. However, the functions of EIF2S3 remain unclear, and its study in leukemia has not been reported. The article aims to explore the role of EIF2S3 in AML (acute myeloid leukemia) and its underlying mechanism. METHODS Reverse transcription-quantitative PCR was performed to evaluate the expression levels of EIF2S3, and its association with patient prognosis was determined. Inducible HEL-EIF2S3 and HL-60-EIF2S3 cell lines were established by retrovirus infection. Cellular proliferation and the cell cycle were analyzed using Cell Counting Kit-8 and flow cytometric analyses. Tumorigenic ability was evaluated using xenograft nude mouse model. Gene expression profiles were analyzed in HL-60-EIF2S3 cells by next-generation sequencing, and WB analysis was performed to detect the expression of related proteins. RESULTS The expression of EIF2S3 in patients with AML was lower than that experiencing CR (P = 0.02). Furthermore, EIF2S3 overexpression inhibited cellular proliferation, halted G0/1 to S phase cell cycle progression, and inhibited tumorigenicity (P = 0.015). 479 differentially expressed genes were identified between HL60-EIF2S3 DOX (-) and HL60-EIF2S3 DOX ( +) cells via NGS and several of them involved in MAPK/ERK signaling pathway. The phosphorylation levels of ERK decreased when EIF2S3 was overexpressed (P < 0.050). CONCLUSION EIF2S3 overexpression may result in a decrease in cellular proliferation, cell cycle arrest, and tumorigenic inhibition via the MAPK/ERK signaling pathway in AML cells.
Collapse
Affiliation(s)
- Jielun Lu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China.,Department of Urology and Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, People's Republic of China
| | - Shuyi Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China.,Department of Urology and Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, People's Republic of China
| | - Huo Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Bo Li
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Ling Liu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 51260, People's Republic of China
| | - Yimin Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Xiaozhen Zeng
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Yawei Zou
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China.
| | - Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China. .,Department of Urology and Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Zhang M, Zhou Y, Jiang Y, Lu Z, Xiao X, Ning J, Sun H, Zhang X, Luo H, Can D, Lu J, Xu H, Zhang YW. Profiling of Sexually Dimorphic Genes in Neural Cells to Identify Eif2s3y, Whose Overexpression Causes Autism-Like Behaviors in Male Mice. Front Cell Dev Biol 2021; 9:669798. [PMID: 34307355 PMCID: PMC8292149 DOI: 10.3389/fcell.2021.669798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Many neurological disorders exhibit sex differences and sex-specific therapeutic responses. Unfortunately, significant amounts of studies investigating molecular and cellular mechanisms underlying these neurological disorders use primary cell cultures with undetermined sexes; and this may be a source for contradictory results among different studies and impair the validity of study conclusion. Herein, we comprehensively compared sexual dimorphism of gene expression in primary neurons, astrocytes, and microglia derived from neonatal mouse brains. We found that overall sexually dimorphic gene numbers were relatively low in these primary cells, with microglia possessing the most (264 genes), neurons possessing the medium (69 genes), and astrocytes possessing the least (30 genes). KEGG analysis indicated that sexually dimorphic genes in these three cell types were strongly enriched for the immune system and immune-related diseases. Furthermore, we identified that sexually dimorphic genes shared by these primary cells dominantly located on the Y chromosome, including Ddx3y, Eif2s3y, Kdm5d, and Uty. Finally, we demonstrated that overexpression of Eif2s3y increased synaptic transmission specifically in male neurons and caused autism-like behaviors specifically in male mice. Together, our results demonstrate that the sex of primary cells should be considered when these cells are used for studying the molecular mechanism underlying neurological disorders with sex-biased susceptibility, especially those related to immune dysfunction. Moreover, our findings indicate that dysregulation of sexually dimorphic genes on the Y chromosome may also result in autism and possibly other neurological disorders, providing new insights into the genetic driver of sex differences in neurological disorders.
Collapse
Affiliation(s)
- Muxian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yunqiang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yiru Jiang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Emergency Department, Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Zhancheng Lu
- Institute of Chemistry, University of Vienna, Vienna, Austria
| | - Xiaoxia Xiao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Jinhuan Ning
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Jinsheng Lu
- Emergency Department, Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Mori M, Kumada T, Inoue K, Nozaki F, Matsui K, Maruo Y, Yamada M, Suzuki H, Kosaki K, Shibata M. Ketogenic diet for refractory epilepsy with MEHMO syndrome: Caution for acute necrotizing pancreatitis. Brain Dev 2021; 43:724-728. [PMID: 33714664 DOI: 10.1016/j.braindev.2021.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The MEHMO (mental retardation, epileptic seizures, hypogonadism and hypogenitalism, microcephaly, and obesity) syndrome, which is caused by a hemizygous variant in the EIF2S3 gene on chromosome Xp22, is associated with significant morbidity and mortality. Refractory epileptic seizures and glucose dysregulation are characteristic manifestations of the MEHMO syndrome, which can often diminish patients' quality of life. CASE A 5-year-old boy was referred to our hospital because of profound intellectual disability, micropenis, cryptorchidism, central hypothyroidism, and microcephaly. He had neonatal hypoglycemia at birth and later experienced refractory epileptic seizures and developed obesity and insulin-dependent diabetes. A diagnosis of MEHMO syndrome was established on the basis of the patient's clinical manifestations and de novo novel missense variant in the EIF2S3 gene (NM_001415.3:c.805 T > G) that was detected through whole-exome analysis. Although the patient's refractory seizures and diabetes had been well controlled with a combination of ketogenic diet (KD) therapy and insulin therapy, acute fatal necrotizing pancreatitis occurred at the age of 68 months. Moreover, despite intensive care, his condition rapidly deteriorated to multiple organ failure and acute respiratory distress syndrome, resulting in death. CONCLUSION The pathophysiology of glucose intolerance in MEHMO syndrome remains to be elucidated; however, recent studies have suggested that EIF2S3 gene variants could lead to glucose dysregulation and β-cell damage in the pancreas. We suspect that in the present case, KD therapy led to an abnormal load on the beta cells that were damaged owing to eIF2γ dysfunction. Therefore, the adverse effects of KD in patients with MEHMO syndrome should be considered.
Collapse
Affiliation(s)
- Mioko Mori
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | - Tomohiro Kumada
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | - Kenji Inoue
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | - Fumihito Nozaki
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | - Katsuyuki Matsui
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Mamiko Yamada
- Center of Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center of Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center of Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Shibata
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan.
| |
Collapse
|
15
|
Moortgat S, Manfroid I, Pendeville H, Freeman S, Bourdouxhe J, Benoit V, Merhi A, Philippe C, Faivre L, Maystadt I. Broadening the phenotypic spectrum and physiological insights related to EIF2S3 variants. Hum Mutat 2021; 42:827-834. [PMID: 33942450 DOI: 10.1002/humu.24215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 01/20/2023]
Abstract
Mental deficiency, epilepsy, hypogonadism, microcephaly, and obesity syndrome is a severe X-linked syndrome caused by pathogenic variants in EIF2S3. The gene encodes the γ subunit of the eukaryotic translation initiation factor-2, eIF2, essential for protein translation. A recurrent frameshift variant is described in severely affected patients while missense variants usually cause a moderate phenotype. We identified a novel missense variant (c.433A>G, p.(Met145Val)) in EIF2S3 in a mildly affected patient. Studies on zebrafish confirm the pathogenicity of this novel variant and three previously published missense variants. CRISPR/Cas9 knockout of eif2s3 in zebrafish embryos recapitulate the human microcephaly and show increased neuronal cell death. Abnormal high glucose levels were identified in mutant embryos, caused by beta cell and pancreatic progenitor deficiency, not related to apoptosis. Additional studies in patient-derived fibroblasts did not reveal apoptosis. Our results provide new insights into disease physiopathology, suggesting tissue-dependent mechanisms.
Collapse
Affiliation(s)
- Stephanie Moortgat
- Center de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-Research, Tour B34, Université de Liège, Liège (Sart-Tilman), Belgium
| | - Hélène Pendeville
- GIGA-Research, Zebrafish Platform, Tour B34, Université de Liège, Liège (Sart-Tilman), Belgium
| | - Stephen Freeman
- GIGA-Research, Imaging and Flow Cytometry Platform, Tour B34, Université de Liège, Liège (Sart-Tilman), Belgium
| | - Jordane Bourdouxhe
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-Research, Tour B34, Université de Liège, Liège (Sart-Tilman), Belgium
| | - Valérie Benoit
- Center de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Ahmad Merhi
- Laboratory of Translational Oncology, Institut de Pathologie et de Génétique, Gosselies, Belgium.,IPG BioBank, Institut de Pathologie et de Génétique, 6041 Charleroi, Gosselies, Belgium
| | - Christophe Philippe
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle « Innovation diagnostique dans les maladies rares », laboratoire de génétique moléculaire, plate-forme de biologie hospitalo-universitaire, CHU Dijon, Dijon, France
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, Dijon, France.,Center de Génétique et Center de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est », Hôpital d'Enfants, CHU, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Isabelle Maystadt
- Center de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium.,Faculté de Médecine, URPhyM, UNamur, Namur, Belgium
| |
Collapse
|
16
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
17
|
Eif2s3y Promotes the Proliferation of Spermatogonial Stem Cells by Activating ERK Signaling. Stem Cells Int 2021; 2021:6668658. [PMID: 33603791 PMCID: PMC7869416 DOI: 10.1155/2021/6668658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 01/15/2023] Open
Abstract
The future fertility of males with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Spermatogonial stem cell transplantation is believed to be a way to restore fertility in men. However, the survival efficiency of transplanted cells is still low. Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) located on the Y chromosome of male animals is a coding gene of eIF2γ which mainly functions in translation initiation. Recently, the emerging role of Eif2s3y in spermatogenesis has been emphasized in several studies. However, the underlying mechanism is still unclear. In addition, how Eif2s3y functions in large animals remains largely unknown. In this study, we obtained the CDS sequence of the Eif2s3y gene from the testis of dairy goats and found that this gene was highly expressed in the testis and was evolutionarily conserved among different species. Interestingly, overexpression of Eif2s3y promoted the proliferation of spermatogonial stem cells of dairy goats by activating the ERK signaling pathway. In animal experiments, overexpressing Eif2s3y promoted transplanted goat spermatogonial stem cells and produced more colonies after microinjection into the seminiferous tubules of infertile mice. In conclusion, our study highlights an undiscovered role of Eif2s3y in dairy goat reproduction. This finding may provide an important basis for future works regarding male spermatogenic cell restoration and represent a major advance toward surrogate sires becoming a tool for disseminating and regenerating germplasm in all mammals.
Collapse
|
18
|
Hawer H, Mendelsohn BA, Mayer K, Kung A, Malhotra A, Tuupanen S, Schleit J, Brinkmann U, Schaffrath R. Diphthamide-deficiency syndrome: a novel human developmental disorder and ribosomopathy. Eur J Hum Genet 2020; 28:1497-1508. [PMID: 32576952 PMCID: PMC7575589 DOI: 10.1038/s41431-020-0668-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
We describe a novel type of ribosomopathy that is defined by deficiency in diphthamidylation of translation elongation factor 2. The ribosomopathy was identified by correlating phenotypes and biochemical properties of previously described patients with diphthamide biosynthesis gene 1 (DPH1) deficiencies with a new patient that carried inactivating mutations in both alleles of the human diphthamide biosynthesis gene 2 (DPH2). The human DPH1 syndrome is an autosomal recessive disorder associated with developmental delay, abnormal head circumference (microcephaly or macrocephaly), short stature, and congenital heart disease. It is defined by variants with reduced functionality of the DPH1 gene observed so far predominantly in consanguineous homozygous patients carrying identical mutant alleles of DPH1. Here we report a child with a very similar phenotype carrying biallelic variants of the human DPH2. The gene products DPH1 and DPH2 are components of a heterodimeric enzyme complex that mediates the first step of the posttranslational diphthamide modification on the nonredundant eukaryotic translation elongation factor 2 (eEF2). Diphthamide deficiency was shown to reduce the accuracy of ribosomal protein biosynthesis. Both DPH2 variants described here severely impair diphthamide biosynthesis as demonstrated in human and yeast cells. This is the first report of a patient carrying compound heterozygous DPH2 loss-of-function variants with a DPH1 syndrome-like phenotype and implicates diphthamide deficiency as the root cause of this patient's clinical phenotype as well as of DPH1-syndrome. These findings define "diphthamide-deficiency syndrome" as a special ribosomopathy due to reduced functionality of components of the cellular machinery for eEF2-diphthamide synthesis.
Collapse
Affiliation(s)
- Harmen Hawer
- Fachgebiet Mikrobiologie, Institut für Biologie, Universität Kassel, D-34132, Kassel, Hessen, Germany
| | | | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, D-82377, Penzberg, Bavaria, Germany
| | - Ann Kung
- Kaiser Permanente Oakland Medical Center, Oakland, CA, 94611, USA
| | - Amit Malhotra
- Kaiser Permanente Oakland Medical Center, Oakland, CA, 94611, USA
| | - Sari Tuupanen
- Blueprint Genetics Oy, Keilaranta 16 A-B, 02150, Espoo, Finland
| | | | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, D-82377, Penzberg, Bavaria, Germany.
| | - Raffael Schaffrath
- Fachgebiet Mikrobiologie, Institut für Biologie, Universität Kassel, D-34132, Kassel, Hessen, Germany
| |
Collapse
|
19
|
Smith M. MRNA Transcription, Translation, and Defects in Developmental Cognitive and Behavioral Disorders. Front Mol Biosci 2020; 7:577710. [PMID: 33102526 PMCID: PMC7545264 DOI: 10.3389/fmolb.2020.577710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 12/03/2022] Open
Abstract
The growth of expertise in molecular techniques, their application to clinical evaluations, and the establishment of databases with molecular genetic information has led to greater insights into the roles of molecular processes related to gene expression in neurodevelopment and functioning. The goal of this review is to examine new insights into messenger RNA transcription, translation, and cellular protein synthesis and the relevance of genetically determined alterations in these processes in neurodevelopmental, cognitive, and behavioral disorders.
Collapse
|
20
|
Kotzaeridou U, Young-Baird SK, Suckow V, Thornburg AG, Wagner M, Harting I, Christ S, Strom T, Dever TE, Kalscheuer VM. Novel pathogenic EIF2S3 missense variants causing clinically variable MEHMO syndrome with impaired eIF2γ translational function, and literature review. Clin Genet 2020; 98:507-514. [PMID: 32799315 DOI: 10.1111/cge.13831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Rare pathogenic EIF2S3 missense and terminal deletion variants cause the X-linked intellectual disability (ID) syndrome MEHMO, or a milder phenotype including pancreatic dysfunction and hypopituitarism. We present two unrelated male patients who carry novel EIF2S3 pathogenic missense variants (p.(Thr144Ile) and p.(Ile159Leu)) thereby broadening the limited genetic spectrum and underscoring clinically variable expressivity of MEHMO. While the affected male with p.(Thr144Ile) presented with severe motor delay, severe microcephaly, moderate ID, epileptic seizures responsive to treatments, hypogenitalism, central obesity, facial features, and diabetes, the affected male with p.(Ile159Leu) presented with moderate ID, mild motor delay, microcephaly, epileptic seizures resistant to treatment, central obesity, and mild facial features. Both variants are located in the highly conserved guanine nucleotide binding domain of the EIF2S3 encoded eIF2γ subunit of the heterotrimeric translation initiation factor 2 (eIF2) complex. Further, we investigated both variants in a structural model and in yeast. The reduced growth rates and lowered fidelity of translation with increased initiation at non-AUG codons observed for both mutants in these studies strongly support pathogenicity of the variants.
Collapse
Affiliation(s)
- Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA.,National Institute of General Medical Sciences, NIH, Bethesda, Maryland, USA
| | - Vanessa Suckow
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexis G Thornburg
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Matias Wagner
- Institute of Human Genetics, Technical University München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Inga Harting
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stine Christ
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Strom
- Institute of Human Genetics, Technical University München, Munich, Germany
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
21
|
Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science 2020; 368:368/6489/eaat5314. [PMID: 32327570 DOI: 10.1126/science.aat5314] [Citation(s) in RCA: 716] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein quality control is essential for the proper function of cells and the organisms that they make up. The resulting loss of proteostasis, the processes by which the health of the cell's proteins is monitored and maintained at homeostasis, is associated with a wide range of age-related human diseases. Here, we highlight how the integrated stress response (ISR), a central signaling network that responds to proteostasis defects by tuning protein synthesis rates, impedes the formation of long-term memory. In addition, we address how dysregulated ISR signaling contributes to the pathogenesis of complex diseases, including cognitive disorders, neurodegeneration, cancer, diabetes, and metabolic disorders. The development of tools through which the ISR can be modulated promises to uncover new avenues to diminish pathologies resulting from it for clinical benefit.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Young-Baird SK, Lourenço MB, Elder MK, Klann E, Liebau S, Dever TE. Suppression of MEHMO Syndrome Mutation in eIF2 by Small Molecule ISRIB. Mol Cell 2019; 77:875-886.e7. [PMID: 31836389 DOI: 10.1016/j.molcel.2019.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/07/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Dysregulation of cellular protein synthesis is linked to a variety of diseases. Mutations in EIF2S3, encoding the γ subunit of the heterotrimeric eukaryotic translation initiation factor eIF2, cause MEHMO syndrome, an X-linked intellectual disability disorder. Here, using patient-derived induced pluripotent stem cells, we show that a mutation at the C terminus of eIF2γ impairs CDC123 promotion of eIF2 complex formation and decreases the level of eIF2-GTP-Met-tRNAiMet ternary complexes. This reduction in eIF2 activity results in dysregulation of global and gene-specific protein synthesis and enhances cell death upon stress induction. Addition of the drug ISRIB, an activator of the eIF2 guanine nucleotide exchange factor, rescues the cell growth, translation, and neuronal differentiation defects associated with the EIF2S3 mutation, offering the possibility of therapeutic intervention for MEHMO syndrome.
Collapse
Affiliation(s)
- Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, USA.
| | - Maíra Bertolessi Lourenço
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Megan K Elder
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Chen HH, Tarn WY. uORF-mediated translational control: recently elucidated mechanisms and implications in cancer. RNA Biol 2019; 16:1327-1338. [PMID: 31234713 DOI: 10.1080/15476286.2019.1632634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein synthesis is tightly regulated, and its dysregulation can contribute to the pathology of various diseases, including cancer. Increased or selective translation of mRNAs can promote cancer cell proliferation, metastasis and tumor expansion. Translational control is one of the most important means for cells to quickly adapt to environmental stresses. Adaptive translation involves various alternative mechanisms of translation initiation. Upstream open reading frames (uORFs) serve as a major regulator of stress-responsive translational control. Since recent advances in omics technologies including ribo-seq have expanded our knowledge of translation, we discuss emerging mechanisms for uORF-mediated translation regulation and its impact on cancer cell biology. A better understanding of dysregulated translational control of uORFs in cancer would facilitate the development of new strategies for cancer therapy.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| |
Collapse
|
24
|
Gregory LC, Ferreira CB, Young-Baird SK, Williams HJ, Harakalova M, van Haaften G, Rahman SA, Gaston-Massuet C, Kelberman D, GOSgene, Qasim W, Camper SA, Dever TE, Shah P, Robinson ICAF, Dattani MT. Impaired EIF2S3 function associated with a novel phenotype of X-linked hypopituitarism with glucose dysregulation. EBioMedicine 2019; 42:470-480. [PMID: 30878599 PMCID: PMC6492072 DOI: 10.1016/j.ebiom.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 11/25/2022] Open
Abstract
Background The heterotrimeric GTP-binding protein eIF2 forms a ternary complex with initiator methionyl-tRNA and recruits it to the 40S ribosomal subunit for start codon selection and thereby initiates protein synthesis. Mutations in EIF2S3, encoding the eIF2γ subunit, are associated with severe intellectual disability and microcephaly, usually as part of MEHMO syndrome. Methods Exome sequencing of the X chromosome was performed on three related males with normal head circumferences and mild learning difficulties, hypopituitarism (GH and TSH deficiencies), and an unusual form of glucose dysregulation. In situ hybridisation on human embryonic tissue, EIF2S3-knockdown studies in a human pancreatic cell line, and yeast assays on the mutated corresponding eIF2γ protein, were performed in this study. Findings We report a novel hemizygous EIF2S3 variant, p.Pro432Ser, in the three boys (heterozygous in their mothers). EIF2S3 expression was detectable in the developing pituitary gland and pancreatic islets of Langerhans. Cells lacking EIF2S3 had increased caspase activity/cell death. Impaired protein synthesis and relaxed start codon selection stringency was observed in mutated yeast. Interpretation Our data suggest that the p.Pro432Ser mutation impairs eIF2γ function leading to a relatively mild novel phenotype compared with previous EIF2S3 mutations. Our studies support a critical role for EIF2S3 in human hypothalamo-pituitary development and function, and glucose regulation, expanding the range of phenotypes associated with EIF2S3 mutations beyond classical MEHMO syndrome. Untreated hypoglycaemia in previous cases may have contributed to their more severe neurological impairment and seizures in association with impaired EIF2S3. Fund GOSH, MRF, BRC, MRC/Wellcome Trust and NIGMS funded this study.
Collapse
Affiliation(s)
- Louise C Gregory
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Carolina B Ferreira
- Infection, Immunology Inflammation & Physiological Medicine, UCL Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States; National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MA 20892, United States
| | - Hywel J Williams
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Magdalena Harakalova
- Department of Genetics, University Medical Center Utrecht, 3584, the Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, 3584, the Netherlands
| | - Sofia A Rahman
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts & The London Medical School, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Daniel Kelberman
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - GOSgene
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, Children NHS Foundation Trust and UCL, London WC1N 1EH, United Kingdom
| | - Waseem Qasim
- Infection, Immunology Inflammation & Physiological Medicine, UCL Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Pratik Shah
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | | | - Mehul T Dattani
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom.
| |
Collapse
|