1
|
Quilles JC, Espada CR, Orsine LA, Defina TA, Almeida L, Holetz F, Cruz AK. A short ncRNA modulates gene expression and affects stress response and parasite differentiation in Leishmania braziliensis. Front Cell Infect Microbiol 2025; 15:1513908. [PMID: 39981380 PMCID: PMC11841412 DOI: 10.3389/fcimb.2025.1513908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
The protozoan parasite Leishmania spp. is a causative agent of leishmaniasis, a disease that affects millions of people in more than 80 countries worldwide. Apart from its medical relevance, this organism has a genetic organization that is unique among eukaryotes. Studies of the mechanisms regulating gene expression in Leishmania led us to investigate noncoding RNAs (ncRNAs) as regulatory elements. We previously identified differentially expressed (DE) ncRNAs in Leishmania braziliensis with potential roles in the parasite biology and development. Herein, we present a functional analysis of one such DE ncRNA, the 147-nucleotide-long transcript ncRNA97, which is preferentially expressed in amastigotes, the replicative form within mammalian phagocytes. By RT-qPCR the ncRNA97 was detected in greater quantities in the nucleus under physiological conditions and in the cytoplasm under nutritional stress. Interestingly, the transcript is protected at the 5' end but is not processed by the canonical trypanosomatid trans-splicing mechanism, according to the RNA circularization assay. ncRNA97 knockout (KO) and addback (AB) transfectants were generated and subjected to phenotypic analysis, which revealed that the lack of ncRNA97 impairs the starvation response and differentiation to the infective form. Comparative transcriptomics of ncRNA97KO and parental cells revealed that transcripts encoding amastigote-specific proteins were affected. This pioneering work demonstrates that ncRNAs contribute to the developmental regulatory mechanisms of Leishmania.
Collapse
Affiliation(s)
- José C. Quilles
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline R. Espada
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lissur A. Orsine
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tânia A. Defina
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Letícia Almeida
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabíola Holetz
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, PR, Brazil
| | - Angela K. Cruz
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Kostygov AY, Skýpalová K, Kraeva N, Kalita E, McLeod C, Yurchenko V, Field MC, Lukeš J, Butenko A. Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote. BMC Biol 2024; 22:281. [PMID: 39627879 PMCID: PMC11613528 DOI: 10.1186/s12915-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND In trypanosomatids, a group of unicellular eukaryotes that includes numerous important human parasites, cis-splicing has been previously reported for only two genes: a poly(A) polymerase and an RNA helicase. Conversely, trans-splicing, which involves the attachment of a spliced leader sequence, is observed for nearly every protein-coding transcript. So far, our understanding of splicing in this protistan group has stemmed from the analysis of only a few medically relevant species. In this study, we used an extensive dataset encompassing all described trypanosomatid genera to investigate the distribution of intron-containing genes and the evolution of splice sites. RESULTS We identified a new conserved intron-containing gene encoding an RNA-binding protein that is universally present in Kinetoplastea. We show that Perkinsela sp., a kinetoplastid endosymbiont of Amoebozoa, represents the first eukaryote completely devoid of cis-splicing, yet still preserving trans-splicing. We also provided evidence for reverse transcriptase-mediated intron loss in Kinetoplastea, extensive conservation of 5' splice sites, and the presence of non-coding RNAs within a subset of retained trypanosomatid introns. CONCLUSIONS All three intron-containing genes identified in Kinetoplastea encode RNA-interacting proteins, with a potential to fine-tune the expression of multiple genes, thus challenging the perception of cis-splicing in these protists as a mere evolutionary relic. We suggest that there is a selective pressure to retain cis-splicing in trypanosomatids and that this is likely associated with overall control of mRNA processing. Our study provides new insights into the evolution of introns and, consequently, the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
- Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Karolína Skýpalová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Natalia Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Elora Kalita
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Cameron McLeod
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic.
| |
Collapse
|
3
|
Militello KT, Leigh J, Pusateri M, Read LK, Vogler D. A role for a Trypanosoma brucei cytosine RNA methyltransferase homolog in ribosomal RNA processing. PLoS One 2024; 19:e0298521. [PMID: 38662801 PMCID: PMC11045063 DOI: 10.1371/journal.pone.0298521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/26/2024] [Indexed: 04/28/2024] Open
Abstract
In Trypanosoma brucei, gene expression is primarily regulated posttranscriptionally making RNA metabolism critical. T. brucei has an epitranscriptome containing modified RNA bases. Yet, the identity of the enzymes catalyzing modified RNA base addition and the functions of the enzymes and modifications remain unclear. Homology searches indicate the presence of numerous T. brucei cytosine RNA methyltransferase homologs. One such homolog, TbNop2 was studied in detail. TbNop2 contains the six highly conserved motifs found in cytosine RNA methyltransferases and is evolutionarily related to the Nop2 protein family required for rRNA modification and processing. RNAi experiments targeting TbNop2 resulted in reduced levels of TbNop2 RNA and protein, and a cessation of parasite growth. Next generation sequencing of bisulfite-treated RNA (BS-seq) detected the presence of two methylation sites in the large rRNA; yet TbNop2 RNAi did not result in a significant reduction of methylation. However, TbNop2 RNAi resulted in the retention of 28S internal transcribed spacer RNAs, indicating a role for TbNop2 in rRNA processing.
Collapse
Affiliation(s)
- Kevin T. Militello
- Biology Department, State University of New York at Geneseo, Geneseo, NY, United States of America
| | - Jennifer Leigh
- Biology Department, State University of New York at Geneseo, Geneseo, NY, United States of America
| | - Matthew Pusateri
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Laurie K. Read
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Dineen Vogler
- Biology Department, State University of New York at Geneseo, Geneseo, NY, United States of America
| |
Collapse
|
4
|
Rodríguez-Almonacid CC, Kellogg MK, Karamyshev AL, Karamysheva ZN. Ribosome Specialization in Protozoa Parasites. Int J Mol Sci 2023; 24:ijms24087484. [PMID: 37108644 PMCID: PMC10138883 DOI: 10.3390/ijms24087484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Ribosomes, in general, are viewed as constitutive macromolecular machines where protein synthesis takes place; however, this view has been recently challenged, supporting the hypothesis of ribosome specialization and opening a completely new field of research. Recent studies have demonstrated that ribosomes are heterogenous in their nature and can provide another layer of gene expression control by regulating translation. Heterogeneities in ribosomal RNA and ribosomal proteins that compose them favor the selective translation of different sub-pools of mRNAs and functional specialization. In recent years, the heterogeneity and specialization of ribosomes have been widely reported in different eukaryotic study models; however, few reports on this topic have been made on protozoa and even less on protozoa parasites of medical importance. This review analyzes heterogeneities of ribosomes in protozoa parasites highlighting the specialization in their functions and their importance in parasitism, in the transition between stages in their life cycle, in the change of host and in response to environmental conditions.
Collapse
Affiliation(s)
| | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
5
|
Ceballos-Pérez G, Rico-Jiménez M, Gómez-Liñán C, Estévez AM. Role of the RNA-binding protein ZC3H41 in the regulation of ribosomal protein messenger RNAs in trypanosomes. Parasit Vectors 2023; 16:118. [PMID: 37004055 PMCID: PMC10064699 DOI: 10.1186/s13071-023-05728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Trypanosomes are single-celled eukaryotes that rely heavily on post-transcriptional mechanisms to regulate gene expression. RNA-binding proteins play essential roles in regulating the fate, abundance and translation of messenger RNAs (mRNAs). Among these, zinc finger proteins of the cysteine3histidine (CCCH) class have been shown to be key players in cellular processes as diverse as differentiation, regulation of the cell cycle and translation. ZC3H41 is an essential zinc finger protein that has been described as a component of spliced leader RNA granules and nutritional stress granules, but its role in RNA metabolism is unknown. METHODS Cell cycle analysis in ZC3H41- and Z41AP-depleted cells was carried out using 4',6-diamidino-2-phenylindole staining, microscopic examination and flow cytometry. The identification of ZC3H41 protein partners was done using tandem affinity purification and mass spectrometry. Next-generation sequencing was used to evaluate the effect of ZC3H41 depletion on the transcriptome of procyclic Trypanosoma brucei cells, and also to identify the cohort of mRNAs associated with the ZC3H41/Z41AP complex. Levels of 5S ribosomal RNA (rRNA) species in ZC3H41- and Z41AP-depleted cells were assessed by quantitative reverse transcription-polymerase chain reaction. Surface sensing of translation assays were used to monitor global translation. RESULTS We showed that depletion of the zinc finger protein ZC3H41 resulted in marked cell cycle defects and abnormal cell morphologies. ZC3H41 was found associated with an essential protein, which we named Z41AP, forming a stable heterodimer, and also with proteins of the poly(A)-binding protein 1 complex. The identification of mRNAs associated with the ZC3H41/Z41AP complex revealed that it is primarily composed of ribosomal protein mRNAs, and that binding to target transcripts is diminished upon nutritional stress. In addition, we observed that mRNAs encoding several proteins involved in the maturation of 5S rRNA are also associated with the ZC3H41/Z41AP complex. Finally, we showed that depletion of either ZC3H41 or Z41AP led to the accumulation of 5S rRNA precursors and a decrease of protein translation. CONCLUSIONS We propose that ZC3H41 and Z41AP play important roles in controlling the fate of ribosomal components in response to environmental cues.
Collapse
Affiliation(s)
- Gloria Ceballos-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Miriam Rico-Jiménez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
- Estación Experimental del Zaidín (EEZ), CSIC, Prof. Albareda 1, 18008, Granada, Spain
| | - Claudia Gómez-Liñán
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Antonio M Estévez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
6
|
Guerra-Slompo E, Cesaro G, Guimarães B, Zanchin N. Dissecting Trypanosoma brucei RRP44 function in the maturation of segmented ribosomal RNA using a regulated genetic complementation system. Nucleic Acids Res 2023; 51:396-419. [PMID: 36610751 PMCID: PMC9841430 DOI: 10.1093/nar/gkac1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma brucei belongs to a group of protozoans presenting fragmented large subunit rRNA. Its LSU rRNA equivalent to the 25S/28S rRNA of other eukaryotes is split into six fragments, requiring additional processing for removal of the extra spacer sequences. We have used a genetic complementation strategy to further investigate the T. brucei RRP44 nuclease in pre-rRNA maturation. TbRRP44 contains both a PIN and a RNB domain whose homologues are found in association with the exosome complex. We found that the exonucleolytic activity of the RNB domain as well as the physical presence of the PIN domain are essential for TbRRP44 function, while a catalytic site mutation in the PIN domain has no detectable effect on cell growth. A new endonucleolytic cleavage site in ITS1 was identified. In addition to the 5.8S rRNA 3'-end maturation, TbRRP44 is required for degradation of the excised 5'-ETS and for removal of part of ITS1 during maturation of the 18S rRNA 3'-end. TbRRP44 deficiency leads to accumulation of many LSU intermediate precursors, most of them not detected in control cells. TbRRP44 is also required for U3 snoRNA and spliced leader processing, indicating that TbRRP44 may have a wide role in RNA processing in T. brucei.
Collapse
Affiliation(s)
- Eloise Pavão Guerra-Slompo
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | |
Collapse
|
7
|
Current Status of Regulatory Non-Coding RNAs Research in the Tritryp. Noncoding RNA 2022; 8:ncrna8040054. [PMID: 35893237 PMCID: PMC9326685 DOI: 10.3390/ncrna8040054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Trypanosomatids are protozoan parasites that cause devastating vector-borne human diseases. Gene expression regulation of these organisms depends on post-transcriptional control in responding to diverse environments while going through multiple developmental stages of their complex life cycles. In this scenario, non-coding RNAs (ncRNAs) are excellent candidates for a very efficient, quick, and economic strategy to regulate gene expression. The advent of high throughput RNA sequencing technologies show the presence and deregulation of small RNA fragments derived from canonical ncRNAs. This review seeks to depict the ncRNA landscape in trypanosomatids, focusing on the small RNA fragments derived from functional RNA molecules observed in RNA sequencing studies. Small RNA fragments derived from canonical ncRNAs (tsRNAs, snsRNAs, sdRNAs, and sdrRNAs) were identified in trypanosomatids. Some of these RNAs display changes in their levels associated with different environments and developmental stages, demanding further studies to determine their functional characterization and potential roles. Nevertheless, a comprehensive and detailed ncRNA annotation for most trypanosomatid genomes is still needed, allowing better and more extensive comparative and functional studies.
Collapse
|
8
|
Rajan KS, Adler K, Doniger T, Cohen-Chalamish S, Aharon-Hefetz N, Aryal S, Pilpel Y, Tschudi C, Unger R, Michaeli S. Identification and functional implications of pseudouridine RNA modification on small noncoding RNAs in the mammalian pathogen Trypanosoma brucei. J Biol Chem 2022; 298:102141. [PMID: 35714765 PMCID: PMC9283944 DOI: 10.1016/j.jbc.2022.102141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 01/11/2023] Open
Abstract
Trypanosoma brucei, the parasite that causes sleeping sickness, cycles between an insect and a mammalian host. However, the effect of RNA modifications such as pseudouridinylation on its ability to survive in these two different host environments is unclear. Here, two genome-wide approaches were applied for mapping pseudouridinylation sites (Ψs) on small nucleolar RNA (snoRNA), 7SL RNA, vault RNA, and tRNAs from T. brucei. We show using HydraPsiSeq and RiboMeth-seq that the Ψ on C/D snoRNA guiding 2'-O-methylation increased the efficiency of the guided modification on its target, rRNA. We found differential levels of Ψs on these noncoding RNAs in the two life stages (insect host and mammalian host) of the parasite. Furthermore, tRNA isoform abundance and Ψ modifications were characterized in these two life stages demonstrating stage-specific regulation. We conclude that the differential Ψ modifications identified here may contribute to modulating the function of noncoding RNAs involved in rRNA processing, rRNA modification, protein synthesis, and protein translocation during cycling of the parasite between its two hosts.
Collapse
Affiliation(s)
- K. Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Katerina Adler
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Noa Aharon-Hefetz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Tschudi
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel,For correspondence: Shulamit Michaeli
| |
Collapse
|
9
|
Hałakuc P, Karnkowska A, Milanowski R. Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans. BMC Ecol Evol 2022; 22:59. [PMID: 35534840 PMCID: PMC9082867 DOI: 10.1186/s12862-022-02014-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Members of Euglenozoa (Discoba) are known for unorthodox rDNA organization. In Euglenida rDNA is located on extrachromosomal circular DNA. In Kinetoplastea and Euglenida the core of the large ribosomal subunit, typically formed by the 28S rRNA, consists of several smaller rRNAs. They are the result of the presence of additional internal transcribed spacers (ITSs) in the rDNA. Diplonemea is the third of the main groups of Euglenozoa and its members are known to be among the most abundant and diverse protists in the oceans. Despite that, the rRNA of only one diplonemid species, Diplonema papillatum, has been examined so far and found to exhibit continuous 28S rRNA. Currently, the rDNA organization has not been researched for any diplonemid. Herein we investigate the structure of rRNA genes in classical (Diplonemidae) and deep-sea diplonemids (Eupelagonemidae), representing the majority of known diplonemid diversity. The results fill the gap in knowledge about diplonemid rDNA and allow better understanding of the evolution of the fragmented structure of the rDNA in Euglenozoa. Results We used available genomic (culture and single-cell) sequencing data to assemble complete or almost complete rRNA operons for three classical and six deep-sea diplonemids. The rDNA sequences acquired for several euglenids and kinetoplastids were used to provide the background for the analysis. In all nine diplonemids, 28S rRNA seems to be contiguous, with no additional ITSs detected. Similarly, no additional ITSs were detected in basal prokinetoplastids. However, we identified five additional ITSs in the 28S rRNA of all analysed metakinetoplastids, and up to twelve in euglenids. Only three of these share positions, and they cannot be traced back to their common ancestor. Conclusions Presented results indicate that independent origin of additional ITSs in euglenids and kinetoplastids seems to be the most likely. The reason for such unmatched fragmentation remains unknown, but for some reason euglenozoan ribosomes appear to be prone to 28S rRNA fragmentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02014-9.
Collapse
|
10
|
Nepomuceno-Mejía T, Florencio-Martínez LE, Pineda-García I, Martínez-Calvillo S. Identification of factors involved in ribosome assembly in the protozoan parasite Leishmania major. Acta Trop 2022; 228:106315. [PMID: 35041807 DOI: 10.1016/j.actatropica.2022.106315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 01/23/2023]
Abstract
Formation of the ribosome subunits is a complex and progressive cellular process that requires a plethora of non-ribosomal transient proteins and diverse small nucleolar RNAs, which are involved from the synthesis of the precursor ribosomal RNA in the nucleolus to the final ribosome processing steps in the cytoplasm. Employing PTP-tagged Nop56 as a fishing bait to capture pre-ribosomal particles by tandem affinity purifications, mass spectrometry assays and a robust in silico analysis, here we describe tens of ribosome assembly factors involved in the synthesis of both ribosomal subunits in the human pathogen Leishmania major, where the knowledge about ribosomal biogenesis is scarce. We identified a large number of proteins that participate in most stages of ribosome biogenesis in yeast and mammals. Among them, we found several putative orthologs of factors not previously identified in L. major, such as t-Utp4, t-Utp5, Rrp7, Nop9 and Nop15. Even more interesting is the fact that we identified several novel candidates that could participate in the assembly of the atypical 60S subunit in L. major, which contains eight different rRNA species. As these proteins do not seem to have a human counterpart, they have potential as targets for novel anti-leishmanial drugs. Also, numerous proteins whose function is not apparently linked to ribosome assembly were copurified, suggesting that the L. major nucleolus is a multifunctional nuclear body.
Collapse
|
11
|
Tinti M, Kelner-Mirôn A, Marriott LJ, Ferguson MA. Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Res 2022; 6:36. [PMID: 34250262 PMCID: PMC8240603 DOI: 10.12688/wellcomeopenres.16430.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The contrasting physiological environments of
Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in
T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by
trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in
T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in
T. brucei. We also improved the annotation of the
T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in
T. brucei.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Anna Kelner-Mirôn
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Lizzie J. Marriott
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Michael A.J. Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| |
Collapse
|
12
|
Hu T, Lu C, Xia Y, Wu L, Song J, Chen C, Wang Q. Small nucleolar RNA SNORA71A promotes epithelial-mesenchymal transition by maintaining ROCK2 mRNA stability in breast cancer. Mol Oncol 2022; 16:1947-1965. [PMID: 35100495 PMCID: PMC9067147 DOI: 10.1002/1878-0261.13186] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Metastasis is the primary reason of death in patients with cancer. Small nucleolar noncoding RNAs (snoRNAs) are conserved 60–300 nucleotide noncoding RNAs, involved in post‐transcriptional regulation of mRNAs and noncoding RNAs. Despite their essential roles in cancer, the roles of snoRNAs in epithelial‐mesenchymal transition (EMT)‐induced metastasis have not been studied extensively. Here, we used small RNA sequencing to screen for snoRNAs related to EMT and breast cancer metastasis. We found a higher expression of SNORA71A in metastatic breast cancer tissues compared to nonmetastatic samples. Additionally, SNORA71A promoted the proliferation, migration, invasion and EMT of MCF‐7 and MDA‐MB‐231 cells. Mechanistically, SNORA71A elevated mRNA and protein levels of ROCK2, a negative regulator of TGF‐β signaling. Rescue assays showed ROCK2 abrogated the SNORA71A‐mediated increase in proliferation, migration, invasion and EMT. Binding of SNORA71A to mRNA stability regulatory protein G3BP1, increased ROCK2 mRNA half‐life. Furthermore, G3BP1 depletion abolished the SNORA71A‐mediated upregulation of ROCK2. In vivo, SNORA71A overexpression promoted breast tumor growth, and SNORA71A knockdown inhibited breast cancer growth and metastasis. We suggest SNORA71A enhances metastasis of breast cancer by binding to G3BP1 and stabilizing ROCK2.
Collapse
Affiliation(s)
- Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chong Lu
- Department of thyroid and breast surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junlong Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, PR China
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
13
|
Huang R, Liao X, Li Q. Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2424-2452. [PMID: 35240791 DOI: 10.3934/mbe.2022112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study mainly used The Cancer Genome Atlas (TCGA) RNA sequencing dataset to screen prognostic snoRNAs of acute myeloid leukemia (AML), and used for the construction of prognostic snoRNAs signature for AML. A total of 130 AML patients with RNA sequencing dataset were used for prognostic snoRNAs screenning. SnoRNAs co-expressed genes and differentially expressed genes (DEGs) were used for functional annotation, as well as gene set enrichment analysis (GSEA). Connectivity Map (CMap) also used for potential targeted drugs screening. Through genome-wide screening, we identified 30 snoRNAs that were significantly associated with the prognosis of AML. Then we used the step function to screen a prognostic signature composed of 14 snoRNAs (SNORD72, SNORD38, U3, SNORA73B, SNORD79, SNORA73, SNORD12B, SNORA74, SNORD116-12, SNORA65, SNORA14, snoU13, SNORA75, SNORA31), which can significantly divide AML patients into high- and low-risk groups. Through GSEA, snoRNAs co-expressed genes and DEGs functional enrichment analysis, we screened a large number of potential functional mechanisms of this prognostic signature in AML, such as phosphatidylinositol 3-kinase-Akt, Wnt, epithelial to mesenchymal transition, T cell receptors, NF-kappa B, mTOR and other classic cancer-related signaling pathways. In the subsequent targeted drug screening using CMap, we also identified six drugs that can be used for AML targeted therapy, they were alimemazine, MG-262, fluoxetine, quipazine, naltrexone and oxybenzone. In conclusion, our current study was constructed an AML prognostic signature based on the 14 prognostic snoRNAs, which may serve as a novel prognostic biomarker for AML.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
14
|
Genome instability drives epistatic adaptation in the human pathogen Leishmania. Proc Natl Acad Sci U S A 2021; 118:2113744118. [PMID: 34903666 PMCID: PMC8713814 DOI: 10.1073/pnas.2113744118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Chromosome and gene copy number variations often correlate with the evolution of microbial and cancer drug resistance, thus causing important human mortality. How genome instability is harnessed to generate beneficial phenotypes and how deleterious gene dosage effects are compensated remain open questions. The protist pathogen Leishmania exploits genome instability to regulate expression via gene dosage changes. Using these parasites as a unique model system, we uncover complex epistatic interactions between gene copy number variations and compensatory transcriptomic responses as key processes that harness genome instability for adaptive evolution in Leishmania. Our results propose a model of eukaryotic fitness gain that may be broadly applicable to pathogenic fungi or tumor cells known to exploit genome instability for adaptation. How genome instability is harnessed for fitness gain despite its potential deleterious effects is largely elusive. An ideal system to address this important open question is provided by the protozoan pathogen Leishmania, which exploits frequent variations in chromosome and gene copy number to regulate expression levels. Using ecological genomics and experimental evolution approaches, we provide evidence that Leishmania adaptation relies on epistatic interactions between functionally associated gene copy number variations in pathways driving fitness gain in a given environment. We further uncover posttranscriptional regulation as a key mechanism that compensates for deleterious gene dosage effects and provides phenotypic robustness to genetically heterogenous parasite populations. Finally, we correlate dynamic variations in small nucleolar RNA (snoRNA) gene dosage with changes in ribosomal RNA 2′-O-methylation and pseudouridylation, suggesting translational control as an additional layer of parasite adaptation. Leishmania genome instability is thus harnessed for fitness gain by genome-dependent variations in gene expression and genome-independent compensatory mechanisms. This allows for polyclonal adaptation and maintenance of genetic heterogeneity despite strong selective pressure. The epistatic adaptation described here needs to be considered in Leishmania epidemiology and biomarker discovery and may be relevant to other fast-evolving eukaryotic cells that exploit genome instability for adaptation, such as fungal pathogens or cancer.
Collapse
|
15
|
Tinti M, Kelner-Mirôn A, Marriott LJ, Ferguson MAJ. Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Res 2021; 6:36. [PMID: 34250262 DOI: 10.12688/wellcomeopenres.16430.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The contrasting physiological environments of Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in T. brucei. We also improved the annotation of the T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in T. brucei.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Anna Kelner-Mirôn
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Lizzie J Marriott
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| |
Collapse
|
16
|
Tinti M, Kelner-Mirôn A, Marriott LJ, Ferguson MAJ. Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Res 2021; 6:36. [PMID: 34250262 DOI: 10.12688/wellcomeopenres.16430.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The contrasting physiological environments of Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in T. brucei. We also improved the annotation of the T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in T. brucei.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Anna Kelner-Mirôn
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Lizzie J Marriott
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| |
Collapse
|
17
|
Shi Y, Qi W, Xu Q, Wang Z, Cao X, Zhou L, Ye L. The role of epigenetics in the reproductive toxicity of environmental endocrine disruptors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:78-88. [PMID: 33217042 DOI: 10.1002/em.22414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Environmental endocrine disruptors (EEDs) seriously endanger human health by interfering with the normal function of reproductive systems. In males, EEDs can affect sperm formation and semen quality as well spermatogenesis, ultimately reducing fertility. In females, EEDs can affect uterine development and the expression levels of reproduction-related genes, ultimately reducing female fertility and the normal development of the fetus. There are a large number of putative mechanisms by which EEDs can induce reproductive toxicity, and many studies have shown the involvement of epigenetics. In this review, we summarize the role of DNA methylation, noncoding RNAs, genomic imprinting, chromatin remodeling and histone modification in the reproductive toxicity of EEDs.
Collapse
Affiliation(s)
- Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaolian Cao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
18
|
Rajan KS, Doniger T, Cohen-Chalamish S, Rengaraj P, Galili B, Aryal S, Unger R, Tschudi C, Michaeli S. Developmentally Regulated Novel Non-coding Anti-sense Regulators of mRNA Translation in Trypanosoma b rucei. iScience 2020; 23:101780. [PMID: 33294788 PMCID: PMC7683347 DOI: 10.1016/j.isci.2020.101780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023] Open
Abstract
The parasite Trypanosoma brucei is the causative agent of sleeping sickness and cycles between insect and mammalian hosts. The parasite appears to lack conventional transcriptional regulation of protein coding genes, and mRNAs are processed from polycistronic transcripts by the concerted action of trans-splicing and polyadenylation. Regulation of mRNA function is mediated mainly by RNA binding proteins affecting mRNA stability and translation. In this study, we describe the identification of 62 non-coding (nc) RNAs that are developmentally regulated and/or respond to stress. We characterized two novel anti-sense RNA regulators (TBsRNA-33 and 37) that originate from the rRNA loci, associate with ribosomes and polyribosomes, and interact in vivo with distinct mRNA species to regulate translation. Thus, this study suggests for the first-time anti-sense RNA regulators as an additional layer for controlling gene expression in these parasites. Trypanosome non-coding RNAs (ncRNAs) are developmentally regulated during cycling between two hosts ncRNAs originate from rRNA locus and associate with the ribosome en route to cytoplasm In vivo cross-linking enable identification of target RNA species regulated by ncRNAs Trypanosomes possess anti-sense ncRNAs that regulate translation
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Praveenkumar Rengaraj
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Beathrice Galili
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
19
|
Rajan KS, Zhu Y, Adler K, Doniger T, Cohen-Chalamish S, Srivastava A, Shalev-Benami M, Matzov D, Unger R, Tschudi C, Günzl A, Carmichael GG, Michaeli S. The large repertoire of 2'-O-methylation guided by C/D snoRNAs on Trypanosoma brucei rRNA. RNA Biol 2020; 17:1018-1039. [PMID: 32250712 DOI: 10.1080/15476286.2020.1750842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The parasite Trypanosoma brucei cycles between insect and mammalian hosts, and is the causative agent of sleeping sickness. Here, we performed genome-wide mapping of 2'-O-methylations (Nms) on trypanosome rRNA using three high-throughput sequencing methods; RibOxi-seq, RiboMeth-seq and 2'-OMe-seq. This is the first study using three genome-wide mapping approaches on rRNA from the same species showing the discrepancy among the methods. RibOxi-seq detects all the sites, but RiboMeth-seq is the only method to evaluate the level of a single Nm site. The sequencing revealed at least ninety-nine Nms guided by eighty-five snoRNAs among these thirty-eight Nms are trypanosome specific sites. We present the sequence and target of the C/D snoRNAs guiding on rRNA. This is the highest number of Nms detected to date on rRNA of a single cell parasite. Based on RiboMeth-seq, several Nm sites were found to be differentially regulated at the two stages of the parasite life cycle, the insect procyclic form (PCF) versus the bloodstream form (BSF) in the mammalian host.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Yinzhou Zhu
- Department of Genetics and Genome Sciences, UConn Health , Farmington, CT, USA
| | - Katerina Adler
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Ankita Srivastava
- Department of Genetics and Genome Sciences, UConn Health , Farmington, CT, USA
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science , Rehovot, Israel
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science , Rehovot, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| | - Christian Tschudi
- Departmentof Epidemiology and Microbial Diseases, Yale School of Public Health , New Haven, CT, USA
| | - Arthur Günzl
- Department of Genetics and Genome Sciences, UConn Health , Farmington, CT, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, UConn Health , Farmington, CT, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University , Ramat-Gan, Israel
| |
Collapse
|
20
|
Unique Aspects of rRNA Biogenesis in Trypanosomatids. Trends Parasitol 2019; 35:778-794. [DOI: 10.1016/j.pt.2019.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
21
|
Trypanosoma brucei Homologue of Regulator of Ribosome Synthesis 1 (Rrs1) Has Direct Interactions with Essential Trypanosome-Specific Proteins. mSphere 2019; 4:4/4/e00453-19. [PMID: 31391282 PMCID: PMC6686231 DOI: 10.1128/msphere.00453-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development. Studies in eukaryotic ribosome biogenesis have largely been performed in yeast, where they have described a highly complex process involving numerous protein and RNA components. Due to the complexity and crucial nature of this process, a number of checkpoints are necessary to ensure that only properly assembled ribosomes are released into the cytoplasm. Assembly of the 5S ribonucleoprotein (RNP) complex is one of these checkpoints for late-stage 60S subunit maturation. Studies in Saccharomyces cerevisiae have identified the 5S rRNA and four proteins, L5, L11, Rpf2, and Rrs1, as comprising the ribosome-associated 5S RNP. Work from our laboratory has shown that in the eukaryotic pathogen Trypanosoma brucei, the 5S RNP includes trypanosome-specific proteins P34/P37, as well as homologues of L5, Rpf2, and 5S rRNA. In this study, we examine a homologue of Rrs1 and identify it as an additional member of the T. brucei 5S RNP. Using RNA interference, we show that TbRrs1 is essential for the survival of T. brucei and has an important role in ribosome subunit formation and, together with TbRpf2, plays a role in 25/28S and 5.8S rRNA processing. We further show that TbRrs1 is a member of the T. brucei 5S RNP through the identification of novel direct interactions with P34/P37 and 5S rRNA as well as with TbL5 and TbRpf2. These unique characteristics of TbRrs1 highlight the importance of studying ribosome biogenesis in the context of diverse organisms and identify interactions that could be targeted for future drug development. IMPORTANCETrypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development.
Collapse
|
22
|
Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019; 8:cells8050421. [PMID: 31071985 PMCID: PMC6562600 DOI: 10.3390/cells8050421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is the conspicuous nuclear body where ribosomal RNA genes are transcribed by RNA polymerase I, pre-ribosomal RNA is processed, and ribosomal subunits are assembled. Other important functions have been attributed to the nucleolus over the years. Here we review the current knowledge about the structure and function of the nucleolus in the trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp., which represent one of the earliest branching lineages among the eukaryotes. These protozoan parasites present a single nucleolus that is preserved throughout the closed nuclear division, and that seems to lack fibrillar centers. Trypanosomatids possess a relatively low number of rRNA genes, which encode rRNA molecules that contain large expansion segments, including several that are trypanosomatid-specific. Notably, the large subunit rRNA (28S-type) is fragmented into two large and four small rRNA species. Hence, compared to other organisms, the rRNA primary transcript requires additional processing steps in trypanosomatids. Accordingly, this group of parasites contains the highest number ever reported of snoRNAs that participate in rRNA processing. The number of modified rRNA nucleotides in trypanosomatids is also higher than in other organisms. Regarding the structure and biogenesis of the ribosomes, recent cryo-electron microscopy analyses have revealed several trypanosomatid-specific features that are discussed here. Additional functions of the nucleolus in trypanosomatids are also reviewed.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| |
Collapse
|