1
|
Ammeti D, Marzollo A, Gabelli M, Zanchetta ME, Tretti-Parenzan C, Bottega R, Capaci V, Biffi A, Savoia A, Bresolin S, Faleschini M. A novel mutation in MECOM affects MPL regulation in vitro and results in thrombocytopenia and bone marrow failure. Br J Haematol 2023; 203:852-859. [PMID: 37610030 DOI: 10.1111/bjh.19023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023]
Abstract
MECOM-associated syndrome (MECOM-AS) is a rare disease characterized by amegakaryocytic thrombocytopenia, progressive bone marrow failure, pancytopenia and radioulnar synostosis with high penetrance. The clinical phenotype may also include finger malformations, cardiac and renal alterations, hearing loss, B-cell deficiency and predisposition to infections. The syndrome, usually diagnosed in the neonatal period because of severe thrombocytopenia, is caused by mutations in the MECOM gene, encoding for the transcription factor EVI1. The mechanism linking the alteration of EVI1 function and thrombocytopenia is poorly understood. In a paediatric patient affected by severe thrombocytopenia, we identified a novel variant of the MECOM gene (p.P634L), whose effect was tested on pAP-1 enhancer element and promoters of targeted genes showing that the mutation impairs the repressive activity of the transcription factor. Moreover, we demonstrated that EVI1 controls the transcriptional regulation of MPL, a gene whose mutations are responsible for congenital amegakaryocytic thrombocytopenia (CAMT), potentially explaining the partial overlap between MECOM-AS and CAMT.
Collapse
Affiliation(s)
- Daniele Ammeti
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Maria Gabelli
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | | | - Caterina Tretti-Parenzan
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | - Roberta Bottega
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Valeria Capaci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | - Anna Savoia
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
2
|
Neil E, Paredes R, Pooley O, Rubin B, Kouskoff V. The oncogenic fusion protein TAZ::CAMTA1 promotes genomic instability and senescence through hypertranscription. Commun Biol 2023; 6:1174. [PMID: 37980390 PMCID: PMC10657451 DOI: 10.1038/s42003-023-05540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
TAZ::CAMTA1 is a fusion protein found in over 90% of Epithelioid Hemangioendothelioma (EHE), a rare vascular sarcoma with an unpredictable disease course. To date, how TAZ::CAMTA1 initiates tumour formation remains unexplained. To study the oncogenic mechanism leading to EHE initiation, we developed a model system whereby TAZ::CAMTA1 expression is induced by doxycycline in primary endothelial cells. Using this model, we establish that upon TAZ::CAMTA1 expression endothelial cells rapidly enter a hypertranscription state, triggering considerable DNA damage. As a result, TC-expressing cells become trapped in S phase. Additionally, TAZ::CAMTA1-expressing endothelial cells have impaired homologous recombination, as shown by reduced BRCA1 and RAD51 foci formation. Consequently, the DNA damage remains unrepaired and TAZ::CAMTA1-expressing cells enter senescence. Knockout of Cdkn2a, the most common secondary mutation found in EHE, allows senescence bypass and uncontrolled growth. Together, this provides a mechanistic explanation for the clinical course of EHE and offers novel insight into therapeutic options.
Collapse
Affiliation(s)
- Emily Neil
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK
| | - Roberto Paredes
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK
| | - Oscar Pooley
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK
| | - Brian Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Valerie Kouskoff
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Lin C, Wang Y, Dong Y, Lai S, Wang L, Weng S, Zhang X. N6-methyladenosine-mediated SH3BP5-AS1 upregulation promotes GEM chemoresistance in pancreatic cancer by activating the Wnt signaling pathway. Biol Direct 2022; 17:33. [PMID: 36397058 PMCID: PMC9673340 DOI: 10.1186/s13062-022-00347-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Pancreatic cancer (PC) is highly malignant. Chemotherapy is the main treatment strategy, especially for patients with advanced PC. However, chemoresistance has always been a frequently encountered bottleneck. Hence, there is an urgent need to enhance the sensitivity of PC to gemcitabine (GEM). Results We demonstrated that SH3BP5-AS1 was significantly upregulated in GEM-resistant PC and predicted a poorer prognosis. SH3BP5-AS1 stability was regulated by ALKBH5/IGF2BP1-mediated m6A modification. Loss of SH3BP5-AS1 reduced PC cell migration and invasion and enhanced the sensitivity of PC to GEM, as confirmed by gain- and loss-of-function assays in vitro and in vivo. Bioinformatics analysis revealed that SH3BP5-AS1 acted as a ceRNA against miR-139-5p and directly targeted CTBP1, affecting the biological behavior of PC cells. The mechanistic studies revealed that the upregulation of SH3BP5-AS1 increased CTBP1 expression by directly activating the Wnt signaling pathway, promoting GEM resistance. Conclusions This study revealed that SH3BP5-AS1 activated Wnt signaling pathway by sponging miR-139-5p, upregulating CTBP1 expression, and contributing to the sensitivity of PC cells to GEM. SH3BP5-AS1 might be a potential target for PC therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-022-00347-5.
Collapse
|
4
|
Ma Y, Kang B, Li S, Xie G, Bi J, Li F, An G, Liu B, Li J, Shen Y, Xu X, Yang H, Yang Y, Gu Y, Wu N. CRISPR-mediated MECOM depletion retards tumor growth by reducing cancer stem cell properties in lung squamous cell carcinoma. Mol Ther 2022; 30:3341-3357. [PMID: 35733338 PMCID: PMC9637721 DOI: 10.1016/j.ymthe.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022] Open
Abstract
Targeted therapy for lung squamous cell carcinoma (LUSC) remains a challenge due to the lack of robust targets. Here, we identified MECOM as a candidate of therapeutic target for LUSC by screening 38 genes that were commonly amplified in three pairs of primary tumors and patient-derived xenografts (PDXs) using a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated approach. High MECOM expression levels were associated with poor prognosis. Forced expression of MECOM in LUSC cell lines promoted cancer stem cell (CSC) properties, and its knockout inhibited CSC phenotypes. Furthermore, systemic delivery of CRISPR-mediated MECOM depletion cassette using adenovirus with an adaptor, which is composed of a single-chain fragment variable (scFv) against epithelial cell adhesion molecules (EpCAM) fused to the ectodomain of coxsackievirus and adenovirus receptor, and a protector, which consists of the scFv connected to the hexon symmetry of the adenovirus, could specifically target subcutaneous and orthotopic LUSC and retard tumor growth. This study could provide a novel therapeutic strategy for LUSC with high efficacy and specificity.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bin Kang
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Shaolei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Guoyun Xie
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiwang Bi
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Fuqiang Li
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Guo An
- Department of Laboratory Animals, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bing Liu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jing Li
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China.
| | - Nan Wu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| |
Collapse
|
5
|
Paredes R, Doleschall N, Connors K, Geary B, Meyer S. EVI1 protein interaction dynamics: targetable for therapeutic intervention? Exp Hematol 2021; 107:1-8. [PMID: 34958895 DOI: 10.1016/j.exphem.2021.12.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
High expression of the transcriptional regulator EVI1 encoded at the MECOM locus at 3q26 is one of the most aggressive oncogenic drivers in acute myeloid leukaemia (AML) and carries a very poor prognosis. How EVI1 confers leukaemic transformation and chemotherapy resistance in AML is subject to important ongoing clinical and experimental studies. Recent discoveries have revealed critical details about genetic mechanisms of the activation of EVI1 overexpression and downstream events of aberrantly high EVI1 expression. Here we review and discuss aspects concerning the protein interactions of EVI1 and the related proteins MDS-EVI1 and ΔEVI1 from the perspective of their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Nora Doleschall
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Kathleen Connors
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Bethany Geary
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester; Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital; Young Oncology Unit, The Christie NHS Foundation Trust.
| |
Collapse
|
6
|
EVI1 dysregulation: impact on biology and therapy of myeloid malignancies. Blood Cancer J 2021; 11:64. [PMID: 33753715 PMCID: PMC7985498 DOI: 10.1038/s41408-021-00457-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Ecotropic viral integration site 1 (Evi1) was discovered in 1988 as a common site of ecotropic viral integration resulting in myeloid malignancies in mice. EVI1 is an oncogenic zinc-finger transcription factor whose overexpression contributes to disease progression and an aggressive phenotype, correlating with poor clinical outcome in myeloid malignancies. Despite progress in understanding the biology of EVI1 dysregulation, significant improvements in therapeutic outcome remain elusive. Here, we highlight advances in understanding EVI1 biology and discuss how this new knowledge informs development of novel therapeutic interventions. EVI1 is overexpression is correlated with poor outcome in some epithelial cancers. However, the focus of this review is the genetic lesions, biology, and current therapeutics of myeloid malignancies overexpressing EVI1.
Collapse
|
7
|
Paredes R, Kelly JR, Geary B, Almarzouq B, Schneider M, Pearson S, Narayanan P, Williamson A, Lovell SC, Wiseman DH, Chadwick JA, Jones NJ, Kustikova O, Schambach A, Garner T, Amaral FMR, Pierce A, Stevens A, Somervaille TCP, Whetton AD, Meyer S. EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal. Cell Death Dis 2020; 11:878. [PMID: 33082307 PMCID: PMC7576810 DOI: 10.1038/s41419-020-03099-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022]
Abstract
The transcriptional regulator EVI1 has an essential role in early development and haematopoiesis. However, acute myeloid leukaemia (AML) driven by aberrantly high EVI1 expression has very poor prognosis. To investigate the effects of post-translational modifications on EVI1 function, we carried out a mass spectrometry (MS) analysis of EVI1 in AML and detected dynamic phosphorylation at serine 436 (S436). Wild-type EVI1 (EVI1-WT) with S436 available for phosphorylation, but not non-phosphorylatable EVI1-S436A, conferred haematopoietic progenitor cell self-renewal and was associated with significantly higher organised transcriptional patterns. In silico modelling of EVI1-S436 phosphorylation showed reduced affinity to CtBP1, and CtBP1 showed reduced interaction with EVI1-WT compared with EVI1-S436A. The motif harbouring S436 is a target of CDK2 and CDK3 kinases, which interacted with EVI1-WT. The methyltransferase DNMT3A bound preferentially to EVI1-WT compared with EVI1-S436A, and a hypomethylated cell population associated by EVI1-WT expression in murine haematopoietic progenitors is not maintained with EVI1-S436A. These data point to EVI1-S436 phosphorylation directing functional protein interactions for haematopoietic self-renewal. Targeting EVI1-S436 phosphorylation may be of therapeutic benefit when treating EVI1-driven leukaemia.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - James R Kelly
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Bethany Geary
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Batool Almarzouq
- Department of Biochemistry, Institute of Integrative Biology/School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Marion Schneider
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Prakrithi Narayanan
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Andrew Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Simon C Lovell
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Daniel H Wiseman
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - John A Chadwick
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Leukaemia Biology Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Nigel J Jones
- Department of Biochemistry, Institute of Integrative Biology/School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Terence Garner
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabio M R Amaral
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Leukaemia Biology Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tim C P Somervaille
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Leukaemia Biology Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, UK
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester, UK.
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester, UK.
- Young Oncology Unit, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
8
|
Palomero L, Bodnar L, Mateo F, Herranz-Ors C, Espín R, García-Varelo M, Jesiotr M, Ruiz de Garibay G, Casanovas O, López JI, Pujana MA. EVI1 as a Prognostic and Predictive Biomarker of Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2020; 12:E300. [PMID: 32012804 PMCID: PMC7072453 DOI: 10.3390/cancers12020300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 01/25/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor EVI1 plays an oncogenic role in several types of neoplasms by promoting aggressive cancer features. EVI1 contributes to epigenetic regulation and transcriptional control, and its overexpression has been associated with enhanced PI3K-AKT-mTOR signaling in some settings. These observations raise the possibility that EVI1 influences the prognosis and everolimus-based therapy outcome of clear cell renal cell carcinoma (ccRCC). Here, gene expression and protein immunohistochemical studies of ccRCC show that EVI1 overexpression is associated with advanced disease features and with poorer outcome-particularly in the CC-e.3 subtype defined by The Cancer Genome Atlas. Overexpression of an oncogenic EVI1 isoform in RCC cell lines confers substantial resistance to everolimus. The EVI1 rs1344555 genetic variant is associated with poorer survival and greater progression of metastatic ccRCC patients treated with everolimus. This study leads us to propose that evaluation of EVI1 protein or gene expression, and of EVI1 genetic variants may help improve estimates of prognosis and the benefit of everolimus-based therapy in ccRCC.
Collapse
Affiliation(s)
- Luis Palomero
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Lubomir Bodnar
- Department of Oncology and Immunooncology, Hospital Ministry of the Interior and Administration with Warmia and Mazury Oncology Center, Olsztyn 10-719, Poland
- Department of Oncology, University of Warmia and Masuria, Olsztyn 10-719, Poland
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Carmen Herranz-Ors
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Roderic Espín
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Mar García-Varelo
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Marzena Jesiotr
- Department of Pathology, Military Institute of Medicine, Warsaw 04-141, Poland;
| | - Gorka Ruiz de Garibay
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Oriol Casanovas
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces Institute, Barakaldo 48903, Spain
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| |
Collapse
|
9
|
Wang C, Wang M, Xing B, Chi Z, Wang H, Lie C, Dong H. C-terminal of E1A binding protein 1 enhances the migration of gastric epithelial cells and has a clinicopathologic significance in human gastric carcinoma. Onco Targets Ther 2019; 12:5189-5200. [PMID: 31308691 PMCID: PMC6616302 DOI: 10.2147/ott.s203479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background Recent studies have claimed that the C-terminal of E1A binding proteins (CtBPs) influence tumorigenesis through participating in cell signal transduction in various human tumors. However, the detailed expression profiles of CtBP isoforms in human gastric cancer (GC) and the molecular mechanisms of CtBP involvement in tumor cell phenotypes warrant further investigation. Materials and methods The expression of CtBPs in GC cell lines and a human gastric epithelial cell line were explored via RT-qPCR and Western blotting assays. Moreover, the expression profiles of CtBPs in GC and histologically noncancerous tissues were explored by immunohistochemistry. To explore the effects of CtBP1 on the metastatic phenotype in GC, gastric epithelial cells were transfected with a eukaryotic expression plasmid to overexpress CTBP1, and the endogenous CtBP1 or JAK1 in GC cells was silenced through an RNA interference (RNAi) method. These transfections were validated via Western blotting, and the activation state of the JAK1/Stat3 signaling pathway was also explored via Western blotting. Furthermore, the malignant phenotype of GC cells was evaluated via a Cell Counting Kit-8 (CCK8) assay, colony formation assay, transwell assay, and wound-healing experiment. Results Our data revealed that the expression of CtBP1, but not CTBP2, was upregulated in 102 GC tissue samples compared with 98 noncancerous tissue samples, and the elevated expression level of CtBP1 was notably associated with distant metastasis. CTBP1 modulated cell migration and invasion through the JAK1/Stat3 signaling pathway in gastric epithelial cells. In addition, genetic silence of CtBP1 expression in GC cells notably constrained cell proliferation, invasion and migration abilities through inhibiting the activation of the JAK1/Stat3 pathway in GC cells. Conclusion Our data reveal that the knockout of CtBP1 notably constrains distant metastasis in GC through the JAK1/Stat3 pathway, suggesting that targeting CtBP1 is a practical anti-tumor approach to restrain tumor progression in GC.
Collapse
Affiliation(s)
- Can Wang
- Second Department of Gastrointestinal Surgery, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, People's Republic of China
| | - Min Wang
- Department of Pathology, Jilin Provincial Cancer Hospital, Changchun 130012, People's Republic of China
| | - Bocheng Xing
- Second Department of Gastrointestinal Surgery, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, People's Republic of China
| | - Zhaocheng Chi
- Second Department of Gastrointestinal Surgery, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, People's Republic of China
| | - Hongyu Wang
- Internal Medicine of Abdominal Tumors, Jilin Provincial Cancer Hospital, Changchun 130012, People's Republic of China
| | - Chunxiao Lie
- Second Department of Gastrointestinal Surgery, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, People's Republic of China
| | - Han Dong
- Department of Geriatric Medicine, First Hospital of Jilin University, Changchun, Jilin 130012, People's Republic of China
| |
Collapse
|
10
|
Wang P, Yu B, Wang C, Zhou S. C-terminal of E1A binding protein 2 promotes the malignancy of osteosarcoma cells via JAK1/Stat3 signaling. J Cell Commun Signal 2019; 14:67-76. [PMID: 31214864 DOI: 10.1007/s12079-019-00523-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022] Open
Abstract
Previous studies have demonstrated that the C-terminal of E1A binding proteins (CtBPs) influences tumorigenesis by participating in cell signal transduction in various human malignancies. However, the detailed expression patterns of CtBP isoforms in human osteosarcoma (OS) and the molecular mechanisms of CtBP involvement in tumor cell phenotypes requires further investigation. In the present study, the expression patterns of CtBP2 in OS cells and tissues were explored by immunohistochemistry. Fetal osteoblast cells were transfected with a eukaryotic expression plasmid to overexpress CtBP2, and the endogenous CtBP2 in OS cells was silenced via a short hairpin RNA. These transfections were validated and the phosphorylation levels of the JAK1/Stat3 signaling pathway were explored via western blotting. Furthermore, the malignant phenotype of OS cells was evaluated via a Cell Counting Kit-8 assay, cell colony formation assay, cell migration assay and scratch wound healing assay. The results revealed that the expression of CtBP2, but not CtBP1, was upregulated in OS tissue samples and the elevated expression level of CtBP2 was notably associated with distant metastasis. CtBP2 was demonstrated to modulate cell migration and invasion via JAK1/Stat3 signaling pathway in fetal osteoblast cells. In addition, genetic silencing of CtBP2 expression in OS cells notably reduced cell migration abilities and the phosphorylation of the JAK1/Stat3 pathway. In summary, the present studies revealed that the loss of CtBP2 constrained distant metastasis through the JAK1/Stat3 pathway in OS, suggesting that targeting CtBP2 may be a practical anti-tumor approach to prevent OS tumor progression.
Collapse
Affiliation(s)
- Pengyun Wang
- Department of Orthopedics, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China
| | - Benfeng Yu
- Department of Orthopedics, First Hospital of Suihua, Suihua, 152000, Heilongjiang Province, China
| | - Chengyan Wang
- Department of Ultrasound, Jilin Cancer Hospital, 1018 Huguang Street, Changchun, 130021, Jilin, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, 1018 Huguang Street, Changchun, 130021, Jilin, China.
| |
Collapse
|