1
|
Pavlin A, Fornelos N, Popović M, Praček N, Bajc G, Salas M, Butala M. Autoregulation ensures vertical transmission of the linear prophage GIL01. Commun Biol 2024; 7:1388. [PMID: 39455843 PMCID: PMC11511902 DOI: 10.1038/s42003-024-07082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Betatectiviruses are prophages consisting of linear extrachromosomal genomes without obvious plasmid modules. It remains unclear how betatectiviruses are maintained in low-copy numbers in host cells and how they are vertically transmitted. Phage GIL01 is a model betatectivirus that infects the mosquito pathogen Bacillus thuringiensis serovar israelensis. Previous studies identified two closely spaced promoters, P1 and P2, responsible for the expression of GIL01 genes required for prophage replication and the switch from the lysogenic to lytic cycle. Here, we report that the GIL01-encoded 58-amino acid long gp1 protein forms a large nucleoprotein complex that represses its transcription from the strong promoter P2. Notably, ectopic expression of gp1 resulted in the loss of GIL01 in exponential cultures and immunized cells against infection with GIL01, indicating that gp1 plays a repressive role in the phage cycle. This finding is consistent with mutations in gp1 committing GIL01 to the lytic cycle and we show that maintenance of this phage variant in the bacterial population is contingent on the accumulation of deletions in the P1-P2 region. The fact that gp1 is conserved across most sequenced betatectiviruses suggests that the regulatory mechanism of gp1 that controls prophage maintenance is widespread among these bacteriophages.
Collapse
Affiliation(s)
- Anja Pavlin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nadine Fornelos
- Harvard Medical School, Office for Research Initiatives and Global Programs, Boston, MA, 02115, USA
| | - Maja Popović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Praček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Margarita Salas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049, Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Chu W, Guo Y, Wu Y, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Enhancing Cellular and Enzymatic Properties Through In Vivo Continuous Evolution. Chembiochem 2024:e202400564. [PMID: 39248206 DOI: 10.1002/cbic.202400564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Directed evolution seeks to evolve target genes at a rate far exceeding the natural mutation rate, thereby endowing cellular and enzymatic properties with desired traits. In vivo continuous directed evolution achieves these purposes by generating libraries within living cells, enabling a continuous cycle of mutant generation and selection, enhancing the exploration of gene variants. Continuous evolution has become powerful tools for unraveling evolution mechanism and improving cellular and enzymatic properties. This review categorizes current continuous evolution into three distinct classes: non-targeted chromosomal, targeted chromosomal, and extra-chromosomal hypermutation approaches. It also compares various continuous evolution strategies based on different principles, providing a reference for selecting suitable methods for specific evolutionary goals. Furthermore, this review discusses the two primary limitations for further widespread application of in vivo continuous evolution, which are lack of general applicability and insufficient mutagenic capability. We envision that developing generally applicable mutagenic components and methods to enhance mutation rates for in vivo continuous evolution are promising future directions for wide range applications of continuous evolution.
Collapse
Affiliation(s)
- Weiran Chu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaxin Guo
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Candra B, Cook D, Hare J. Repression of Acinetobacter baumannii DNA damage response requires DdrR-assisted binding of UmuDAb dimers to atypical SOS box. J Bacteriol 2024; 206:e0043223. [PMID: 38727225 PMCID: PMC11332147 DOI: 10.1128/jb.00432-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/14/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA damage response of the multi-drug-resistant nosocomial pathogen Acinetobacter baumannii possesses multiple features that distinguish it from the commonly used LexA repression system. These include the absence of LexA in this genus, the evolution of a UmuD polymerase manager into the UmuDAb repressor of error-prone polymerases, the use of a corepressor unique to Acinetobacter (DdrR), and an unusually large UmuDAb binding site. We defined cis- and trans-acting factors required for UmuDAb DNA binding and gene repression, and tested whether DdrR directly enhances its DNA binding. We used DNA binding assays to characterize UmuDAb's binding to its proposed operator present upstream of the six co-repressed umuDC or umuC genes. UmuDAb bound tightly and cooperatively to this site with ~10-fold less affinity than LexA. DdrR enhanced the binding of both native and dimerization-deficient UmuDAb forms, but only in greater than equimolar ratios relative to UmuDAb. UmuDAb mutants unable to dimerize or effect gene repression showed impaired DNA binding, and a strain expressing the G124D dimerization mutant could not repress transcription of the UmuDAb-DdrR regulon. Competition electrophoretic mobility shift assays conducted with mutated operator probes showed that, unlike typical SOS boxes, the UmuDAb operator possessed a five-base pair central core whose sequence was more crucial for binding than the flanking palindrome. The presence of only one of the two flanking arms of the palindrome was necessary for UmuDAb binding. Overall, the data supported a model of an operator with two UmuDAb binding sites. The distinct characteristics of UmuDAb and its regulated promoters differ from the typical LexA repression model, demonstrating a novel method of repression.IMPORTANCEAcinetobacter baumannii is a gram-negative bacterium responsible for hospital-acquired infections. Its unique DNA damage response can activate multiple error-prone polymerase genes, allowing it to gain mutations that can increase its virulence and antibiotic resistance. The emergence of infectious strains carrying multiple antibiotic resistance genes, including carbapenem resistance, lends urgency to discovering and developing ways to combat infections resistant to treatment with known antibiotics. Deciphering how the regulators UmuDAb and DdrR repress the error-prone polymerases could lead to developing complementary treatments to halt this mechanism of generating resistance.
Collapse
Affiliation(s)
- Belinda Candra
- Baylor College of Medicine, Houston, Texas, USA
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| | - Deborah Cook
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| | - Janelle Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| |
Collapse
|
4
|
Tian R, Zhao R, Guo H, Yan K, Wang C, Lu C, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Engineered bacterial orthogonal DNA replication system for continuous evolution. Nat Chem Biol 2023; 19:1504-1512. [PMID: 37443393 DOI: 10.1038/s41589-023-01387-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.
Collapse
Affiliation(s)
- Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Runzhi Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Haoyu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Kun Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Chenyun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Cheng Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Lv R, Gao X, Zhang C, Lian W, Quan X, Guo S, Chen X. Characteristics and Whole-Genome Analysis of Limosilactobacillus fermentum Phage LFP02. Foods 2023; 12:2716. [PMID: 37509808 PMCID: PMC10379269 DOI: 10.3390/foods12142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Limosilactobacillus fermentum is a bacterium widely used in food production, medicine, and industrial fermentation. However, fermentation could fail due to phage contamination. L. fermentum bacteriophage LFP02 can be induced from L. fermentum IMAU 32579 using mitomycin C. To better understand the characteristics of this phage, its physiological and genomic characteristics were evaluated. The results showed that its optimal multiplicity of infection was 0.01, and the burst size was 148.03 ± 2.65 pfu/infective center. Compared to temperature, pH had a more obvious influence on phage viability, although its adsorption capacity was not affected by the divalent cations (Ca2+ and Mg2+) or chloramphenicol. Its genome size was 43,789 bp and the GC content was 46.06%, including 53 functional proteins. Compared to other L. fermentum phages, phage LFP02 had chromosome deletion, insertion, and inversion, which demonstrated that it was a novel phage. This study could expand the knowledge of the biological characteristics of L. fermentum bacteriophages and provide some theoretical basis for bacteriophage prevention during fermentation.
Collapse
Affiliation(s)
- Ruirui Lv
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xin Gao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Can Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Weiqi Lian
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xingyu Quan
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - She Guo
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xia Chen
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
McKeithen-Mead SA, Grossman AD. Timing of integration into the chromosome is critical for the fitness of an integrative and conjugative element and its bacterial host. PLoS Genet 2023; 19:e1010524. [PMID: 36780569 PMCID: PMC9956884 DOI: 10.1371/journal.pgen.1010524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are major contributors to genome plasticity in bacteria. ICEs reside integrated in the chromosome of a host bacterium and are passively propagated during chromosome replication and cell division. When activated, ICEs excise from the chromosome and may be transferred through the ICE-encoded conjugation machinery into a recipient cell. Integration into the chromosome of the new host generates a stable transconjugant. Although integration into the chromosome of a new host is critical for the stable acquisition of ICEs, few studies have directly investigated the molecular events that occur in recipient cells during generation of a stable transconjugant. We found that integration of ICEBs1, an ICE of Bacillus subtilis, occurred several generations after initial transfer to a new host. Premature integration in new hosts led to cell death and hence decreased fitness of the ICE and transconjugants. Host lethality due to premature integration was caused by rolling circle replication that initiated in the integrated ICEBs1 and extended into the host chromosome, resulting in catastrophic genome instability. Our results demonstrate that the timing of integration of an ICE is linked to cessation of autonomous replication of the ICE, and that perturbing this linkage leads to a decrease in ICE and host fitness due to a loss of viability of transconjugants. Linking integration to cessation of autonomous replication appears to be a conserved regulatory scheme for mobile genetic elements that both replicate and integrate into the chromosome of their host.
Collapse
Affiliation(s)
- Saria A. McKeithen-Mead
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Identification of Novel Viruses and Their Microbial Hosts from Soils with Long-Term Nitrogen Fertilization and Cover Cropping Management. mSystems 2022; 7:e0057122. [PMID: 36445691 PMCID: PMC9765229 DOI: 10.1128/msystems.00571-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Soils are the largest organic carbon reservoir and are key to global biogeochemical cycling, and microbes are the major drivers of carbon and nitrogen transformations in the soil systems. Thus, virus infection-induced microbial mortality could impact soil microbial structure and functions. In this study, we recovered 260 viral operational taxonomic units (vOTUs) in samples collected from soil taken from four nitrogen fertilization (N-fertilization) and cover-cropping practices at an experimental site under continuous cotton production evaluating conservation agricultural management systems for more than 40 years. Only ~6% of the vOTUs identified were clustered with known viruses in the RefSeq database using a gene-sharing network. We found that 14% of 260 vOTUs could be linked to microbial hosts that cover key carbon and nitrogen cycling taxa, including Acidobacteriota, Proteobacteria, Verrucomicrobiota, Firmicutes, and ammonia-oxidizing archaea, i.e., Nitrososphaeria (phylum Thermoproteota). Viral diversity, community structure, and the positive correlation between abundance of a virus and its host indicate that viruses and microbes are more sensitive to N-fertilization than cover-cropping treatment. Viruses may influence key carbon and nitrogen cycling through control of microbial function and host populations (e.g., Chthoniobacterales and Nitrososphaerales). These findings provide an initial view of soil viral ecology and how it is influenced by long-term conservation agricultural management. IMPORTANCE Bacterial viruses are extremely small and abundant particles that can control the microbial abundance and community composition through infection, which gradually showed their vital roles in the ecological process to influence the nutrient flow. Compared to the substrate control, less is known about the influence of soil viruses on microbial community function, and even less is known about microbial and viral diversity in the soil system. To obtain a more complete knowledge of microbial function dynamics, the interaction between microbes and viruses cannot be ignored. To fully understand this process, it is fundamental to get insight into the correlation between the diversity of viral communities and bacteria which could induce these changes.
Collapse
|
8
|
Pavlin A, Lovše A, Bajc G, Otoničar J, Kujović A, Lengar Ž, Gutierrez-Aguirre I, Kostanjšek R, Konc J, Fornelos N, Butala M. A small bacteriophage protein determines the hierarchy over co-residential jumbo phage in Bacillus thuringiensis serovar israelensis. Commun Biol 2022; 5:1286. [PMID: 36434275 PMCID: PMC9700832 DOI: 10.1038/s42003-022-04238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.
Collapse
Affiliation(s)
- Anja Pavlin
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Lovše
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia ,Genialis, Inc., Boston, MA USA
| | - Gregor Bajc
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Otoničar
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amela Kujović
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Živa Lengar
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rok Kostanjšek
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nadine Fornelos
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Matej Butala
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Willenbücher K, Wibberg D, Huang L, Conrady M, Ramm P, Gätcke J, Busche T, Brandt C, Szewzyk U, Schlüter A, Barrero Canosa J, Maus I. Phage Genome Diversity in a Biogas-Producing Microbiome Analyzed by Illumina and Nanopore GridION Sequencing. Microorganisms 2022; 10:368. [PMID: 35208823 PMCID: PMC8879888 DOI: 10.3390/microorganisms10020368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
The microbial biogas network is complex and intertwined, and therefore relatively stable in its overall functionality. However, if key functional groups of microorganisms are affected by biotic or abiotic factors, the entire efficacy may be impaired. Bacteriophages are hypothesized to alter the steering process of the microbial network. In this study, an enriched fraction of virus-like particles was extracted from a mesophilic biogas reactor and sequenced on the Illumina MiSeq and Nanopore GridION sequencing platforms. Metagenome data analysis resulted in identifying 375 metagenome-assembled viral genomes (MAVGs). Two-thirds of the classified sequences were only assigned to the superkingdom Viruses and the remaining third to the family Siphoviridae, followed by Myoviridae, Podoviridae, Tectiviridae, and Inoviridae. The metavirome showed a close relationship to the phage genomes that infect members of the classes Clostridia and Bacilli. Using publicly available biogas metagenomic data, a fragment recruitment approach showed the widespread distribution of the MAVGs studied in other biogas microbiomes. In particular, phage sequences from mesophilic microbiomes were highly similar to the phage sequences of this study. Accordingly, the virus particle enrichment approach and metavirome sequencing provided additional genome sequence information for novel virome members, thus expanding the current knowledge of viral genetic diversity in biogas reactors.
Collapse
Affiliation(s)
- Katharina Willenbücher
- System Microbiology, Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Liren Huang
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Marius Conrady
- Institute of Agricultural and Urban Ecological Projects, Berlin Humboldt University (IASP), Philippstr. 13, 10115 Berlin, Germany; (M.C.); (P.R.)
| | - Patrice Ramm
- Institute of Agricultural and Urban Ecological Projects, Berlin Humboldt University (IASP), Philippstr. 13, 10115 Berlin, Germany; (M.C.); (P.R.)
| | - Julia Gätcke
- Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany;
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Christian Brandt
- Institute for Infection Medicine and Hospital Hygiene, University Hospital Jena, Kastanienstraße 1, 07747 Jena, Germany;
| | - Ulrich Szewzyk
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Jimena Barrero Canosa
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| |
Collapse
|
10
|
Unraveling Protein Interactions between the Temperate Virus Bam35 and Its Bacillus Host Using an Integrative Yeast Two Hybrid-High Throughput Sequencing Approach. Int J Mol Sci 2021; 22:ijms222011105. [PMID: 34681765 PMCID: PMC8539640 DOI: 10.3390/ijms222011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
Bacillus virus Bam35 is the model Betatectivirus and member of the family Tectiviridae, which is composed of tailless, icosahedral, and membrane-containing bacteriophages. Interest in these viruses has greatly increased in recent years as they are thought to be an evolutionary link between diverse groups of prokaryotic and eukaryotic viruses. Additionally, betatectiviruses infect bacteria of the Bacillus cereus group, which are known for their applications in industry and notorious since it contains many pathogens. Here, we present the first protein–protein interactions (PPIs) network for a tectivirus–host system by studying the Bam35–Bacillus thuringiensis model using a novel approach that integrates the traditional yeast two-hybrid system and high-throughput sequencing (Y2H-HTS). We generated and thoroughly analyzed a genomic library of Bam35′s host B. thuringiensis HER1410 and screened interactions with all the viral proteins using different combinations of bait–prey couples. Initial analysis of the raw data enabled the identification of over 4000 candidate interactions, which were sequentially filtered to produce 182 high-confidence interactions that were defined as part of the core virus–host interactome. Overall, host metabolism proteins and peptidases were particularly enriched within the detected interactions, distinguishing this host–phage system from the other reported host–phage PPIs. Our approach also suggested biological roles for several Bam35 proteins of unknown function, including the membrane structural protein P25, which may be a viral hub with a role in host membrane modification during viral particle morphogenesis. This work resulted in a better understanding of the Bam35–B. thuringiensis interaction at the molecular level and holds great potential for the generalization of the Y2H-HTS approach for other virus–host models.
Collapse
|
11
|
Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages. Annu Rev Microbiol 2021; 75:563-581. [PMID: 34343015 DOI: 10.1146/annurev-micro-033121-020757] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperate bacteriophages (phages) are viruses of bacteria. Upon infection of a susceptible host, a temperate phage can establish either a lytic cycle that kills the host or a lysogenic cycle as a stable prophage. The life cycle pursued by an infecting temperate phage can have a significant impact not only on the individual host bacterium at the cellular level but also on bacterial communities and evolution in the ecosystem. Thus, understanding the decision processes of temperate phages is crucial. This review delves into the molecular mechanisms behind lysis-lysogeny decision-making in Gram-positive phages. We discuss a variety of molecular mechanisms and the genetic organization of these well-understood systems. By elucidating the strategies used by phages to make lysis-lysogeny decisions, we can improve our understanding of phage-host interactions, which is crucial for a variety of studies including bacterial evolution, community and ecosystem diversification, and phage therapeutics. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aisling Brady
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
12
|
de Souza FG, Abrahão JS, Rodrigues RAL. Comparative Analysis of Transcriptional Regulation Patterns: Understanding the Gene Expression Profile in Nucleocytoviricota. Pathogens 2021; 10:935. [PMID: 34451399 PMCID: PMC8400408 DOI: 10.3390/pathogens10080935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDV) possess unique characteristics that have drawn the attention of the scientific community, and they are now classified in the phylum Nucleocytoviricota. They are characterized by sharing many genes and have their own transcriptional apparatus, which provides certain independence from their host's machinery. Thus, the presence of a robust transcriptional apparatus has raised much discussion about the evolutionary aspects of these viruses and their genomes. Understanding the transcriptional process in NCLDV would provide information regarding their evolutionary history and a better comprehension of the biology of these viruses and their interaction with hosts. In this work, we reviewed NCLDV transcription and performed a comparative functional analysis of the groups of genes expressed at different times of infection of representatives of six different viral families of giant viruses. With this analysis, it was possible to observe a temporal profile of their gene expression and set of genes activated in specific phases throughout the multiplication cycle as a common characteristic of this group. Due to the lack of information regarding the transcriptional regulation process of this group of pathogens, we sought to provide information that contributes to and opens up the field for transcriptional studies of other viruses belonging to Nucleocytoviricota.
Collapse
Affiliation(s)
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | | |
Collapse
|
13
|
Gillis A, Hock L, Mahillon J. Comparative Genomics of Prophages Sato and Sole Expands the Genetic Diversity Found in the Genus Betatectivirus. Microorganisms 2021; 9:1335. [PMID: 34205474 PMCID: PMC8234876 DOI: 10.3390/microorganisms9061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Tectiviruses infecting the Bacillus cereus group represent part of the bacterial "plasmid repertoire" as they behave as linear plasmids during their lysogenic cycle. Several novel tectiviruses have been recently found infecting diverse strains belonging the B. cereus lineage. Here, we report and analyze the complete genome sequences of phages Sato and Sole. The linear dsDNA genome of Sato spans 14,852 bp with 32 coding DNA sequences (CDSs), whereas the one of Sole has 14,444 bp comprising 30 CDSs. Both phage genomes contain inverted terminal repeats and no tRNAs. Genomic comparisons and phylogenetic analyses placed these two phages within the genus Betatectivirus in the family Tectiviridae. Additional comparative genomic analyses indicated that the "gene regulation-genome replication" module of phages Sato and Sole is more diverse than previously observed among other fully sequenced betatectiviruses, displaying very low sequence similarities and containing some ORFans. Interestingly, the ssDNA binding protein encoded in this genomic module in phages Sato and Sole has very little amino acid similarity with those of reference betatectiviruses. Phylogenetic analyses showed that both Sato and Sole represent novel tectivirus species, thus we propose to include them as two novel species in the genus Betatectivirus.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium;
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
14
|
Guo M, Liu G, Chen J, Ma J, Lin J, Fu Y, Fan G, Lee SMY, Zhang L. Dynamics of bacteriophages in gut of giant pandas reveal a potential regulation of dietary intake on bacteriophage composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139424. [PMID: 32464399 DOI: 10.1016/j.scitotenv.2020.139424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Fecal samples of cubs and adults of giant pandas were examined to determine the effects of diets on the diversity and dynamics of gut bacteriophages. Enterobacteria phage, Salmonella phage, Escherichia phage, Shigella phage, Klebsiella phage, and Lactococcus phage were found to be dominant in both cub and adult samples. Citrobacter phage, Cronobacter phage, Pectobacterium phage, Erwinia phage, Dickeya phage, Erwinia phage, Enterococcus phage, and Pseudomonas phage were more abundant in adults, while Lactococcus phage, Streptococcus phage, Lactobacillus phage, and Leuconostoc phage were more abundant in cubs. The abundance and diversity of the majority of phage species were increased in pandas with age. There was an increase in the abundance of Pectobacterium phage and a decrease in the abundance of Lactobacillus phage, Leuconostoc phage, Bacillus phage, and Streptococcus phage in adults. As cubs and adults of giant pandas have different dietary habits, these observations suggest a significant effect of diets on the composition and abundance of gut bacteriophages in giant pandas.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China; State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China; Synthetic Biology Technology Innovation Center of Shandong Province, Qingdao, China
| | | | | | - Ying Fu
- Faculty of Science and Technology, University of Macau, Macao, China
| | - Guangyi Fan
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; BGI-Qingdao, BGI-Shenzhen, Qingdao, China; BGI-Shenzhen, Shenzhen, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China.
| |
Collapse
|
15
|
Jarocki P, Komoń-Janczara E, Podleśny M, Kholiavskyi O, Pytka M, Kordowska-Wiater M. Genomic and Proteomic Characterization of Bacteriophage BH1 Spontaneously Released from Probiotic Lactobacillus rhamnosus Pen. Viruses 2019; 11:E1163. [PMID: 31888239 PMCID: PMC6950654 DOI: 10.3390/v11121163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus rhamnosus Pen is a human endogenous strain used for the production of probiotic formula, which is effective in the prevention of antibiotic-associated diarrhoea. Our study showed that this probiotic strain releases bacteriophage BH1 without the addition of any inducing agent. Our research revealed that phage BH1 has a circular genome with a length of 40721 nt and a GC content of 44.8%. The genome of phage BH1 possesses 57 open reading frames which could be divided into functional modules associated with DNA packaging, morphogenesis, lysis, integration, genetic switch, and replication. In spite of similarity in morphology and genomic organization, comparative analysis revealed substantial genetic diversity and mosaic genomic architecture among phages described for the Lactobacillus casei group. Additionally, qPCR and ddPCR analysis confirmed earlier microscopic observations indicating that L. rhamnosus Pen liberates bacteriophage particles during growth. This occurs spontaneously, and is not a result of external inducing factors. For samples collected after 4 and 24 h of L. rhamnosus Pen culture, the number of attB and attP copies increased 2.5 and 12 times, respectively. This phenomenon, by introducing resistance to other phages or enhancing the biofilm-forming capabilities, may increase the survivability of microorganisms in their natural ecological niche. Conversely, spontaneous phage induction may be an important virulence factor for bacteria, posing a potential threat for the human host.
Collapse
Affiliation(s)
- Piotr Jarocki
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Elwira Komoń-Janczara
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Marcin Podleśny
- Process and Development Department, Al. Tysiąclecia Państwa Polskiego 13, Grupa Azoty Zakłady Azotowe “Puławy” S.A, 24-110 Puławy, Poland
| | - Oleksandr Kholiavskyi
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Monika Pytka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| |
Collapse
|
16
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|