1
|
Repolês BM, Rodrigues Ferreira WR, de Assis AV, Mendes IC, Morini FS, Gonçalves CS, Costa Catta-Preta CM, Kelley SO, Franco GR, Macedo AM, Mottram JC, Motta MCM, Fragoso SP, Machado CR. Transcription coupled repair occurrence in Trypanosoma cruzi mitochondria. Mitochondrion 2025; 83:102009. [PMID: 39993491 DOI: 10.1016/j.mito.2025.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Although several proteins involved in DNA repair systems have been identified in the T. cruzi mitochondrion, limited information is available regarding the specific DNA repair mechanisms responsible for kinetoplast DNA (kDNA) maintenance. The kDNA, contained within a single mitochondrion, exhibits a highly complex replication mechanism compared to the mitochondrial DNA of other eukaryotes. The absence of additional mitochondria makes the proper maintenance of this single mitochondrion essential for parasite viability. Trypanosomatids possess a distinct set of proteins dedicated to kDNA organization and metabolism, known as kinetoplast-associated proteins (KAPs). Despite studies identifying the localization of these proteins, their functions remain largely unclear. Here, we demonstrate that TcKAP7 is involved in the repair of kDNA lesions induced by UV radiation and cisplatin. TcKAP7 mutant cells exhibited phenotypes similar to those observed in Angomonas deanei following the deletion of this gene. This monoxenic trypanosomatid colonizes the gastrointestinal tract of insects and possesses a kinetoplast with a distinct shape and kDNA topology compared to T. cruzi, making it a suitable comparative model in this study. Additionally, we observed that DNA damage can trigger distinct signaling pathways leading to cell death. Furthermore, we elucidated the involvement of CSB in this response, suggesting a potential interaction between TcKAP7 and CSB proteins in transcription-coupled DNA repair. The results presented here describe, for the first time, the mechanism of mitochondrial DNA repair in trypanosomatids following exposure to UV radiation and cisplatin.
Collapse
Affiliation(s)
- Bruno Marçal Repolês
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Wesley Roger Rodrigues Ferreira
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Antônio Vinicius de Assis
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Isabela Cecília Mendes
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Flávia Souza Morini
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Rio de Janeiro, RJ, Brazil
| | | | - Shana O Kelley
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Glória Regina Franco
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Andrea Mara Macedo
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Jeremy C Mottram
- Department of Biology, York Biomedical Research Institute, University of York, Wentworth Way, Heslington YorkYO10 5DD, UK
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Rio de Janeiro, RJ, Brazil
| | - Stênio Perdigão Fragoso
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - Carlos Renato Machado
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil.
| |
Collapse
|
2
|
Liakos A, Ntakou‐Zamplara KZ, Angelova N, Konstantopoulos D, Synacheri A, Spyropoulou Z, Tsarmaklis IA, Korrou‐Karava D, Nikolopoulos G, Lavigne MD, Fousteri M. Cockayne syndrome B protein is implicated in transcription and associated chromatin dynamics in homeostatic and genotoxic conditions. Aging Cell 2025; 24:e14341. [PMID: 39370748 PMCID: PMC11874911 DOI: 10.1111/acel.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
The integrity of the actively transcribed genome against helix-distorting DNA lesions relies on a multilayered cellular response that enhances Transcription-Coupled Nucleotide Excision Repair (TC-NER). When defective, TC-NER is causatively associated with Cockayne-Syndrome (CS), a rare severe human progeroid disorder. Although the presence of unresolved transcription-blocking lesions is considered a driver of the aging process, the molecular features of the transcription-driven response to genotoxic stress in CS-B cells remain largely unknown. Here, an in-depth view of the transcriptional and associated chromatin dynamics that occur in CS-B cells illuminates the role of CSB therein. By employing high-throughput genome-wide approaches, we observed that absence of a functional CSB protein results in a delay in transcription progression, more positioned +1 nucleosomes, and less dynamic chromatin structure, compared to normal cells. We found that early after exposure to UV, CS-B cells released RNA polymerase II (RNAPII) from promoter-proximal pause sites into elongation. However, the magnitude of this response and the progression of RNAPII were reduced compared to normal counterparts. Notably, we detected increased post-UV retainment of unprocessed nascent RNA transcripts and chromatin-associated elongating RNAPII molecules. Contrary to the prevailing models, we found that transcription initiation is operational in CS-B fibroblasts early after UV and that chromatin accessibility showed a marginal increase. Our study provides robust evidence for the role of CSB in shaping the transcription and chromatin landscape both in homeostasis and in response to genotoxic insults, which is independent of its known role in TC-NER, and which may underlie major aspects of the CS phenotype.
Collapse
Affiliation(s)
- Anastasios Liakos
- Institute for Fundamental Biomedical ResearchBSRC “Alexander Fleming”VariGreece
| | | | - Nelina Angelova
- Institute for Fundamental Biomedical ResearchBSRC “Alexander Fleming”VariGreece
| | | | - Anna‐Chloe Synacheri
- Institute for Fundamental Biomedical ResearchBSRC “Alexander Fleming”VariGreece
- Laboratory of Biology, School of MedicineNational and Kapodistrian University of Athens (NKUA)AthensGreece
| | - Zoi Spyropoulou
- Institute for Fundamental Biomedical ResearchBSRC “Alexander Fleming”VariGreece
| | - Iason A. Tsarmaklis
- Institute for Fundamental Biomedical ResearchBSRC “Alexander Fleming”VariGreece
| | - Despoina Korrou‐Karava
- Institute for Fundamental Biomedical ResearchBSRC “Alexander Fleming”VariGreece
- Present address:
Department of Physiology, School of MedicineUniversity of PatrasPatrasGreece
| | | | - Matthieu D. Lavigne
- Institute for Fundamental Biomedical ResearchBSRC “Alexander Fleming”VariGreece
- Present address:
Institute of Molecular Biology & Biotechnology, FORTHCreteGreece
| | - Maria Fousteri
- Institute for Fundamental Biomedical ResearchBSRC “Alexander Fleming”VariGreece
| |
Collapse
|
3
|
Wang X, Zheng R, Dukhinova M, Wang L, Shen Y, Lin Z. Perspectives in the investigation of Cockayne syndrome group B neurological disease: the utility of patient-derived brain organoid models. J Zhejiang Univ Sci B 2024; 25:878-889. [PMID: 39420523 PMCID: PMC11494160 DOI: 10.1631/jzus.b2300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/16/2024] [Indexed: 10/19/2024]
Abstract
Cockayne syndrome (CS) group B (CSB), which results from mutations in the excision repair cross-complementation group 6 (ERCC6) genes, which produce CSB protein, is an autosomal recessive disease characterized by multiple progressive disorders including growth failure, microcephaly, skin photosensitivity, and premature aging. Clinical data show that brain atrophy, demyelination, and calcification are the main neurological manifestations of CS, which progress with time. Neuronal loss and calcification occur in various brain areas, particularly the cerebellum and basal ganglia, resulting in dyskinesia, ataxia, and limb tremors in CSB patients. However, the understanding of neurodevelopmental defects in CS has been constrained by the lack of significant neurodevelopmental and functional abnormalities observed in CSB-deficient mice. In this review, we focus on elucidating the protein structure and distribution of CSB and delve into the impact of CSB mutations on the development and function of the nervous system. In addition, we provide an overview of research models that have been instrumental in exploring CS disorders, with a forward-looking perspective on the substantial contributions that brain organoids are poised to further advance this field.
Collapse
Affiliation(s)
- Xintai Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Zheng
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Marina Dukhinova
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center for Brain Health, the Fourth Affiliated Hospital of School of Medicine / International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322001, China
| | - Luxi Wang
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
| | - Zhijie Lin
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
4
|
Pradhan S, Bush K, Zhang N, Pandita RK, Tsai CL, Smith C, Pandlebury DF, Gaikwad S, Leonard F, Nie L, Tao A, Russell W, Yuan S, Choudhary S, Ramos KS, Elferink C, Wairkar YP, Tainer JA, Thompson LM, Pandita TK, Sarkar PS. Chromatin remodeler BRG1 recruits huntingtin to repair DNA double-strand breaks in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613927. [PMID: 39345557 PMCID: PMC11429940 DOI: 10.1101/2024.09.19.613927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Persistent DNA double-strand breaks (DSBs) are enigmatically implicated in neurodegenerative diseases including Huntington's disease (HD), the inherited late-onset disorder caused by CAG repeat elongations in Huntingtin (HTT). Here we combine biochemistry, computation and molecular cell biology to unveil a mechanism whereby HTT coordinates a Transcription-Coupled Non-Homologous End-Joining (TC-NHEJ) complex. HTT joins TC-NHEJ proteins PNKP, Ku70/80, and XRCC4 with chromatin remodeler Brahma-related Gene 1 (BRG1) to resolve transcription-associated DSBs in brain. HTT recruitment to DSBs in transcriptionally active gene- rich regions is BRG1-dependent while efficient TC-NHEJ protein recruitment is HTT-dependent. Notably, mHTT compromises TC-NHEJ interactions and repair activity, promoting DSB accumulation in HD tissues. Importantly, HTT or PNKP overexpression restores TC-NHEJ in a Drosophila HD model dramatically improving genome integrity, motor defects, and lifespan. Collective results uncover HTT stimulation of DSB repair by organizing a TC-NHEJ complex that is impaired by mHTT thereby implicating dysregulation of transcription-coupled DSB repair in mHTT pathophysiology. Highlights BRG1 recruits HTT and NHEJ components to transcriptionally active DSBs.HTT joins BRG1 and PNKP to efficiently repair transcription related DSBs in brain.Mutant HTT impairs the functional integrity of TC-NHEJ complex for DSB repair.HTT expression improves DSB repair, genome integrity and phenotypes in HD flies.
Collapse
|
5
|
Popov AA, Petruseva IO, Naumenko NV, Lavrik OI. Methods for Assessment of Nucleotide Excision Repair Efficiency. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1844-1856. [PMID: 38105203 DOI: 10.1134/s0006297923110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
Nucleotide excision repair (NER) is responsible for removing a wide variety of bulky adducts from DNA, thus contributing to the maintenance of genome stability. The efficiency with which proteins of the NER system recognize and remove bulky adducts depends on many factors and is of great clinical and diagnostic significance. The review examines current concepts of the NER system molecular basis in eukaryotic cells and analyzes methods for the assessment of the NER-mediated DNA repair efficiency both in vitro and ex vivo.
Collapse
Affiliation(s)
- Aleksei A Popov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina O Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalya V Naumenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| |
Collapse
|
6
|
Huang Y, Gu L, Li GM. Heat shock protein DNAJA2 regulates transcription-coupled repair by triggering CSB degradation via chaperone-mediated autophagy. Cell Discov 2023; 9:107. [PMID: 37907457 PMCID: PMC10618452 DOI: 10.1038/s41421-023-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/01/2023] [Indexed: 11/02/2023] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is an important genome maintenance system that preferentially removes DNA lesions on the transcribed strand of actively transcribed genes, including non-coding genes. TC-NER involves lesion recognition by the initiation complex consisting of RNA polymerase II (Pol II) and Cockayne syndrome group B (CSB), followed by NER-catalyzed lesion removal. However, the efficient lesion removal requires the initiation complex to yield the right of way to the excision machinery, and how this occurs in a timely manner is unknown. Here we show that heat shock protein DNAJA2 facilitates the HSC70 chaperone-mediated autophagy (CMA) to degrade CSB during TC-NER. DNAJA2 interacts with and enables HSC70 to recognize sumoylated CSB. This triggers the removal of both CSB and Pol II from the lesion site in a manner dependent on lysosome receptor LAMP2A. Defects in DNAJA2, HSC70 or LAMP2A abolish CSB degradation and block TC-NER. Our findings discover DNAJA2-mediated CMA as a critical regulator of TC-NER, implicating the DNAJA2-HSC70-CMA axis factors in genome maintenance.
Collapse
Affiliation(s)
- Yaping Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
7
|
Bilkis R, Lake RJ, Cooper KL, Tomkinson A, Fan HY. The CSB chromatin remodeler regulates PARP1- and PARP2-mediated single-strand break repair at actively transcribed DNA regions. Nucleic Acids Res 2023; 51:7342-7356. [PMID: 37326017 PMCID: PMC10415129 DOI: 10.1093/nar/gkad515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Efficient repair of oxidized DNA is critical for genome-integrity maintenance. Cockayne syndrome protein B (CSB) is an ATP-dependent chromatin remodeler that collaborates with Poly(ADP-ribose) polymerase I (PARP1) in the repair of oxidative DNA lesions. How these proteins integrate during DNA repair remains largely unknown. Here, using chromatin co-fractionation studies, we demonstrate that PARP1 and PARP2 promote recruitment of CSB to oxidatively-damaged DNA. CSB, in turn, contributes to the recruitment of XRCC1, and histone PARylation factor 1 (HPF1), and promotes histone PARylation. Using alkaline comet assays to monitor DNA repair, we found that CSB regulates single-strand break repair (SSBR) mediated by PARP1 and PARP2. Strikingly, CSB's function in SSBR is largely bypassed when transcription is inhibited, suggesting CSB-mediated SSBR occurs primarily at actively transcribed DNA regions. While PARP1 repairs SSBs at sites regardless of the transcription status, we found that PARP2 predominantly functions in actively transcribed DNA regions. Therefore, our study raises the hypothesis that SSBR is executed by different mechanisms based on the transcription status.
Collapse
Affiliation(s)
- Rabeya Bilkis
- Program in Cell and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
- Biomedical Sciences Graduate Program, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Robert J Lake
- Program in Cell and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Karen L Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Alan Tomkinson
- Program in Cell and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Hua-Ying Fan
- Program in Cell and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Guo M, Su F, Chen Y, Su B. Ectopic circSTK39 Expression Ameliorates Hydrogen Peroxide-Induced Human Lens Epithelial Cell Apoptosis and Oxidative Stress through the miR-125a-5p/ERCC6 Pathway. Curr Eye Res 2023; 48:278-288. [PMID: 36322706 DOI: 10.1080/02713683.2022.2143529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE More and more studies suggest that circular RNA (circRNA) is involved in the pathogenesis of age-related cataract (ARC). CircSTK39, a circular RNA, has inhibitory effects on cancer progression. However, there is no data regarding the role of circSTK39 in ARC occurrence and the underlying mechanism. METHODS ARC cell model was established by inducing lens epithelial cells (SRA01/04) using hydrogen peroxide (H2O2). CircSTK39, microRNA-125a-5p (miR-125a-5p), and ERCC excision repair 6, chromatin remodeling factor (ERCC6) expression were detected by quantitative real-time polymerase chain reaction. Western blot was conducted to assess protein expression. Cell viability, proliferation, and apoptosis were investigated by cell counting kit-8 assay, 5-Ethynyl-29-deoxyuridine assay, and flow cytometry analysis, respectively. Oxidative stress was evaluated using commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay were used to identify the relationship between miR-125a-5p and circSTK39 or ERCC6. RESULTS CircSTK39 and ERCC6 expression were significantly downregulated, but miR-125a-5p expression was upregulated in the lens tissues of ARC patients and H2O2-treated SRA01/04 cells. H2O2 treatment led to decreased cell proliferation and increased cell apoptosis and oxidative stress, accompanied by the increases of C-caspase3 and Bax expression and the decrease of Bcl-2 expression; however, these effects were reversed after circSTK39 overexpression. MiR-125a-5p was found to participate in H2O2-triggered cell damage by interacting with circSTK39. Additionally, ERCC6 silencing inhibited circSTK39 overexpression-mediated action. Importantly, circSTK39 regulated ERCC6 expression by interaction with miR-125a-5p in H2O2-treated SRA01/04 cells. CONCLUSION The increased expression of circSTK39 ameliorated H2O2-induced SRA01/04 cell injury through the miR-125a-5p/ERCC6 pathway.
Collapse
Affiliation(s)
- Ming Guo
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Fanfan Su
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Yao Chen
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Bo Su
- Department of Pathology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
9
|
Gopaul D, Denby Wilkes C, Goldar A, Giordanengo Aiach N, Barrault MB, Novikova E, Soutourina J. Genomic analysis of Rad26 and Rad1-Rad10 reveals differences in their dependence on Mediator and RNA polymerase II. Genome Res 2022; 32:1516-1528. [PMID: 35738899 PMCID: PMC9435749 DOI: 10.1101/gr.276371.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/16/2022] [Indexed: 02/03/2023]
Abstract
Mediator is a conserved coregulator playing a key role in RNA polymerase (Pol) II transcription. Mediator also links transcription and nucleotide excision repair (NER) via a direct contact with Rad2/ERCC5(XPG) endonuclease. In this work, we analyzed the genome-wide distribution of Rad26/ERCC6(CSB) and Rad1-Rad10/ERCC4(XPF)-ERCC1, addressing the question of a potential link of these proteins with Mediator and Pol II in yeast Saccharomyces cerevisiae Our genomic analyses reveal that Rad1-Rad10 and Rad26 are present on the yeast genome in the absence of genotoxic stress, especially at highly transcribed regions, with Rad26 binding strongly correlating with that of Pol II. Moreover, we show that Rad1-Rad10 and Rad26 colocalize with Mediator at intergenic regions and physically interact with this complex. Using kin28 TFIIH mutant, we found that Mediator stabilization on core promoters leads to an increase in Rad1-Rad10 chromatin binding, whereas Rad26 occupancy follows mainly a decrease in Pol II transcription. Combined with multivariate analyses, our results show the relationships between Rad1-Rad10, Rad26, Mediator, and Pol II, modulated by the changes in binding dynamics of Mediator and Pol II transcription. In conclusion, we extend the Mediator link to Rad1-Rad10 and Rad26 NER proteins and reveal important differences in their dependence on Mediator and Pol II. Rad2 is the most dependent on Mediator, followed by Rad1-Rad10, whereas Rad26 is the most closely related to Pol II. Our work thus contributes to new concepts of the functional interplay between transcription and DNA repair machineries, which are relevant for human diseases including cancer and XP/CS syndromes.
Collapse
Affiliation(s)
- Diyavarshini Gopaul
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Cyril Denby Wilkes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Nathalie Giordanengo Aiach
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marie-Bénédicte Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Elizaveta Novikova
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Donnio LM, Cerutti E, Magnani C, Neuillet D, Mari PO, Giglia-Mari G. XAB2 dynamics during DNA damage-dependent transcription inhibition. eLife 2022; 11:77094. [PMID: 35880862 PMCID: PMC9436415 DOI: 10.7554/elife.77094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Xeroderma Pigmentosum group A-binding protein 2 (XAB2) is a multifunctional protein playing a critical role in distinct cellular processes including transcription, splicing, DNA repair, and messenger RNA export. In this study, we demonstrate that XAB2 is involved specifically and exclusively in Transcription-Coupled Nucleotide Excision Repair (TC-NER) reactions and solely for RNA polymerase 2 (RNAP2)-transcribed genes. Surprisingly, contrary to all the other NER proteins studied so far, XAB2 does not accumulate on the local UV-C damage; on the contrary, it becomes more mobile after damage induction. XAB2 mobility is restored when DNA repair reactions are completed. By scrutinizing from which cellular complex/partner/structure XAB2 is released, we have identified that XAB2 is detached after DNA damage induction from DNA:RNA hybrids, commonly known as R-loops, and from the CSA and XPG proteins. This release contributes to the DNA damage recognition step during TC-NER, as in the absence of XAB2, RNAP2 is blocked longer on UV lesions. Moreover, we also demonstrate that XAB2 has a role in retaining RNAP2 on its substrate without any DNA damage.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Elena Cerutti
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Charlene Magnani
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Neuillet
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre-Olivier Mari
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Giuseppina Giglia-Mari
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Zhang X, Yin M, Hu J. Nucleotide excision repair: a versatile and smart toolkit. Acta Biochim Biophys Sin (Shanghai) 2022; 54:807-819. [PMID: 35975604 PMCID: PMC9828404 DOI: 10.3724/abbs.2022054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nucleotide excision repair (NER) is a major pathway to deal with bulky adducts induced by various environmental toxins in all cellular organisms. The two sub-pathways of NER, global genome repair (GGR) and transcription-coupled repair (TCR), differ in the damage recognition modes. In this review, we describe the molecular mechanism of NER in mammalian cells, especially the details of damage recognition steps in both sub-pathways. We also introduce new sequencing methods for genome-wide mapping of NER, as well as recent advances about NER in chromatin by these methods. Finally, the roles of NER factors in repairing oxidative damages and resolving R-loops are discussed.
Collapse
Affiliation(s)
| | | | - Jinchuan Hu
- Correspondence address. Tel: +86-21-54237702; E-mail:
| |
Collapse
|
12
|
Lanzafame M, Branca G, Landi C, Qiang M, Vaz B, Nardo T, Ferri D, Mura M, Iben S, Stefanini M, Peverali FA, Bini L, Orioli D. Cockayne syndrome group A and ferrochelatase finely tune ribosomal gene transcription and its response to UV irradiation. Nucleic Acids Res 2021; 49:10911-10930. [PMID: 34581821 PMCID: PMC8565352 DOI: 10.1093/nar/gkab819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/10/2021] [Accepted: 09/12/2021] [Indexed: 11/14/2022] Open
Abstract
CSA and CSB proteins are key players in transcription-coupled nucleotide excision repair (TC-NER) pathway that removes UV-induced DNA lesions from the transcribed strands of expressed genes. Additionally, CS proteins play relevant but still elusive roles in other cellular pathways whose alteration may explain neurodegeneration and progeroid features in Cockayne syndrome (CS). Here we identify a CS-containing chromatin-associated protein complex that modulates rRNA transcription. Besides RNA polymerase I (RNAP1) and specific ribosomal proteins (RPs), the complex includes ferrochelatase (FECH), a well-known mitochondrial enzyme whose deficiency causes erythropoietic protoporphyria (EPP). Impairment of either CSA or FECH functionality leads to reduced RNAP1 occupancy on rDNA promoter that is associated to reduced 47S pre-rRNA transcription. In addition, reduced FECH expression leads to an abnormal accumulation of 18S rRNA that in primary dermal fibroblasts from CS and EPP patients results in opposed rRNA amounts. After cell irradiation with UV light, CSA triggers the dissociation of the CSA–FECH–CSB–RNAP1–RPs complex from the chromatin while it stabilizes its binding to FECH. Besides disclosing a function for FECH within nucleoli, this study sheds light on the still unknown mechanisms through which CSA modulates rRNA transcription.
Collapse
Affiliation(s)
- Manuela Lanzafame
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Giulia Branca
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Claudia Landi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Mingyue Qiang
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Bruno Vaz
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Tiziana Nardo
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Debora Ferri
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Manuela Mura
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Miria Stefanini
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Fiorenzo A Peverali
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Donata Orioli
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| |
Collapse
|
13
|
Chen J, Li L, Sun L, Yuan Y, Jing J. Associations of individual and joint expressions of ERCC6 and ERCC8 with clinicopathological parameters and prognosis of gastric cancer. PeerJ 2021; 9:e11791. [PMID: 34316408 PMCID: PMC8286707 DOI: 10.7717/peerj.11791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
Background Excision repair cross-complementing group 6 and 8 (ERCC6 and ERCC8) have been implicated in ailments such as genetic diseases and cancers. However, the relationship between individual and joint expressions of ERCC6/ERCC8 and clinicopathological parameters as well as prognosis of gastric cancer (GC) still remains unclear. Methods In this study, protein expressions of ERCC6, ERCC8 and ERCC6-ERCC8 were detected by immunohistochemistry (IHC) in 109 paired GC and para-cancerous normal tissue samples. The mRNA expression was detected in 36 pairs of tissue samples. IHC results and RNA-seq data extracted from The Cancer Genome Atlas (TCGA) were used to explore the clinical value of ERCC6 and ERCC8 expression in GC. We further conducted protein-protein interaction analysis, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis, and gene-gene interaction analysis to explore the function and regulation networks of ERCC6 and ERCC8 in GC. Results Individual and joint ERCC6/ERCC8 expression were significantly higher in adjacent normal mucosa compared with GC tissues. ERCC6 mRNA expression showed no difference in GC and paired tissues, while ERCC8 mRNA was significantly decreased in GC tissues. Protein expression of ERCC6, ERCC8, double negative ERCC6-ERCC8 and double positive ERCC6-ERCC8 and overexpressed ERCC6 mRNA were related to better clinicopathologic parameters, while overexpressed ERCC8 mRNA suggested worse parameters. Univariate survival analysis indicated that the OS was longer when ERCC6 protein expression and ERCC8 mRNA expression increased, and double negative ERCC6-ERCC8 expression was associated with a short OS. Bioinformatics analyses showed ERCC6 and ERCC8 were associated with nucleotide excision repair (NER) pathway, and six and ten gene sets were figured out to be related with ERCC6 and ERCC8, respectively. KEGG pathway showed that ERCC6/ERCC8 related gene sets were mainly involved in the regulation of PI3K/AKT/mTOR pathway. Direct physical interactions were found between ERCC6 and ERCC8. Conclusions Individual and joint expressions of ERCC6/ERCC8 were associated with clinical features of GC. Protein expression of ERCC6, ERCC6-ERCC8, and mRNA expression of ERCC8 were related to prognosis of GC. ERCC6 and ERCC8 primarily function in the NER pathway, and may regulate GC progression through the regulation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jing Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liang Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Tiwari V, Kulikowicz T, Wilson DM, Bohr VA. LEO1 is a partner for Cockayne syndrome protein B (CSB) in response to transcription-blocking DNA damage. Nucleic Acids Res 2021; 49:6331-6346. [PMID: 34096589 DOI: 10.1093/nar/gkab458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Cockayne syndrome (CS) is an autosomal recessive genetic disorder characterized by photosensitivity, developmental defects, neurological abnormalities, and premature aging. Mutations in CSA (ERCC8), CSB (ERCC6), XPB, XPD, XPG, XPF (ERCC4) and ERCC1 can give rise to clinical phenotypes resembling classic CS. Using a yeast two-hybrid (Y2H) screening approach, we identified LEO1 (Phe381-Ser568 region) as an interacting protein partner of full-length and C-terminal (Pro1010-Cys1493) CSB in two independent screens. LEO1 is a member of the RNA polymerase associated factor 1 complex (PAF1C) with roles in transcription elongation and chromatin modification. Supportive of the Y2H results, purified, recombinant LEO1 and CSB directly interact in vitro, and the two proteins exist in a common complex within human cells. In addition, fluorescently tagged LEO1 and CSB are both recruited to localized DNA damage sites in human cells. Cell fractionation experiments revealed a transcription-dependent, coordinated association of LEO1 and CSB to chromatin following either UVC irradiation or cisplatin treatment of HEK293T cells, whereas the response to menadione was distinct, suggesting that this collaboration occurs mainly in the context of bulky transcription-blocking lesions. Consistent with a coordinated interaction in DNA repair, LEO1 knockdown or knockout resulted in reduced CSB recruitment to chromatin, increased sensitivity to UVC light and cisplatin damage, and reduced RNA synthesis recovery and slower excision of cyclobutane pyrimidine dimers following UVC irradiation; the absence of CSB resulted in diminished LEO1 recruitment. Our data indicate a reciprocal communication between CSB and LEO1 in the context of transcription-associated DNA repair and RNA transcription recovery.
Collapse
Affiliation(s)
- Vinod Tiwari
- Section on DNA repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tomasz Kulikowicz
- Section on DNA repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M Wilson
- Hasselt University, Biomedical Research Institute, 3590 Diepenbeek, Belgium
| | - Vilhelm A Bohr
- Section on DNA repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Weems JC, Slaughter BD, Unruh JR, Weaver KJ, Miller BD, Delventhal KM, Conaway JW, Conaway RC. A role for the Cockayne Syndrome B (CSB)-Elongin ubiquitin ligase complex in signal-dependent RNA polymerase II transcription. J Biol Chem 2021; 297:100862. [PMID: 34116057 PMCID: PMC8294581 DOI: 10.1016/j.jbc.2021.100862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022] Open
Abstract
The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.
Collapse
Affiliation(s)
- Juston C Weems
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Kyle J Weaver
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Brandon D Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Kym M Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
16
|
Moslehi R, Tsao HS, Zeinomar N, Stagnar C, Fitzpatrick S, Dzutsev A. Integrative genomic analysis implicates ERCC6 and its interaction with ERCC8 in susceptibility to breast cancer. Sci Rep 2020; 10:21276. [PMID: 33277540 PMCID: PMC7718875 DOI: 10.1038/s41598-020-77037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Up to 30% of all breast cancer cases may be inherited and up to 85% of those may be due to segregation of susceptibility genes with low and moderate risk [odds ratios (OR) ≤ 3] for (mostly peri- and post-menopausal) breast cancer. The majority of low/moderate-risk genes, particularly those with minor allele frequencies (MAF) of < 30%, have not been identified and/or validated due to limitations of conventional association testing approaches, which include the agnostic nature of Genome Wide Association Studies (GWAS). To overcome these limitations, we used a hypothesis-driven integrative genomics approach to test the association of breast cancer with candidate genes by analyzing multi-omics data. Our candidate-gene association analyses of GWAS datasets suggested an increased risk of breast cancer with ERCC6 (main effect: 1.29 ≤ OR ≤ 2.91, 0.005 ≤ p ≤ 0.04, 11.8 ≤ MAF ≤ 40.9%), and implicated its interaction with ERCC8 (joint effect: 3.03 ≤ OR ≤ 5.31, 0.01 ≤ pinteraction ≤ 0.03). We found significant upregulation of ERCC6 (p = 7.95 × 10-6) and ERCC8 (p = 4.67 × 10-6) in breast cancer and similar frequencies of ERCC6 (1.8%) and ERCC8 (0.3%) mutations in breast tumors to known breast cancer susceptibility genes such as BLM (1.9%) and LSP1 (0.3%). Our integrative genomics approach suggests that ERCC6 may be a previously unreported low- to moderate-risk breast cancer susceptibility gene, which may also interact with ERCC8.
Collapse
Affiliation(s)
- Roxana Moslehi
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA.
| | - Hui-Shien Tsao
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
- New York State Office of Children and Family Services, New York, USA
| | - Nur Zeinomar
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
- Mailman School of Public Health, Columbia University, New York, USA
| | - Cristy Stagnar
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, USA
| | - Sean Fitzpatrick
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
| | - Amiran Dzutsev
- Cancer Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Lee JH, Kim EW, Croteau DL, Bohr VA. Heterochromatin: an epigenetic point of view in aging. Exp Mol Med 2020; 52:1466-1474. [PMID: 32887933 PMCID: PMC8080806 DOI: 10.1038/s12276-020-00497-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is an inevitable process of life. Defined by progressive physiological and functional loss of tissues and organs, aging increases the risk of mortality for the organism. The aging process is affected by various factors, including genetic and epigenetic ones. Here, we review the chromatin-specific epigenetic changes that occur during normal (chronological) aging and in premature aging diseases. Taking advantage of the reversible nature of epigenetic modifications, we will also discuss possible lifespan expansion strategies through epigenetic modulation, which was considered irreversible until recently.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Edward W Kim
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA. .,Danish Center for Healthy Aging, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
18
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
19
|
Lee JH, Demarest TG, Babbar M, Kim EW, Okur MN, De S, Croteau DL, Bohr VA. Cockayne syndrome group B deficiency reduces H3K9me3 chromatin remodeler SETDB1 and exacerbates cellular aging. Nucleic Acids Res 2019; 47:8548-8562. [PMID: 31276581 DOI: 10.1093/nar/gkz568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/09/2019] [Accepted: 06/29/2019] [Indexed: 12/30/2022] Open
Abstract
Cockayne syndrome is an accelerated aging disorder, caused by mutations in the CSA or CSB genes. In CSB-deficient cells, poly (ADP ribose) polymerase (PARP) is persistently activated by unrepaired DNA damage and consumes and depletes cellular nicotinamide adenine dinucleotide, which leads to mitochondrial dysfunction. Here, the distribution of poly (ADP ribose) (PAR) was determined in CSB-deficient cells using ADPr-ChAP (ADP ribose-chromatin affinity purification), and the results show striking enrichment of PAR at transcription start sites, depletion of heterochromatin and downregulation of H3K9me3-specific methyltransferases SUV39H1 and SETDB1. Induced-expression of SETDB1 in CSB-deficient cells downregulated PAR and normalized mitochondrial function. The results suggest that defects in CSB are strongly associated with loss of heterochromatin, downregulation of SETDB1, increased PAR in highly-transcribed regions, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Edward W Kim
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
20
|
The hunt for RNA polymerase II elongation factors: a historical perspective. Nat Struct Mol Biol 2019; 26:771-776. [PMID: 31439940 DOI: 10.1038/s41594-019-0283-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the three eukaryotic nuclear RNA polymerases paved the way for serious biochemical investigations of eukaryotic transcription and the identification of eukaryotic transcription factors. Here we describe this adventure from our vantage point, with a focus on the hunt for factors that regulate elongation by RNA polymerase II.
Collapse
|
21
|
Tiwari V, Wilson DM. DNA Damage and Associated DNA Repair Defects in Disease and Premature Aging. Am J Hum Genet 2019; 105:237-257. [PMID: 31374202 PMCID: PMC6693886 DOI: 10.1016/j.ajhg.2019.06.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic information is constantly being attacked by intrinsic and extrinsic damaging agents, such as reactive oxygen species, atmospheric radiation, environmental chemicals, and chemotherapeutics. If DNA modifications persist, they can adversely affect the polymerization of DNA or RNA, leading to replication fork collapse or transcription arrest, or can serve as mutagenic templates during nucleic acid synthesis reactions. To combat the deleterious consequences of DNA damage, organisms have developed complex repair networks that remove chemical modifications or aberrant base arrangements and restore the genome to its original state. Not surprisingly, inherited or sporadic defects in DNA repair mechanisms can give rise to cellular outcomes that underlie disease and aging, such as transformation, apoptosis, and senescence. In the review here, we discuss several genetic disorders linked to DNA repair defects, attempting to draw correlations between the nature of the accumulating DNA damage and the pathological endpoints, namely cancer, neurological disease, and premature aging.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
22
|
Horikoshi N, Sharma D, Leonard F, Pandita RK, Charaka VK, Hambarde S, Horikoshi NT, Gaur Khaitan P, Chakraborty S, Cote J, Godin B, Hunt CR, Pandita TK. Pre-existing H4K16ac levels in euchromatin drive DNA repair by homologous recombination in S-phase. Commun Biol 2019; 2:253. [PMID: 31286070 PMCID: PMC6611875 DOI: 10.1038/s42003-019-0498-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
The homologous recombination (HR) repair pathway maintains genetic integrity after DNA double-strand break (DSB) damage and is particularly crucial for maintaining fidelity of expressed genes. Histone H4 acetylation on lysine 16 (H4K16ac) is associated with transcription, but how pre-existing H4K16ac directly affects DSB repair is not known. To answer this question, we used CRISPR/Cas9 technology to introduce I-SceI sites, or repair pathway reporter cassettes, at defined locations within gene-rich (high H4K16ac/euchromatin) and gene-poor (low H4K16ac/heterochromatin) regions. The frequency of DSB repair by HR is higher in gene-rich regions. Interestingly, artificially targeting H4K16ac at specific locations using gRNA/dCas9-MOF increases HR frequency in euchromatin. Finally, inhibition/depletion of RNA polymerase II or Cockayne syndrome B protein leads to decreased recruitment of HR factors at DSBs. These results indicate that the pre-existing H4K16ac status at specific locations directly influences the repair of local DNA breaks, favoring HR in part through the transcription machinery.
Collapse
Affiliation(s)
- Nobuo Horikoshi
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
- Present Address: Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Dharmendra Sharma
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Fransisca Leonard
- Department of Nanomedicine, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Raj K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Vijaya K. Charaka
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Shashank Hambarde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Nobuko T. Horikoshi
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Puja Gaur Khaitan
- Department of Surgery, The Houston Methodist Research Institute, Houston, TX 77030 USA
- Present Address: Department of Surgery, Medstar Washington Hospital Center, Washington, DC 20010 USA
| | - Sharmistha Chakraborty
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Jacques Cote
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Quebec City, QC G1V4G2 Canada
| | - Biana Godin
- Department of Nanomedicine, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Clayton R. Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Tej K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| |
Collapse
|
23
|
Kulkarni V, Kulkarni P. Intrinsically disordered proteins and phenotypic switching: Implications in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:63-84. [PMID: 31521237 DOI: 10.1016/bs.pmbts.2019.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now well established that intrinsically disordered proteins (IDPs) that constitute a large part of the proteome across the three kingdoms, play critical roles in several biological processes including phenotypic switching. However, dysregulated expression of IDPs that engage in promiscuous interactions can lead to pathological states. In this chapter, using cancer as a paradigm, we discuss how IDP conformational dynamics and the resultant conformational noise can modulate phenotypic switching. Thus, contrary to the prevailing wisdom that phenotypic switching is highly deterministic (has a genetic underpinning) in cancer, emerging evidence suggests that non-genetic mechanisms, at least in part due to the conformational noise, may also be a confounding factor in phenotypic switching.
Collapse
Affiliation(s)
- Vivek Kulkarni
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
24
|
Selvam K, Ding B, Sharma R, Li S. Evidence that Moderate Eviction of Spt5 and Promotion of Error-Free Transcriptional Bypass by Rad26 Facilitates Transcription Coupled Nucleotide Excision Repair. J Mol Biol 2019; 431:1322-1338. [PMID: 30790631 DOI: 10.1016/j.jmb.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 11/18/2022]
Abstract
Transcription coupled repair (TC-NER) is a subpathway of nucleotide excision repair triggered by stalling of RNA polymerase at DNA lesions. It has been suspected that transcriptional misincorporations of certain nucleotides opposite lesions that result in irreversible transcription stalling might be important for TC-NER. However, the spectra of nucleotide misincorporations opposite UV photoproducts and how they are implicated in transcriptional stalling and TC-NER in the cell remain unknown. Rad26, a low abundant yeast protein, and its human homolog CSB have been proposed to facilitate TC-NER in part by positioning and stabilizing stalling of RNA polymerase II (RNAPII) at DNA lesions. Here, we found that substantial AMPs but no other nucleotides are transcriptionally misincoporated and extended opposite UV photoproducts and adjacent bases in Saccharomyces cerevisiae. Rad26 does not significantly affect either the misincorporation or extension of AMPs. At normally low or moderately increased levels, Rad26 promotes error-free transcriptional bypass and TC-NER of UV photoproducts. However, Rad26 completely loses these functions when it is overexpressed to ~1/3 the level of RNAPII molecules. Also, Rad26 does not directly displace RNAPII but constitutively evicts Spt5, a key transcription elongation factor and TC-NER repressor, from the chromatin. Our results indicate that transcriptional nucleotide misincorporation is not implicated in TC-NER, and moderate eviction of Spt5 and promotion of error-free transcriptional bypass of DNA lesions by Rad26 facilitates TC-NER.
Collapse
Affiliation(s)
- Kathiresan Selvam
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd, Lafayette, LA 70503, USA
| | - Rahul Sharma
- National Hansen's Disease Program, Laboratory Research Branch at Louisiana State University, 3519E School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
25
|
Al Khateeb WM, Sher AA, Marcus JM, Schroeder DF. UVSSA, UBP12, and RDO2/TFIIS Contribute to Arabidopsis UV Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:516. [PMID: 31105721 PMCID: PMC6492544 DOI: 10.3389/fpls.2019.00516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 05/03/2023]
Abstract
Plant DNA is damaged by exposure to solar radiation, which includes ultraviolet (UV) rays. UV damaged DNA is repaired either by photolyases, using visible light energy, or by nucleotide excision repair (NER), also known as dark repair. NER consists of two subpathways: global genomic repair (GGR), which repairs untranscribed DNA throughout the genome, and transcription-coupled repair (TCR), which repairs transcribed DNA. In mammals, CSA, CSB, UVSSA, USP7, and TFIIS have been implicated in TCR. Arabidopsis homologs of CSA (AtCSA-1/2) and CSB (CHR8) have previously been shown to contribute to UV tolerance. Here we examine the role of Arabidopsis homologs of UVSSA, USP7 (UBP12/13), and TFIIS (RDO2) in UV tolerance. We find that loss of function alleles of UVSSA, UBP12, and RDO2 exhibit increased UV sensitivity in both seedlings and adults. UV sensitivity in atcsa-1, uvssa, and ubp12 mutants is specific to dark conditions, consistent with a role in NER. Interestingly, chr8 mutants exhibit UV sensitivity in both light and dark conditions, suggesting that the Arabidopsis CSB homolog may play a role in both NER and light repair. Overall our results indicate a conserved role for UVSSA, USP7 (UBP12), and TFIIS (RDO2) in TCR.
Collapse
Affiliation(s)
| | - Annan A Sher
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jeffery M Marcus
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dana F Schroeder
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Boetefuer EL, Lake RJ, Dreval K, Fan HY. Poly(ADP-ribose) polymerase 1 (PARP1) promotes oxidative stress-induced association of Cockayne syndrome group B protein with chromatin. J Biol Chem 2018; 293:17863-17874. [PMID: 30266807 DOI: 10.1074/jbc.ra118.004548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
Cockayne syndrome protein B (CSB) is an ATP-dependent chromatin remodeler that relieves oxidative stress by regulating DNA repair and transcription. CSB is proposed to participate in base-excision repair (BER), the primary pathway for repairing oxidative DNA damage, but exactly how CSB participates in this process is unknown. It is also unclear whether CSB contributes to other repair pathways during oxidative stress. Here, using a patient-derived CS1AN-sv cell line, we examined how CSB is targeted to chromatin in response to menadione-induced oxidative stress, both globally and locus-specifically. We found that menadione-induced, global CSB-chromatin association does not require CSB's ATPase activity and is, therefore, mechanistically distinct from UV-induced CSB-chromatin association. Importantly, poly(ADP-ribose) polymerase 1 (PARP1) enhanced the kinetics of global menadione-induced CSB-chromatin association. We found that the major BER enzymes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), do not influence this association. Additionally, the level of γ-H2A histone family member X (γ-H2AX), a marker for dsDNA breaks, was not increased in menadione-treated cells. Therefore, our results support a model whereby PARP1 localizes to ssDNA breaks and recruits CSB to participate in DNA repair. Furthermore, this global CSB-chromatin association occurred independently of RNA polymerase II-mediated transcription elongation. However, unlike global CSB-chromatin association, both PARP1 knockdown and inhibition of transcription elongation interfered with menadione-induced CSB recruitment to specific genomic regions. This observation supports the hypothesis that CSB is also targeted to specific genomic loci to participate in transcriptional regulation in response to oxidative stress.
Collapse
Affiliation(s)
- Erica L Boetefuer
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics, and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131; Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Robert J Lake
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics, and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131
| | - Kostiantyn Dreval
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics, and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131
| | - Hua-Ying Fan
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics, and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131.
| |
Collapse
|