1
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
2
|
Özcan A, Yıbar A, Kiraz D, Ilıkkan ÖK. Comprehensive analysis of the CRISPR-Cas systems in Streptococcus thermophilus strains isolated from traditional yogurts. Antonie Van Leeuwenhoek 2024; 117:63. [PMID: 38561518 DOI: 10.1007/s10482-024-01960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Phage resistance is crucial for lactic acid bacteria in the dairy industry. However, identifying all phages affecting these bacteria is challenging. CRISPR-Cas systems offer a resistance mechanism developed by bacteria and archaea against phages and plasmids. In this study, 11 S. thermophilus strains from traditional yogurts underwent analysis using next-generation sequencing (NGS) and bioinformatics tools. Initial characterization involved molecular ribotyping. Bioinformatics analysis of the NGS raw data revealed that all 11 strains possessed at least one CRISPR type. A total of 21 CRISPR loci were identified, belonging to CRISPR types II-A, II-C, and III-A, including 13 Type II-A, 1 Type III-C, and 7 Type III-A CRISPR types. By analyzing spacer sequences in S. thermophilus bacterial genomes and matching them with phage/plasmid genomes, notable strains emerged. SY9 showed prominence with 132 phage matches and 30 plasmid matches, followed by SY12 with 35 phage matches and 25 plasmid matches, and SY18 with 49 phage matches and 13 plasmid matches. These findings indicate the potential of S. thermophilus strains in phage/plasmid resistance for selecting starter cultures, ultimately improving the quality and quantity of dairy products. Nevertheless, further research is required to validate these results and explore the practical applications of this approach.
Collapse
Affiliation(s)
- Ali Özcan
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey.
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey.
| | - Artun Yıbar
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey
| | - Deniz Kiraz
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey
| | - Özge Kahraman Ilıkkan
- Kahramankazan Vocational School, Food Quality Control and Analysis Program, Başkent University, Ankara, Turkey
| |
Collapse
|
3
|
Cui Y, Qu X. CRISPR-Cas systems of lactic acid bacteria and applications in food science. Biotechnol Adv 2024; 71:108323. [PMID: 38346597 DOI: 10.1016/j.biotechadv.2024.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
CRISPR-Cas (Clustered regularly interspaced short palindromic repeats-CRISPR associated proteins) systems are widely distributed in lactic acid bacteria (LAB), contributing to their RNA-mediated adaptive defense immunity. The CRISPR-Cas-based genetic tools have exhibited powerful capability. It has been highly utilized in different organisms, accelerating the development of life science. The review summarized the components, adaptive immunity mechanisms, and classification of CRISPR-Cas systems; analyzed the distribution and characteristics of CRISPR-Cas system in LAB. The review focuses on the development of CRISPR-Cas-based genetic tools in LAB for providing latest development and future trend. The diverse and broad applications of CRISPR-Cas systems in food/probiotic industry are introduced. LAB harbor a plenty of CRISPR-Cas systems, which contribute to generate safer and more robust strains with increased resistance against bacteriophage and prevent the dissemination of plasmids carrying antibiotic-resistance markers. Furthermore, the CRISPR-Cas system from LAB could be used to exploit novel, flexible, programmable genome editing tools of native host and other organisms, resolving the limitation of genetic operation of some LAB species, increasing the important biological functions of probiotics, improving the adaptation of probiotics in complex environments, and inhibiting the growth of foodborne pathogens. The development of the genetic tools based on CRISPR-Cas system in LAB, especially the endogenous CRISPR-Cas system, will open new avenues for precise regulation, rational design, and flexible application of LAB.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
4
|
Shaibullah S, Shuhaimi N, Ker DS, Mohd-Sharif N, Ho KL, Teh AH, Waterman J, Tang TH, Wong RR, Nathan S, Mohamed R, Ng MJ, Fung SY, Jonet MA, Firdaus-Raih M, Ng CL. Structural and functional analyses of Burkholderia pseudomallei BPSL1038 reveal a Cas-2/VapD nuclease sub-family. Commun Biol 2023; 6:920. [PMID: 37684342 PMCID: PMC10491678 DOI: 10.1038/s42003-023-05265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Burkholderia pseudomallei is a highly versatile pathogen with ~25% of its genome annotated to encode hypothetical proteins. One such hypothetical protein, BPSL1038, is conserved across seven bacterial genera and 654 Burkholderia spp. Here, we present a 1.55 Å resolution crystal structure of BPSL1038. The overall structure folded into a modified βαββαβα ferredoxin fold similar to known Cas2 nucleases. The Cas2 equivalent catalytic aspartate (D11) pairs are conserved in BPSL1038 although B. pseudomallei has no known CRISPR associated system. Functional analysis revealed that BPSL1038 is a nuclease with endonuclease activity towards double-stranded DNA. The DNase activity is divalent ion independent and optimum at pH 6. The concentration of monovalent ions (Na+ and K+) is crucial for nuclease activity. An active site with a unique D11(X20)SST motif was identified and proposed for BPSL1038 and its orthologs. Structure modelling indicates the catalytic role of the D11(X20)SST motif and that the arginine residues R10 and R30 may interact with the nucleic acid backbone. The structural similarity of BPSL1038 to Cas2 proteins suggests that BPSL1038 may represent a sub-family of nucleases that share a common ancestor with Cas2.
Collapse
Affiliation(s)
- Sofiyah Shaibullah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Nurshahirah Shuhaimi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - De-Sheng Ker
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Nurhikmah Mohd-Sharif
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900, Penang, Malaysia
| | - Jitka Waterman
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Rui-Rui Wong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana, BBN, Nilai, 71800, Negeri Sembilan, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Rahmah Mohamed
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Min Jia Ng
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shin-Yee Fung
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia (NIBM), Jalan Bangi, Kajang, 43000, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
5
|
Flusche T, Rajan R. Molecular Details of DNA Integration by CRISPR-Associated Proteins During Adaptation in Bacteria and Archaea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1414:27-43. [PMID: 35852729 DOI: 10.1007/5584_2022_730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in bacteria and archaea, where immunological memory is retained in the CRISPR locus as short pieces of the intruding nucleic acid, termed spacers. The adaptation to new infections occurs through the integration of a new spacer into the CRISPR array. For immune protection, spacers are transcribed into CRISPR RNAs (crRNA) that are used to guide the effector nuclease of the system in sequence-dependent target cleavage. Spacers originate as a prespacer from either DNA or RNA depending on the CRISPR-Cas system being observed, and the nearly universal Cas proteins, Cas1 and Cas2, insert the prespacer into the CRISPR locus during adaptation in all systems that contain them. The mechanism of site-specific prespacer integration varies across CRISPR classes and types, and distinct differences can even be found within the same subtype. In this review, the current knowledge on the mechanisms of prespacer integration in type II-A CRISPR-Cas systems will be described. Comparisons of the currently characterized type II-A systems show that distinct mechanisms exist within different members of this subtype and are correlated to sequence-specific interactions of Cas proteins and the DNA elements present in the CRISPR array. These observations indicate that nature has fine-tuned the mechanistic details while performing the basic step of DNA integration by Cas proteins, which offers unique advantages to develop Cas1-Cas2-based biotechnology.
Collapse
Affiliation(s)
- Tamara Flusche
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
6
|
Zhdanova PV, Lomzov AA, Prokhorova DV, Stepanov GA, Chernonosov AA, Koval VV. Thermodynamic Swings: How Ideal Complex of Cas9-RNA/DNA Forms. Int J Mol Sci 2022; 23:8891. [PMID: 36012157 PMCID: PMC9408429 DOI: 10.3390/ijms23168891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022] Open
Abstract
Most processes of the recognition and formation of specific complexes in living systems begin with collisions in solutions or quasi-solutions. Then, the thermodynamic regulation of complex formation and fine tuning of complexes come into play. Precise regulation is very important in all cellular processes, including genome editing using the CRISPR-Cas9 tool. The Cas9 endonuclease is an essential component of the CRISPR-Cas-based genome editing systems. The attainment of high-specificity and -efficiency Cas9 during targeted DNA cleavage is the main problem that limits the practical application of the CRISPR-Cas9 system. In this study, we analyzed the thermodynamics of interaction of a complex's components of Cas9-RNA/DNA through experimental and computer simulation methods. We found that there is a small energetic preference during Cas9-RNA/DNA formation from the Cas9-RNA and DNA/DNA duplex. The small difference in binding energy is relevant for biological interactions and could be part of the sequence-specific recognition of double-stranded DNA by the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Daria V. Prokhorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Dixit B, Prakash A, Kumar P, Gogoi P, Kumar M. The core Cas1 protein of CRISPR-Cas I-B in Leptospira shows metal-tunable nuclease activity. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100059. [PMID: 34841349 PMCID: PMC8610301 DOI: 10.1016/j.crmicr.2021.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/26/2022] Open
Abstract
Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 is the causative agent of leptospirosis in animals and humans. This organism carries a functional cas1 gene classified under CRISPR-Cas I-B. In this study, using various nuclease assays and bioinformatics analysis, we report that the recombinant Cas1 (LinCas1) possesses metal-ion dependent DNase activity, which is inhibited upon substitution or chelation of metal-ion and/or interaction with recombinant Cas2 (LinCas2) of L. interrogans. Model of LinCas1 structure shows a shorter N-terminal domain unlike other Cas1 orthologs reported to date. The C-terminal domain of LinCas1 contains conserved divalent-metal binding residues (Glu108, His176, and Glu191) and the mutation of these residues leads to abolition in DNase activity. Immunoassay using anti-LinCas2 demonstrates that LinCas1 interacts with LinCas2 and attains a saturation point. Moreover, the nuclease activity of the LinCas1-Cas2 mixture on ds-DNA displayed a reduction in activity compared to the pure core LinCas proteins under in vitro condition. The DNase activity for LinCas1 is consistent with a role for this protein in the recognition/cleavage of foreign DNA and integration of foreign DNA as spacer into the CRISPR array.
Collapse
Affiliation(s)
- Bhuvan Dixit
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Aman Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pankaj Kumar
- Division of Livestock and Fisheries Management, ICAR Research Complex for Eastern Region, Patna, Bihar 800014, India
| | - Prerana Gogoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Ma CH, Javanmardi K, Finkelstein IJ, Jayaram M. Disintegration promotes protospacer integration by the Cas1-Cas2 complex. eLife 2021; 10:65763. [PMID: 34435949 PMCID: PMC8390005 DOI: 10.7554/elife.65763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
‘Disintegration’—the reversal of transposon DNA integration at a target site—is regarded as an abortive off-pathway reaction. Here, we challenge this view with a biochemical investigation of the mechanism of protospacer insertion, which is mechanistically analogous to DNA transposition, by the Streptococcus pyogenes Cas1-Cas2 complex. In supercoiled target sites, the predominant outcome is the disintegration of one-ended insertions that fail to complete the second integration event. In linear target sites, one-ended insertions far outnumber complete protospacer insertions. The second insertion event is most often accompanied by the disintegration of the first, mediated either by the 3′-hydroxyl exposed during integration or by water. One-ended integration intermediates may mature into complete spacer insertions via DNA repair pathways that are also involved in transposon mobility. We propose that disintegration-promoted integration is functionally important in the adaptive phase of CRISPR-mediated bacterial immunity, and perhaps in other analogous transposition reactions.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Department of Molecular Biosciences and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Kamyab Javanmardi
- Department of Molecular Biosciences and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, United States.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, United States
| | - Makkuni Jayaram
- Department of Molecular Biosciences and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, United States
| |
Collapse
|
9
|
Bourne CR. Bacterial Growth Mindset: Structural Plasticity in Defense Systems. Structure 2021; 29:97-98. [PMID: 33545061 DOI: 10.1016/j.str.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this issue of Structure, Bertelsen et al. determine the three-dimensional structures of the Haemophilus influenzae VapD toxin, a Cas-2 homolog, with and without its cognate neutralizing antitoxin, VapX, that together comprise a toxin-antitoxin system. These reveal a unique stoichiometry, with two VapD toxins neutralized simultaneously by one VapX antitoxin.
Collapse
Affiliation(s)
- Christina R Bourne
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK 73019, USA.
| |
Collapse
|
10
|
Jakhanwal S, Cress BF, Maguin P, Lobba MJ, Marraffini LA, Doudna JA. A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration. Nucleic Acids Res 2021; 49:3546-3556. [PMID: 33693715 PMCID: PMC8034620 DOI: 10.1093/nar/gkab123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 01/24/2023] Open
Abstract
CRISPR-Cas9 is an RNA-guided DNA endonuclease involved in bacterial adaptive immunity and widely repurposed for genome editing in human cells, animals and plants. In bacteria, RNA molecules that guide Cas9's activity derive from foreign DNA fragments that are captured and integrated into the host CRISPR genomic locus by the Cas1-Cas2 CRISPR integrase. How cells generate the specific lengths of DNA required for integrase capture is a central unanswered question of type II-A CRISPR-based adaptive immunity. Here, we show that an integrase supercomplex comprising guide RNA and the proteins Cas1, Cas2, Csn2 and Cas9 generates precisely trimmed 30-base pair DNA molecules required for genome integration. The HNH active site of Cas9 catalyzes exonucleolytic DNA trimming by a mechanism that is independent of the guide RNA sequence. These results show that Cas9 possesses a distinct catalytic capacity for generating immunological memory in prokaryotes.
Collapse
Affiliation(s)
- Shrutee Jakhanwal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brady F Cress
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pascal Maguin
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Marco J Lobba
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Krishnan A, Burroughs AM, Iyer LM, Aravind L. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res 2020; 48:10045-10075. [PMID: 32894288 DOI: 10.1093/nar/gkaa726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
ABC ATPases form one of the largest clades of P-loop NTPase fold enzymes that catalyze ATP-hydrolysis and utilize its free energy for a staggering range of functions from transport to nucleoprotein dynamics. Using sensitive sequence and structure analysis with comparative genomics, for the first time we provide a comprehensive classification of the ABC ATPase superfamily. ABC ATPases developed structural hallmarks that unambiguously distinguish them from other P-loop NTPases such as an alternative to arginine-finger-based catalysis. At least five and up to eight distinct clades of ABC ATPases are reconstructed as being present in the last universal common ancestor. They underwent distinct phases of structural innovation with the emergence of inserts constituting conserved binding interfaces for proteins or nucleic acids and the adoption of a unique dimeric toroidal configuration for DNA-threading. Specifically, several clades have also extensively radiated in counter-invader conflict systems where they serve as nodal nucleotide-dependent sensory and energetic components regulating a diversity of effectors (including some previously unrecognized) acting independently or together with restriction-modification systems. We present a unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
12
|
Zhang A, Chen J, Gong T, Lu M, Tang B, Zhou X, Li Y. Deletion of csn2 gene affects acid tolerance and exopolysaccharide synthesis in Streptococcus mutans. Mol Oral Microbiol 2020; 35:211-221. [PMID: 32794605 DOI: 10.1111/omi.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
Csn2 is an important protein of the CRISPR-Cas system. The physiological function of this protein and its regulatory role in Streptococcus mutans, as the primary causative agent of human dental caries, is still unclear. In this study, we investigated whether csn2 deletion would affect S. mutans physiology and virulence gene expression. We used microscopic imaging, acid killing assays, pH drop, biofilm formation, and exopolysaccharide (EPS) production tests to determine whether csn2 deletion influenced S. mutans colony morphology, acid tolerance/production, and glucan formation abilities. Comparisons were made between quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) data from the UA159 and csn2 deletion strain to determine the impact of csn2 knockout on S. mutans gene expression. The results showed that deletion of S. mutans csn2 changed its colony morphotype and made it more sensitive to acid. The expression levels of aciduricity genes, including leuA, leuB, leuC, and leuD, were significantly down-regulated. Acid adaptation restored the aciduricity of csn2 mutant and enhanced the ability to synthesize EPS. The expression levels of EPS synthesis-related genes, including gtfC and gtfD, were significantly up-regulated after acid adaptation. In summary, deletion of S. mutans csn2 exerted multiple effects on the virulence traits of this pathogen, including acid tolerance and EPS formation, and that these alterations could partially be attributed to changes in gene expression upon loss of csn2. Understanding the function of csn2 in S. mutans might lead to novel strategies to prevent or treat imbalances in oral microbiota that may favor diseases.
Collapse
Affiliation(s)
- Anqi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Van Orden MJ, Newsom S, Rajan R. CRISPR type II-A subgroups exhibit phylogenetically distinct mechanisms for prespacer insertion. J Biol Chem 2020; 295:10956-10968. [PMID: 32513871 DOI: 10.1074/jbc.ra120.013554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas is an adaptive immune system that protects prokaryotes against foreign nucleic acids. Prokaryotes gain immunity by acquiring short pieces of the invading nucleic acid termed prespacers and inserting them into their CRISPR array. In type II-A systems, Cas1 and Cas2 proteins insert prespacers always at the leader-repeat junction of the CRISPR array. Among type II-A CRISPR systems, three distinct groups (G1, G2, and G3) exist according to the extent of DNA sequence conservation at the 3' end of the leader. However, the mechanisms by which these conserved motifs interact with their cognate Cas1 and Cas2 proteins remain unclear. Here, we performed in vitro integration assays, finding that for G1 and G2, the insertion site is recognized through defined mechanisms, at least in members examined to date, whereas G3 exhibits no sequence-specific insertion. G1 first recognized a 12-bp sequence at the leader-repeat junction and performed leader-side insertion before proceeding to spacer-side insertion. G2 recognized the full repeat sequence and could perform independent leader-side or spacer-side insertions, although the leader-side insertion was faster than spacer-side. The prespacer morphology requirements for Cas1-Cas2 varied, with G1 stringently requiring a 5-nucleotide 3' overhang and G2 being able to insert many forms of prespacers with variable efficiencies. These results highlight the intricacy of protein-DNA sequence interactions within the seemingly similar type II-A integration complexes and provide mechanistic insights into prespacer insertion. These interactions can be fine-tuned to expand the Cas1-Cas2 toolset for inserting small DNAs into diverse DNA targets.
Collapse
Affiliation(s)
- Mason J Van Orden
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Sydney Newsom
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
14
|
Trasanidou D, Gerós AS, Mohanraju P, Nieuwenweg AC, Nobrega FL, Staals RHJ. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs. FEMS Microbiol Lett 2020; 366:5488435. [PMID: 31077304 PMCID: PMC6538845 DOI: 10.1093/femsle/fnz098] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
CRISPR-Cas represents the only adaptive immune system of prokaryotes known to date. These immune systems are widespread among bacteria and archaea, and provide protection against invasion of mobile genetic elements, such as bacteriophages and plasmids. As a result of the arms-race between phages and their prokaryotic hosts, phages have evolved inhibitors known as anti-CRISPR (Acr) proteins to evade CRISPR immunity. In the recent years, several Acr proteins have been described in both temperate and virulent phages targeting diverse CRISPR-Cas systems. Here, we describe the strategies of Acr discovery and the multiple molecular mechanisms by which these proteins operate to inhibit CRISPR immunity. We discuss the biological relevance of Acr proteins and speculate on the implications of their activity for the development of improved CRISPR-based research and biotechnological tools.
Collapse
Affiliation(s)
- Despoina Trasanidou
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Ana Sousa Gerós
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Prarthana Mohanraju
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Anna Cornelia Nieuwenweg
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Franklin L Nobrega
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
15
|
Sasnauskas G, Siksnys V. CRISPR adaptation from a structural perspective. Curr Opin Struct Biol 2020; 65:17-25. [PMID: 32570107 DOI: 10.1016/j.sbi.2020.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Bacterial CRISPR-Cas systems provide adaptive immunity against viruses and other mobile genome elements. During the adaptation step cells become immunized by insertion of short fragments of foreign DNA, termed spacers, into the genomic region called a CRISPR array. Selection, processing and insertion of new spacers is an elaborate and precisely orchestrated reaction, which relies on the Cas1-Cas2 integrase complex and accessory proteins that vary among different types of CRISPR-Cas systems. This review focuses on CRISPR adaptation from the structural perspective, with the spotlight on adaptation proteins employed by type I and type II CRISPR-Cas systems.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, Vilnius 10257, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, Vilnius 10257, Lithuania.
| |
Collapse
|
16
|
Abstract
CRISPR research began over 30 years ago with the incidental discovery of an unusual nucleotide arrangement in the Escherichia coli genome. It took 20 years to find the main function of CRISPR-Cas systems as an adaptive defence mechanism against invading nucleic acids, and our knowledge of their biology has steadily increased ever since. In parallel, the number of applications derived from CRISPR-Cas systems has risen spectacularly. The CRISPR-based genome editing tool is arguably the most exciting application in both basic and applied research. Lately, CRISPR-Cas research has partially shifted to the least understood aspect of its biology: the ability of CRISPR-Cas systems to acquire new immunities during the so-called adaptation step. To date, the most efficient natural system to readily acquire new spacers is the type II-A system of the gram-positive dairy bacterium Streptococcus thermophilus. The discovery of additional systems able to acquire new spacers will hopefully draw more attention to this step of CRISPR-Cas biology. This review focuses on the breakthroughs that have helped to unravel the adaptation phase and on questions that remain to be answered.
Collapse
Affiliation(s)
- Cas Mosterd
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, QC G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, QC G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, QC G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Yoganand KN, Muralidharan M, Nimkar S, Anand B. Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system. J Biol Chem 2019; 294:20039-20053. [PMID: 31748409 PMCID: PMC6937570 DOI: 10.1074/jbc.ra119.009438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes deploy CRISPR-Cas-based RNA-guided adaptive immunity to fend off mobile genetic elements such as phages and plasmids. During CRISPR adaptation, which is the first stage of CRISPR immunity, the Cas1-2 integrase complex captures invader-derived prespacer DNA and specifically integrates it at the leader-repeat junction as spacers. For this integration, several variants of CRISPR-Cas systems use Cas4 as an indispensable nuclease for selectively processing the protospacer adjacent motif (PAM) containing prespacers to a defined length. Surprisingly, however, a few CRISPR-Cas systems, such as type I-E, are bereft of Cas4. Despite the absence of Cas4, how the prespacers show impeccable conservation for length and PAM selection in type I-E remains intriguing. Here, using in vivo and in vitro integration assays, deep sequencing, and exonuclease footprinting, we show that Cas1-2/I-E-via the type I-E-specific extended C-terminal tail of Cas1-displays intrinsic affinity for PAM containing prespacers of variable length in Escherichia coli Although Cas1-2/I-E does not prune the prespacers, its binding protects the prespacer boundaries from exonuclease action. This ensures the pruning of exposed ends by exonucleases to aptly sized substrates for integration into the CRISPR locus. In summary, our work reveals that in a few CRISPR-Cas variants, such as type I-E, the specificity of PAM selection resides with Cas1-2, whereas the prespacer processing is co-opted by cellular non-Cas exonucleases, thereby offsetting the need for Cas4.
Collapse
Affiliation(s)
- Kakimani Nagarajan Yoganand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manasasri Muralidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddharth Nimkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Baskaran Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
18
|
Wilkinson M, Drabavicius G, Silanskas A, Gasiunas G, Siksnys V, Wigley DB. Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System. Mol Cell 2019; 75:90-101.e5. [PMID: 31080012 PMCID: PMC6620040 DOI: 10.1016/j.molcel.2019.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
CRISPR and associated Cas proteins function as an adaptive immune system in prokaryotes to combat bacteriophage infection. During the immunization step, new spacers are acquired by the CRISPR machinery, but the molecular mechanism of spacer capture remains enigmatic. We show that the Cas9, Cas1, Cas2, and Csn2 proteins of a Streptococcus thermophilus type II-A CRISPR-Cas system form a complex and provide cryoelectron microscopy (cryo-EM) structures of three different assemblies. The predominant form, with the stoichiometry Cas18-Cas24-Csn28, referred to as monomer, contains ∼30 bp duplex DNA bound along a central channel. A minor species, termed a dimer, comprises two monomers that sandwich a further eight Cas1 and four Cas2 subunits and contains two DNA ∼30-bp duplexes within the channel. A filamentous form also comprises Cas18-Cas24-Csn28 units (typically 2-6) but with a different Cas1-Cas2 interface between them and a continuous DNA duplex running along a central channel.
Collapse
Affiliation(s)
- Martin Wilkinson
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Arunas Silanskas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | | | - Dale B Wigley
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|