1
|
Chiang M, Brackley CA, Naughton C, Nozawa RS, Battaglia C, Marenduzzo D, Gilbert N. Genome-wide chromosome architecture prediction reveals biophysical principles underlying gene structure. CELL GENOMICS 2024; 4:100698. [PMID: 39591973 DOI: 10.1016/j.xgen.2024.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Classical observations suggest a connection between 3D gene structure and function, but testing this hypothesis has been challenging due to technical limitations. To explore this, we developed epigenetic highly predictive heteromorphic polymer (e-HiP-HoP), a model based on genome organization principles to predict the 3D structure of human chromatin. We defined a new 3D structural unit, a "topos," which represents the regulatory landscape around gene promoters. Using GM12878 cells, we predicted the 3D structure of over 10,000 active gene topoi and stored them in the 3DGene database. Data mining revealed folding motifs and their link to Gene Ontology features. We computed a structural diversity score and identified influential nodes-chromatin sites that frequently interact with gene promoters, acting as key regulators. These nodes drive structural diversity and are tied to gene function. e-HiP-HoP provides a framework for modeling high-resolution chromatin structure and a mechanistic basis for chromatin contact networks that link 3D gene structure with function.
Collapse
Affiliation(s)
- Michael Chiang
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Ryu-Suke Nozawa
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK; Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Cleis Battaglia
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK.
| |
Collapse
|
2
|
Velásquez-Zapata V, Smith S, Surana P, Chapman AV, Jaiswal N, Helm M, Wise RP. Diverse epistatic effects in barley-powdery mildew interactions localize to host chromosome hotspots. iScience 2024; 27:111013. [PMID: 39445108 PMCID: PMC11497433 DOI: 10.1016/j.isci.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Barley Mildew locus a (Mla) encodes a multi-allelic series of nucleotide-binding leucine-rich repeat (NLR) receptors that specify recognition to diverse cereal diseases. We exploited time-course transcriptome dynamics of barley and derived immune mutants infected with the powdery mildew fungus, Blumeria hordei (Bh), to infer gene effects governed by Mla6 and two other loci significant to disease development, Blufensin1 (Bln1), and Required for Mla6 resistance3 (rar3 = Sgt1 ΔKL308-309 ). Interactions of Mla6 and Bln1 resulted in diverse epistatic effects on the Bh-induced barley transcriptome, differential immunity to Pseudomonas syringae expressing the effector protease AvrPphB, and reaction to Bh. From a total of 468 barley NLRs, 115 were grouped under different gene effect models; genes classified under these models localized to host chromosome hotspots. The corresponding Bh infection transcriptome was classified into nine co-expressed modules, linking differential expression with pathogen structures, signifying that disease is regulated by an inter-organismal network that diversifies the response.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Schuyler Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Surana
- Informatics Infrastructure Team, Tree of Life Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Antony V.E. Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- Phytoform Labs, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Namrata Jaiswal
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Matthew Helm
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Roger P. Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|
3
|
Czapiewski R, Schirmer EC. Enhancers on the edge - how the nuclear envelope controls gene regulatory elements. Curr Opin Genet Dev 2024; 87:102234. [PMID: 39047586 DOI: 10.1016/j.gde.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Precise temporal and sequential control of gene expression during development and in response to environmental stimuli requires tight regulation of the physical contact between gene regulatory elements and promoters. Current models describing how the genome folds in 3D space to establish these interactions often ignore the role of the most stable structural nuclear feature - the nuclear envelope. While contributions of 3D folding within/between topologically associated domains (TADs) have been extensively described, mechanical contributions from the nuclear envelope can impact enhancer-promoter interactions both directly and indirectly through influencing intra/inter-TAD interactions. Importantly, these nuclear envelope contributions clearly link this mechanism to development and, when defective, to human disease. Here, we discuss evidence for nuclear envelope regulation of tissue-specific enhancer-promoter pairings, potential mechanisms for this regulation, exciting recent findings that other regulatory elements such as microRNAs and long noncoding RNAs are under nuclear envelope regulation, the possible involvement of condensates, and how disruption of this regulation can lead to disease.
Collapse
Affiliation(s)
- Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
4
|
Salari H, Fourel G, Jost D. Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization. Nat Commun 2024; 15:5393. [PMID: 38918438 PMCID: PMC11199603 DOI: 10.1038/s41467-024-49727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Although our understanding of the involvement of heterochromatin architectural factors in shaping nuclear organization is improving, there is still ongoing debate regarding the role of active genes in this process. In this study, we utilize publicly-available Micro-C data from mouse embryonic stem cells to investigate the relationship between gene transcription and 3D gene folding. Our analysis uncovers a nonmonotonic - globally positive - correlation between intragenic contact density and Pol II occupancy, independent of cohesin-based loop extrusion. Through the development of a biophysical model integrating the role of transcription dynamics within a polymer model of chromosome organization, we demonstrate that Pol II-mediated attractive interactions with limited valency between transcribed regions yield quantitative predictions consistent with chromosome-conformation-capture and live-imaging experiments. Our work provides compelling evidence that transcriptional activity shapes the 4D genome through Pol II-mediated micro-compartmentalization.
Collapse
Affiliation(s)
- Hossein Salari
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007, Lyon, France.
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007, Lyon, France.
| | - Geneviève Fourel
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007, Lyon, France
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007, Lyon, France.
| |
Collapse
|
5
|
Bonato A, Chiang M, Corbett D, Kitaev S, Marenduzzo D, Morozov A, Orlandini E. Topological Spectra and Entropy of Chromatin Loop Networks. PHYSICAL REVIEW LETTERS 2024; 132:248403. [PMID: 38949344 DOI: 10.1103/physrevlett.132.248403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/19/2024] [Indexed: 07/02/2024]
Abstract
The 3D folding of a mammalian gene can be studied by a polymer model, where the chromatin fiber is represented by a semiflexible polymer which interacts with multivalent proteins, representing complexes of DNA-binding transcription factors and RNA polymerases. This physical model leads to the natural emergence of clusters of proteins and binding sites, accompanied by the folding of chromatin into a set of topologies, each associated with a different network of loops. Here, we combine numerics and analytics to first classify these networks and then find their relative importance or statistical weight, when the properties of the underlying polymer are those relevant to chromatin. Unlike polymer networks previously studied, our chromatin networks have finite average distances between successive binding sites, and this leads to giant differences between the weights of topologies with the same number of edges and nodes but different wiring. These weights strongly favor rosettelike structures with a local cloud of loops with respect to more complicated nonlocal topologies. Our results suggest that genes should overwhelmingly fold into a small fraction of all possible 3D topologies, which can be robustly characterized by the framework we propose here.
Collapse
Affiliation(s)
- Andrea Bonato
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Michael Chiang
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, United Kingdom
| | - Dom Corbett
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, United Kingdom
| | - Sergey Kitaev
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, United Kingdom
| | - Davide Marenduzzo
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Alexander Morozov
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Enzo Orlandini
- Department of Physics and Astronomy, University of Padova and INFN, Sezione Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
6
|
Bonato A, Chiang M, Corbett D, Kitaev S, Marenduzzo D, Morozov A, Orlandini E. Combinatorics and topological weights of chromatin loop networks. Phys Rev E 2024; 109:064405. [PMID: 39020930 DOI: 10.1103/physreve.109.064405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
Polymer physics models suggest that chromatin spontaneously folds into loop networks with transcription units (TUs), such as enhancers and promoters, as anchors. Here we use combinatoric arguments to enumerate the emergent chromatin loop networks, both in the case where TUs are labeled and where they are unlabeled. We then combine these mathematical results with those of computer simulations aimed at finding the inter-TU energy required to form a target loop network. We show that different topologies are vastly different in terms of both their combinatorial weight and energy of formation. We explain the latter result qualitatively by computing the topological weight of a given network-i.e., its partition function in statistical mechanics language-in the approximation where excluded volume interactions are neglected. Our results show that networks featuring local loops are statistically more likely with respect to networks including more nonlocal contacts. We suggest our classification of loop networks, together with our estimate of the combinatorial and topological weight of each network, will be relevant to catalog three-dimensional structures of chromatin fibers around eukaryotic genes, and to estimate their relative frequency in both simulations and experiments.
Collapse
|
7
|
Maldonado R, Längst G. The chromatin - triple helix connection. Biol Chem 2023; 404:1037-1049. [PMID: 37506218 DOI: 10.1515/hsz-2023-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Mammalian genomes are extensively transcribed, producing a large number of coding and non-coding transcripts. A large fraction of the nuclear RNAs is physically associated with chromatin, functioning in gene activation and silencing, shaping higher-order genome organisation, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions. Different mechanisms allow the tethering of these chromatin-associated RNAs (caRNA) to chromosomes, including RNA binding proteins, the RNA polymerases and R-loops. In this review, we focus on the sequence-specific targeting of RNA to DNA by forming triple helical structures and describe its interplay with chromatin. It turns out that nucleosome positioning at triple helix target sites and the nucleosome itself are essential factors in determining the formation and stability of triple helices. The histone H3-tail plays a critical role in triple helix stabilisation, and the role of its epigenetic modifications in this process is discussed.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
8
|
Hehmeyer J, Spitz F, Marlow H. Shifting landscapes: the role of 3D genomic organizations in gene regulatory strategies. Curr Opin Genet Dev 2023; 81:102064. [PMID: 37390583 PMCID: PMC10547022 DOI: 10.1016/j.gde.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023]
Abstract
3D genome folding enables the physical storage of chromosomes into the compact volume of a cell's nucleus, allows for the accurate segregation of chromatin to daughter cells, and has been shown to be tightly coupled to the way in which genetic information is converted into transcriptional programs [1-3]. Importantly, this link between chromatin architecture and gene regulation is a selectable feature in which modifications to chromatin organization accompany, or perhaps even drive the establishment of new regulatory strategies with enduring impacts on animal body plan complexity. Here, we discuss the nature of different 3D genome folding systems found across the tree of life, with particular emphasis on metazoans, and the relative influence of these systems on gene regulation. We suggest how the properties of these folding systems have influenced regulatory strategies employed by different lineages and may have catalyzed the partitioning and specialization of genetic programs that enabled multicellularity and organ-grade body plan complexity.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Department of Organismal Biology and Anatomy, The University of Chicago, USA
| | - François Spitz
- Department of Human Genetics, The University of Chicago, USA
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, USA.
| |
Collapse
|
9
|
Pavlova I, Iudin M, Surdina A, Severov V, Varizhuk A. G-Quadruplexes in Nuclear Biomolecular Condensates. Genes (Basel) 2023; 14:genes14051076. [PMID: 37239436 DOI: 10.3390/genes14051076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, the possible contribution of G4s to phase transitions in the nucleus has only recently come to light. In this review, we summarize the growing evidence for the G4-dependent assembly of biomolecular condensates at telomeres and transcription initiation sites, as well as nucleoli, speckles, and paraspeckles. The limitations of the underlying assays and the remaining open questions are outlined. We also discuss the molecular basis for the apparent permissive role of G4s in the in vitro condensate assembly based on the interactome data. To highlight the prospects and risks of G4-targeting therapies with respect to the phase transitions, we also touch upon the reported effects of G4-stabilizing small molecules on nuclear biomolecular condensates.
Collapse
Affiliation(s)
- Iuliia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mikhail Iudin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Anastasiya Surdina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Vjacheslav Severov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
10
|
Zhang S, Übelmesser N, Barbieri M, Papantonis A. Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion. Nat Genet 2023; 55:832-840. [PMID: 37012454 DOI: 10.1038/s41588-023-01364-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023]
Abstract
Homotypic chromatin interactions and loop extrusion are thought to be the two main drivers of mammalian chromosome folding. Here we tested the role of RNA polymerase II (RNAPII) across different scales of interphase chromatin organization in a cellular system allowing for its rapid, auxin-mediated degradation. We combined Micro-C and computational modeling to characterize subsets of loops differentially gained or lost upon RNAPII depletion. Gained loops, extrusion of which was antagonized by RNAPII, almost invariably formed by engaging new or rewired CTCF anchors. Lost loops selectively affected contacts between enhancers and promoters anchored by RNAPII, explaining the repression of most genes. Surprisingly, promoter-promoter interactions remained essentially unaffected by polymerase depletion, and cohesin occupancy was sustained. Together, our findings reconcile the role of RNAPII in transcription with its direct involvement in setting-up regulatory three-dimensional chromatin contacts genome wide, while also revealing an impact on cohesin loop extrusion.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Übelmesser
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mariano Barbieri
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Cheng J, Cao X, Wang X, Wang J, Yue B, Sun W, Huang Y, Lan X, Ren G, Lei C, Chen H. Dynamic chromatin architectures provide insights into the genetics of cattle myogenesis. J Anim Sci Biotechnol 2023; 14:59. [PMID: 37055796 PMCID: PMC10103417 DOI: 10.1186/s40104-023-00855-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Sharply increased beef consumption is propelling the genetic improvement projects of beef cattle in China. Three-dimensional genome structure is confirmed to be an important layer of transcription regulation. Although genome-wide interaction data of several livestock species have already been produced, the genome structure states and its regulatory rules in cattle muscle are still limited. RESULTS Here we present the first 3D genome data in Longissimus dorsi muscle of fetal and adult cattle (Bos taurus). We showed that compartments, topologically associating domains (TADs), and loop undergo re-organization and the structure dynamics were consistent with transcriptomic divergence during muscle development. Furthermore, we annotated cis-regulatory elements in cattle genome during myogenesis and demonstrated the enrichments of promoter and enhancer in selection sweeps. We further validated the regulatory function of one HMGA2 intronic enhancer near a strong sweep region on primary bovine myoblast proliferation. CONCLUSIONS Our data provide key insights of the regulatory function of high order chromatin structure and cattle myogenic biology, which will benefit the progress of genetic improvement of beef cattle.
Collapse
Affiliation(s)
- Jie Cheng
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xiukai Cao
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Jian Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Binglin Yue
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610225, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Gang Ren
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China.
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
12
|
Gong H, Li M, Ji M, Zhang X, Yuan Z, Zhang S, Yang Y, Li C, Chen Y. MINE is a method for detecting spatial density of regulatory chromatin interactions based on a multi-modal network. CELL REPORTS METHODS 2023; 3:100386. [PMID: 36814847 PMCID: PMC9939382 DOI: 10.1016/j.crmeth.2022.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/15/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Chromatin interactions play essential roles in chromatin conformation and gene expression. However, few tools exist to analyze the spatial density of regulatory chromatin interactions (SD-RCI). Here, we present the multi-modal network (MINE) toolkit, including MINE-Loop, MINE-Density, and MINE-Viewer. The MINE-Loop network aims to enhance the detection of RCIs, MINE-Density quantifies the SD--RCI, and MINE-Viewer facilitates 3D visualization of the density of chromatin interactions and participating regulatory factors (e.g., transcription factors). We applied MINE to investigate the relationship between the SD-RCI and chromatin volume change in HeLa cells before and after liquid-liquid phase separation. Changes in SD-RCI before and after treating the HeLa cells with 1,6-hexanediol suggest that changes in chromatin organization was related to the degree of activation or repression of genes. Together, the MINE toolkit enables quantitative studies on different aspects of chromatin conformation and regulatory activity.
Collapse
Affiliation(s)
- Haiyan Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Minghong Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengdie Ji
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaotong Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Zan Yuan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Sichen Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chun Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
13
|
Hadzhiev Y, Wheatley L, Cooper L, Ansaloni F, Whalley C, Chen Z, Finaurini S, Gustincich S, Sanges R, Burgess S, Beggs A, Müller F. The miR-430 locus with extreme promoter density forms a transcription body during the minor wave of zygotic genome activation. Dev Cell 2023; 58:155-170.e8. [PMID: 36693321 PMCID: PMC9904021 DOI: 10.1016/j.devcel.2022.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/10/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis-regulatory mechanisms of a transcription body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave-specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mechanisms between the minor and major waves of genome activation.
Collapse
Affiliation(s)
- Yavor Hadzhiev
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucy Wheatley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ledean Cooper
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Federico Ansaloni
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Celina Whalley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhelin Chen
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Sara Finaurini
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Shawn Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Andrew Beggs
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
14
|
García-López M, Megias D, Ferrándiz MJ, de la Campa AG. The balance between gyrase and topoisomerase I activities determines levels of supercoiling, nucleoid compaction, and viability in bacteria. Front Microbiol 2023; 13:1094692. [PMID: 36713152 PMCID: PMC9875019 DOI: 10.3389/fmicb.2022.1094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Two enzymes are responsible for maintaining supercoiling in the human pathogen Streptococcus pneumoniae, gyrase (GyrA2GyrB2) and topoisomerase I. To attain diverse levels of topoisomerase I (TopoI, encoded by topA), two isogenic strains derived from wild-type strain R6 were constructed: PZn topA, carrying an ectopic topA copy under the control of the ZnSO4-regulated PZn promoter and its derivative ΔtopAPZn topA, which carries a topA deletion at its native chromosomal location. We estimated the number of TopoI and GyrA molecules per cell by using Western-blot and CFUs counting, and correlated these values with supercoiling levels. Supercoiling was estimated in two ways. We used classical 2D-agarose gel electrophoresis of plasmid topoisomers to determine supercoiling density (σ) and we measured compaction of nucleoids using for the first time super-resolution confocal microscopy. Notably, we observed a good correlation between both supercoiling calculations. In R6, with σ = -0.057, the average number of GyrA molecules per cell (2,184) was higher than that of TopoI (1,432), being the GyrA:TopoI proportion of 1:0.65. In ΔtopAPZn topA, the number of TopoI molecules depended, as expected, on ZnSO4 concentration in the culture media, being the proportions of GyrA:TopoI molecules in 75, 150, and 300 μM ZnSO4 of 1:0.43, 1:0.47, and 1:0.63, respectively, which allowed normal supercoiling and growth. However, in the absence of ZnSO4, a higher GyrA:TopoI ratio (1:0.09) caused hyper-supercoiling (σ = -0.086) and lethality. Likewise, growth of ΔtopAPZn topA in the absence of ZnSO4 was restored when gyrase was inhibited with novobiocin, coincidentally with the resolution of hyper-supercoiling (σ change from -0.080 to -0.068). Given that TopoI is a monomer and two molecules of GyrA are present in the gyrase heterotetramer, the gyrase:TopoI enzymes proportion would be 1:1.30 (wild type R6) or of 1:1.26-0.86 (ΔtopAPZn topA under viable conditions). Higher proportions, such as 1:0.18 observed in ΔtopAPZn topA in the absence of ZnSO4 yielded to hyper-supercoiling and lethality. These results support a role of the equilibrium between gyrase and TopoI activities in supercoiling maintenance, nucleoid compaction, and viability. Our results shed new light on the mechanism of action of topoisomerase-targeting antibiotics, paving the way for the use of combination therapies.
Collapse
Affiliation(s)
- Míriam García-López
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Diego Megias
- Unidad de Microscopía Confocal, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain,*Correspondence: María-José Ferrándiz, ✉
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain,Adela G. de la Campa, ✉
| |
Collapse
|
15
|
Vicioso-Mantis M, Balbás MAM. Spatial genome organization, TGFβ, and biomolecular condensates: Do they talk during development? Bioessays 2022; 44:e2200145. [PMID: 36253122 DOI: 10.1002/bies.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Cis-regulatory elements govern gene expression programs to determine cell identity during development. Recently, the possibility that multiple enhancers are orchestrated in clusters of enhancers has been suggested. How these elements are arranged in the 3D space to control the activation of a specific promoter remains unclear. Our recent work revealed that the TGFβ pathway drives the assembly of enhancer clusters and precise gene activation during neurogenesis. We discovered that the TGFβ pathway coactivator JMJD3 was essential in maintaining these structures in the 3D space. To do that, JMJD3 required an intrinsically disordered region involved in forming phase-separated biomolecular condensates found in the enhancer clusters. Our data support the existence of a relationship between 3D-conformation of the chromatin, biomolecular condensates, and TGFβ-driven response during mammalian neurogenesis. In this review, we discuss how signaling (TGFβ), epigenetics (JMJD3), and biochemical properties (biomolecular condensates nucleation) are coordinated to modulate the genome structure to guarantee proper neural development. Moreover, we comment on the potential underlying mechanisms and implications of the enhancer-mediated regulation. Finally, we point out the knowledge gaps that still need to be addressed.
Collapse
Affiliation(s)
- Marta Vicioso-Mantis
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Marian A Martínez Balbás
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
16
|
Dyer OT, Ball RC. Surfactancy in a tadpole model of proteins. J R Soc Interface 2022; 19:20220172. [PMID: 36195115 PMCID: PMC9532023 DOI: 10.1098/rsif.2022.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
We model the environment of eukaryotic nuclei by representing macromolecules by only their entropic properties, with globular molecules represented by spherical colloids and flexible molecules by polymers. We put particular focus on proteins with both globular and intrinsically disordered regions, which we represent with 'tadpole' constructed by grafting single polymers and colloids together. In Monte Carlo simulations, we find these tadpoles support phase separation via depletion flocculation, and demonstrate several surfactant behaviours, including being found preferentially at interfaces and forming micelles in single phase solution. Furthermore, the model parameters can be tuned to give a tadpole a preference for either bulk phase. However, we find entropy too weak to drive these behaviours by itself at likely biological concentrations.
Collapse
Affiliation(s)
- O. T. Dyer
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - R. C. Ball
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
17
|
Wang H, Li B, Zuo L, Wang B, Yan Y, Tian K, Zhou R, Wang C, Chen X, Jiang Y, Zheng H, Qin F, Zhang B, Yu Y, Liu CP, Xu Y, Gao J, Qi Z, Deng W, Ji X. The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors. Nat Commun 2022; 13:5703. [PMID: 36171202 PMCID: PMC9519968 DOI: 10.1038/s41467-022-33433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
RNA polymerase II (Pol II) apparatuses are compartmentalized into transcriptional clusters. Whether protein factors control these clusters remains unknown. In this study, we find that the ATPase-associated with diverse cellular activities (AAA + ) ATPase RUVBL2 co-occupies promoters with Pol II and various transcription factors. RUVBL2 interacts with unphosphorylated Pol II in chromatin to promote RPB1 carboxy-terminal domain (CTD) clustering and transcription initiation. Rapid depletion of RUVBL2 leads to a decrease in the number of Pol II clusters and inhibits nascent RNA synthesis, and tethering RUVBL2 to an active promoter enhances Pol II clustering at the promoter. We also identify target genes that are directly linked to the RUVBL2-Pol II axis. Many of these genes are hallmarks of cancers and encode proteins with diverse cellular functions. Our results demonstrate an emerging activity for RUVBL2 in regulating Pol II cluster formation in the nucleus.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, 610500, China
| | - Boyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Linyu Zuo
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bo Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan Yan
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Rong Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bin Zhang
- Departments of Pathology and Laboratory Medicine, and Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Juntao Gao
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
18
|
Abstract
Chromatin architecture, a key regulator of gene expression, can be inferred using chromatin contact data from chromosome conformation capture, or Hi-C. However, classical Hi-C does not preserve multi-way contacts. Here we use long sequencing reads to map genome-wide multi-way contacts and investigate higher order chromatin organization in the human genome. We use hypergraph theory for data representation and analysis, and quantify higher order structures in neonatal fibroblasts, biopsied adult fibroblasts, and B lymphocytes. By integrating multi-way contacts with chromatin accessibility, gene expression, and transcription factor binding, we introduce a data-driven method to identify cell type-specific transcription clusters. We provide transcription factor-mediated functional building blocks for cell identity that serve as a global signature for cell types. Mapping higher order chromatin architecture is important. Here the authors use long sequencing reads to map genome-wide multi-way contacts and investigate higher order chromatin organisation; they use hypergraph theory for data representation and analysis, and apply this to different cell types.
Collapse
|
19
|
Mitra D, Pande S, Chatterji A. Polymer architecture orchestrates the segregation and spatial organization of replicating E. coli chromosomes in slow growth. SOFT MATTER 2022; 18:5615-5631. [PMID: 35861071 DOI: 10.1039/d2sm00734g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism of chromosome segregation and organization in the bacterial cell cycle of E. coli is one of the least understood aspects in its life cycle. The E. coli chromosome is often modelled as a bead spring ring polymer. We introduce cross-links in the DNA-ring polymer, resulting in the formation of loops within each replicating bacterial chromosome. We use simulations to show that the chosen polymer-topology ensures its self-organization along the cell long-axis, such that various chromosomal loci get spatially localized as seen in vivo. The localization of loci arises due to entropic repulsion between polymer loops within each daughter DNA confined in a cylinder. The cellular addresses of the loci in our model are in fair agreement with those seen in experiments as given in J. A. Cass et al., Biophys. J., 2016, 110, 2597-2609. We also show that the adoption of such modified polymer architectures by the daughter DNAs leads to an enhanced propensity of their spatial segregation. Secondly, we match other experimentally reported results, including observation of the cohesion time and the ter-transition. Additionally, the contact map generated from our simulations reproduces the macro-domain like organization as seen in the experimentally obtained Hi-C map. Lastly, we have also proposed a plausible reconciliation of the 'Train Track' and the 'Replication Factory' models which provide conflicting descriptions of the spatial organization of the replication forks. Thus, we reconcile observations from complementary experimental techniques probing bacterial chromosome organization.
Collapse
|
20
|
Razin SV, Zhegalova IV, Kantidze OL. Domain Model of Eukaryotic Genome Organization: From DNA Loops Fixed on the Nuclear Matrix to TADs. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:667-680. [PMID: 36154886 DOI: 10.1134/s0006297922070082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
The article reviews the development of ideas on the domain organization of eukaryotic genome, with special attention on the studies of DNA loops anchored to the nuclear matrix and their role in the emergence of the modern model of eukaryotic genome spatial organization. Critical analysis of results demonstrating that topologically associated chromatin domains are structural-functional blocks of the genome supports the notion that these blocks are fundamentally different from domains whose existence was proposed by the domain hypothesis of eukaryotic genome organization formulated in the 1980s. Based on the discussed evidence, it is concluded that the model postulating that eukaryotic genome is built from uniformly organized structural-functional blocks has proven to be untenable.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina V Zhegalova
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kharkevich Institute for Information Transmission Problems, Moscow, 127051, Russia
| | - Omar L Kantidze
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
21
|
Bacterial H-NS contacts DNA at the same irregularly spaced sites in both bridged and hemi-sequestered linear filaments. iScience 2022; 25:104429. [PMID: 35669520 PMCID: PMC9162952 DOI: 10.1016/j.isci.2022.104429] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Gene silencing in bacteria is mediated by chromatin proteins, of which Escherichia coli H-NS is a paradigmatic example. H-NS forms nucleoprotein filaments with either one or two DNA duplexes. However, the structures, arrangements of DNA-binding domains (DBDs), and positions of DBD-DNA contacts in linear and bridged filaments are uncertain. To characterize the H-NS DBD contacts that silence transcription by RNA polymerase, we combined ·OH footprinting, molecular dynamics, statistical modeling, and DBD mapping using a chemical nuclease (Fe2+-EDTA) tethered to the DBDs (TEN-map). We find that H-NS DBDs contact DNA at indistinguishable locations in bridged or linear filaments and that the DBDs vary in orientation and position with ∼10-bp average spacing. Our results support a hemi-sequestration model of linear-to-bridged H-NS switching. Linear filaments able to inhibit only transcription initiation switch to bridged filaments able to inhibit both initiation and elongation using the same irregularly spaced DNA contacts.
Collapse
|
22
|
Strickland BA, Ansari SA, Dantoft W, Uhlenhaut NH. How to tame your genes: mechanisms of inflammatory gene repression by glucocorticoids. FEBS Lett 2022; 596:2596-2616. [PMID: 35612756 DOI: 10.1002/1873-3468.14409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favorable clinical outcomes. We describe current knowledge about 3D genome organization and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarize the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterizing these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.
Collapse
Affiliation(s)
- Benjamin A Strickland
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Suhail A Ansari
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Widad Dantoft
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
23
|
Flavell RB. Wheat Breeding, Transcription Factories, and Genetic Interactions: New Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:807884. [PMID: 35283934 PMCID: PMC8905190 DOI: 10.3389/fpls.2022.807884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Epistatic interactions and negative heterosis have been shown to be associated with interchromosomal interactions in wheat. Physical gene-gene interactions between co-regulated genes clustered in "transcription factories" have been documented, and a genome-wide atlas of functionally paired, interacting regulatory elements and genes of wheat recently produced. Integration of these new studies on gene and regulatory element interactions, co-regulation of gene expression in "transcription factories," and epigenetics generates new perspectives for wheat breeding and trait enhancement.
Collapse
|
24
|
Rippe K, Papantonis A. Functional organization of RNA polymerase II in nuclear subcompartments. Curr Opin Cell Biol 2022; 74:88-96. [PMID: 35217398 DOI: 10.1016/j.ceb.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/22/2022]
Abstract
Distinct clusters of RNA polymerase II are responsible for gene transcription inside eukaryotic cell nuclei. Despite the functional implications of such subnuclear organization, the attributes of these clusters and the mechanisms underlying their formation remain only partially understood. Recently, the concept of proteins and RNA phase-separating into liquid-like droplets was proposed to drive the formation of transcriptionally-active subcompartments. Here, we attempt to reconcile previous with more recent findings, and discuss how the different ways of assembling the active RNA polymerase II transcriptional machinery relate to nuclear compartmentalization.
Collapse
Affiliation(s)
- Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
25
|
Kimura H, Sato Y. Imaging transcription elongation dynamics by new technologies unveils the organization of initiation and elongation in transcription factories. Curr Opin Cell Biol 2022; 74:71-79. [DOI: 10.1016/j.ceb.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
26
|
Abstract
In eukaryotic cells, protein and RNA factors involved in genome activities like transcription, RNA processing, DNA replication, and repair accumulate in self-organizing membraneless chromatin subcompartments. These structures contribute to efficiently conduct chromatin-mediated reactions and to establish specific cellular programs. However, the underlying mechanisms for their formation are only partly understood. Recent studies invoke liquid-liquid phase separation (LLPS) of proteins and RNAs in the establishment of chromatin activity patterns. At the same time, the folding of chromatin in the nucleus can drive genome partitioning into spatially distinct domains. Here, the interplay between chromatin organization, chromatin binding, and LLPS is discussed by comparing and contrasting three prototypical chromatin subcompartments: the nucleolus, clusters of active RNA polymerase II, and pericentric heterochromatin domains. It is discussed how the different ways of chromatin compartmentalization are linked to transcription regulation, the targeting of soluble factors to certain parts of the genome, and to disease-causing genetic aberrations.
Collapse
Affiliation(s)
- Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Palacio M, Taatjes DJ. Merging Established Mechanisms with New Insights: Condensates, Hubs, and the Regulation of RNA Polymerase II Transcription. J Mol Biol 2022; 434:167216. [PMID: 34474085 PMCID: PMC8748285 DOI: 10.1016/j.jmb.2021.167216] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
The regulation of RNA polymerase II (pol II) transcription requires a complex and context-specific array of proteins and protein complexes, as well as nucleic acids and metabolites. Every major physiological process requires coordinated transcription of specific sets of genes at the appropriate time, and a breakdown in this regulation is a hallmark of human disease. A proliferation of recent studies has revealed that many general transcription components, including sequence-specific, DNA-binding transcription factors, Mediator, and pol II itself, are capable of liquid-liquid phase separation, to form condensates that partition these factors away from the bulk aqueous phase. These findings hold great promise for next-level understanding of pol II transcription; however, many mechanistic aspects align with more conventional models, and whether phase separation per se regulates pol II activity in cells remains controversial. In this review, we describe the conventional and condensate-dependent models, and why their similarities and differences are important. We also compare and contrast these models in the context of genome organization and pol II transcription (initiation, elongation, and termination), and highlight the central role of RNA in these processes. Finally, we discuss mutations that disrupt normal partitioning of transcription factors, and how this may contribute to disease.
Collapse
Affiliation(s)
- Megan Palacio
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Dylan J. Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA,corresponding author;
| |
Collapse
|
28
|
Loehlin DW, Kim JY, Paster CO. A tandem duplication in Drosophila melanogaster shows enhanced expression beyond the gene copy number. Genetics 2021; 220:6472349. [PMID: 35100388 PMCID: PMC9176294 DOI: 10.1093/genetics/iyab231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Tandem duplicated genes are common features of genomes, but the phenotypic consequences of their origins are not well understood. It is not known whether a simple doubling of gene expression should be expected, or else some other expression outcome. This study describes an experimental framework using engineered deletions to assess any contribution of locally acting cis- and globally acting trans-regulatory factors to expression interactions of particular tandem duplicated genes. Acsx1L (CG6300) and Acsx1R (CG11659) are tandem duplicates of a putative acyl-CoA synthetase gene found in Drosophila melanogaster. Experimental deletions of the duplicated segments were used to investigate whether the presence of 1 tandem duplicated block influences the expression of its neighbor. Acsx1L, the gene in the left block, shows much higher expression than either its duplicate Acsx1R or the single Acsx1 in Drosophila simulans. Acsx1L expression decreases drastically upon deleting the right-hand duplicated block. Crosses among wildtype and deletion strains show that high tandem expression is primarily due to cis-acting interactions between the duplicated blocks. No effect of these genes on cuticular hydrocarbons was detected. Sequence and phylogenetic analysis suggest that the duplication rose to fixation in D. melanogaster and has been subject to extensive gene conversion. Some strains actually carry 3 tandem copies, yet strains with 3 Acsx1s do not have higher expression levels than strains with 2. Surveys of tandem duplicate expression have typically not found the expected 2-fold increase in expression. This study suggests that cis-regulatory interactions between duplicated blocks could be responsible for this trend.
Collapse
Affiliation(s)
- David W Loehlin
- Biology Department, Williams College, Williamstown, MA 01267, USA
| | - Jeremiah Y Kim
- Biology Department, Williams College, Williamstown, MA 01267, USA
| | - Caleigh O Paster
- Biology Department, Williams College, Williamstown, MA 01267, USA
| |
Collapse
|
29
|
Cardozo Gizzi AM. A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization. Front Genet 2021; 12:780822. [PMID: 34868269 PMCID: PMC8640135 DOI: 10.3389/fgene.2021.780822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The genome tridimensional (3D) organization and its role towards the regulation of key cell processes such as transcription is currently a main question in biology. Interphase chromosomes are spatially segregated into "territories," epigenetically-defined large domains of chromatin that interact to form "compartments" with common transcriptional status, and insulator-flanked domains called "topologically associating domains" (TADs). Moreover, chromatin organizes around nuclear structures such as lamina, speckles, or the nucleolus to acquire a higher-order genome organization. Due to recent technological advances, the different hierarchies are being solved. Particularly, advances in microscopy technologies are shedding light on the genome structure at multiple levels. Intriguingly, more and more reports point to high variability and stochasticity at the single-cell level. However, the functional consequences of such variability in genome conformation are still unsolved. Here, I will discuss the implication of the cell-to-cell heterogeneity at the different scales in the context of newly developed imaging approaches, particularly multiplexed Fluorescence in situ hybridization methods that enabled "chromatin tracing." Extensions of these methods are now combining spatial information of dozens to thousands of genomic loci with the localization of nuclear features such as the nucleolus, nuclear speckles, or even histone modifications, creating the fast-moving field of "spatial genomics." As our view of genome organization shifts the focus from ensemble to single-cell, new insights to fundamental questions begin to emerge.
Collapse
Affiliation(s)
- Andres M Cardozo Gizzi
- Centro de Investigación en Medicina Traslacional Severo Amuchastegui (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), CONICET, Córdoba, Argentina
| |
Collapse
|
30
|
Lindsly S, Chen C, Liu S, Ronquist S, Dilworth S, Perlman M, Rajapakse I. 4DNvestigator: time series genomic data analysis toolbox. Nucleus 2021; 12:58-64. [PMID: 33794739 PMCID: PMC8049205 DOI: 10.1080/19491034.2021.1910437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 10/27/2022] Open
Abstract
Data on genome organization and output over time, or the 4D Nucleome (4DN), require synthesis for meaningful interpretation. Development of tools for the efficient integration of these data is needed, especially for the time dimension. We present the '4DNvestigator', a user-friendly network-based toolbox for the analysis of time series genome-wide genome structure (Hi-C) and gene expression (RNA-seq) data. Additionally, we provide methods to quantify network entropy, tensor entropy, and statistically significant changes in time series Hi-C data at different genomic scales.
Collapse
Affiliation(s)
- Stephen Lindsly
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Can Chen
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Sijia Liu
- MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA, USA
- Department of Computer Science, Michigan State University, MI, USA
| | - Scott Ronquist
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Michael Perlman
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Chiang M, Brackley CA, Marenduzzo D, Gilbert N. Predicting genome organisation and function with mechanistic modelling. Trends Genet 2021; 38:364-378. [PMID: 34857425 DOI: 10.1016/j.tig.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Fitting-free mechanistic models based on polymer simulations predict chromatin folding in 3D by focussing on the underlying biophysical mechanisms. This class of models has been increasingly used in conjunction with experiments to study the spatial organisation of eukaryotic chromosomes. Feedback from experiments to models leads to successive model refinement and has previously led to the discovery of new principles for genome organisation. Here, we review the basis of mechanistic polymer simulations, explain some of the more recent approaches and the contexts in which they have been useful to explain chromosome biology, and speculate on how they might be used in the future.
Collapse
Affiliation(s)
- Michael Chiang
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
32
|
Huang SK, Whitney PH, Dutta S, Shvartsman SY, Rushlow CA. Spatial organization of transcribing loci during early genome activation in Drosophila. Curr Biol 2021; 31:5102-5110.e5. [PMID: 34614388 DOI: 10.1016/j.cub.2021.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The early Drosophila embryo provides unique experimental advantages for addressing fundamental questions of gene regulation at multiple levels of organization, from individual gene loci to the entire genome. Using 1.5-h-old Drosophila embryos undergoing the first wave of genome activation,1 we detected ∼110 discrete "speckles" of RNA polymerase II (RNA Pol II) per nucleus, two of which were larger and localized to the histone locus bodies (HLBs).2,3 In the absence of the primary driver of Drosophila genome activation, the pioneer factor Zelda (Zld),1,4,5 70% fewer speckles were present; however, the HLBs tended to be larger than wild-type (WT) HLBs, indicating that RNA Pol II accumulates at the HLBs in the absence of robust early-gene transcription. We observed a uniform distribution of distances between active genes in the nuclei of both WT and zld mutant embryos, indicating that early co-regulated genes do not cluster into nuclear sub-domains. However, in instances whereby transcribing genes did come into close 3D proximity (within 400 nm), they were found to have distinct RNA Pol II speckles. In contrast to the emerging model whereby active genes are clustered to facilitate co-regulation and sharing of transcriptional resources, our data support an "individualist" model of gene control at early genome activation in Drosophila. This model is in contrast to a "collectivist" model, where active genes are spatially clustered and share transcriptional resources, motivating rigorous tests of both models in other experimental systems.
Collapse
Affiliation(s)
- Shao-Kuei Huang
- Department of Biology, New York University, New York, NY 10003, USA
| | - Peter H Whitney
- Department of Biology, New York University, New York, NY 10003, USA
| | - Sayantan Dutta
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Center for Computational Biology, Flatiron Research Institute, New York, NY 10010, USA
| | | |
Collapse
|
33
|
Santiago-Algarra D, Souaid C, Singh H, Dao LTM, Hussain S, Medina-Rivera A, Ramirez-Navarro L, Castro-Mondragon JA, Sadouni N, Charbonnier G, Spicuglia S. Epromoters function as a hub to recruit key transcription factors required for the inflammatory response. Nat Commun 2021; 12:6660. [PMID: 34795220 PMCID: PMC8602369 DOI: 10.1038/s41467-021-26861-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Gene expression is controlled by the involvement of gene-proximal (promoters) and distal (enhancers) regulatory elements. Our previous results demonstrated that a subset of gene promoters, termed Epromoters, work as bona fide enhancers and regulate distal gene expression. Here, we hypothesized that Epromoters play a key role in the coordination of rapid gene induction during the inflammatory response. Using a high-throughput reporter assay we explored the function of Epromoters in response to type I interferon. We find that clusters of IFNa-induced genes are frequently associated with Epromoters and that these regulatory elements preferentially recruit the STAT1/2 and IRF transcription factors and distally regulate the activation of interferon-response genes. Consistently, we identified and validated the involvement of Epromoter-containing clusters in the regulation of LPS-stimulated macrophages. Our findings suggest that Epromoters function as a local hub recruiting the key TFs required for coordinated regulation of gene clusters during the inflammatory response.
Collapse
Affiliation(s)
- David Santiago-Algarra
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Charbel Souaid
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Himanshu Singh
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Lan T M Dao
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Vinmec Research Institute of Stem cell and Gene technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Saadat Hussain
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Lucia Ramirez-Navarro
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Jaime A Castro-Mondragon
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway
| | - Nori Sadouni
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Guillaume Charbonnier
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
34
|
Isolation of Nucleoid Fraction from Mycoplasma gallisepticum Cells with Synchronized Cell Division. Bull Exp Biol Med 2021; 171:760-763. [PMID: 34705179 DOI: 10.1007/s10517-021-05311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 10/20/2022]
Abstract
It is assumed that unknown mechanisms can be involved in adaptation Mycoplasma gallisepticum to unfavorable factors, one of these can be local rearrangements of the structure and spatial organization of the chromosome. To study these mechanisms, we obtained a culture of M. gallisepticum with synchronized division and isolated the nucleoid fraction from this culture by the method of mild cell lysis and centrifugation in a sucrose gradient. Liquid chromatography-mass spectrometry analysis of the proteome showed that in comparison with the cell lysate, the nucleoid fraction was enriched with DNA-binding proteins. This analysis will help to find new nucleoid-associated proteins and to study their dynamics, distribution, and their role during infection and under stress conditions.
Collapse
|
35
|
Ulianov SV, Velichko A, Magnitov MD, Luzhin A, Golov AK, Ovsyannikova N, Kireev II, Gavrikov A, Mishin A, Garaev AK, Tyakht AV, Gavrilov A, Kantidze OL, Razin SV. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Res 2021; 49:10524-10541. [PMID: 33836078 PMCID: PMC8501969 DOI: 10.1093/nar/gkab249] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) contributes to the spatial and functional segregation of molecular processes within the cell nucleus. However, the role played by LLPS in chromatin folding in living cells remains unclear. Here, using stochastic optical reconstruction microscopy (STORM) and Hi-C techniques, we studied the effects of 1,6-hexanediol (1,6-HD)-mediated LLPS disruption/modulation on higher-order chromatin organization in living cells. We found that 1,6-HD treatment caused the enlargement of nucleosome clutches and their more uniform distribution in the nuclear space. At a megabase-scale, chromatin underwent moderate but irreversible perturbations that resulted in the partial mixing of A and B compartments. The removal of 1,6-HD from the culture medium did not allow chromatin to acquire initial configurations, and resulted in more compact repressed chromatin than in untreated cells. 1,6-HD treatment also weakened enhancer-promoter interactions and TAD insulation but did not considerably affect CTCF-dependent loops. Our results suggest that 1,6-HD-sensitive LLPS plays a limited role in chromatin spatial organization by constraining its folding patterns and facilitating compartmentalization at different levels.
Collapse
Affiliation(s)
- Sergey V Ulianov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Artem K Velichko
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail D Magnitov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Artem V Luzhin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arkadiy K Golov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| | - Natalia Ovsyannikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, 117997 Moscow, Russia
| | - Alexey S Gavrikov
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander S Mishin
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Azat K Garaev
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| | - Alexander V Tyakht
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Omar L Kantidze
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
36
|
Brackley CA, Gilbert N, Michieletto D, Papantonis A, Pereira MCF, Cook PR, Marenduzzo D. Complex small-world regulatory networks emerge from the 3D organisation of the human genome. Nat Commun 2021; 12:5756. [PMID: 34599163 PMCID: PMC8486811 DOI: 10.1038/s41467-021-25875-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
The discovery that overexpressing one or a few critical transcription factors can switch cell state suggests that gene regulatory networks are relatively simple. In contrast, genome-wide association studies (GWAS) point to complex phenotypes being determined by hundreds of loci that rarely encode transcription factors and which individually have small effects. Here, we use computer simulations and a simple fitting-free polymer model of chromosomes to show that spatial correlations arising from 3D genome organisation naturally lead to stochastic and bursty transcription as well as complex small-world regulatory networks (where the transcriptional activity of each genomic region subtly affects almost all others). These effects require factors to be present at sub-saturating levels; increasing levels dramatically simplifies networks as more transcription units are pressed into use. Consequently, results from GWAS can be reconciled with those involving overexpression. We apply this pan-genomic model to predict patterns of transcriptional activity in whole human chromosomes, and, as an example, the effects of the deletion causing the diGeorge syndrome.
Collapse
Affiliation(s)
- C A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - N Gilbert
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - D Michieletto
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - A Papantonis
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075, Göttingen, Germany
| | - M C F Pereira
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - P R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| |
Collapse
|
37
|
The Role of Human Satellite III (1q12) Copy Number Variation in the Adaptive Response during Aging, Stress, and Pathology: A Pendulum Model. Genes (Basel) 2021; 12:genes12101524. [PMID: 34680920 PMCID: PMC8535310 DOI: 10.3390/genes12101524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The pericentric satellite III (SatIII or Sat3) and II tandem repeats recently appeared to be transcribed under stress conditions, and the transcripts were shown to play an essential role in the universal stress response. In this paper, we review the role of human-specific SatIII copy number variation (CNV) in normal stress response, aging and pathology, with a focus on 1q12 loci. We postulate a close link between transcription of SatII/III repeats and their CNV. The accrued body of data suggests a hypothetical universal mechanism, which provides for SatIII copy gain during the stress response, alongside with another, more hypothetical reverse mechanism that might reduce the mean SatIII copy number, likely via the selection of cells with excessively large 1q12 loci. Both mechanisms, working alternatively like swings of the pendulum, may ensure the balance of SatIII copy numbers and optimum stress resistance. This model is verified on the most recent data on SatIII CNV in pathology and therapy, aging, senescence and response to genotoxic stress in vitro.
Collapse
|
38
|
Coordination of transcription, processing, and export of highly expressed RNAs by distinct biomolecular condensates. Emerg Top Life Sci 2021; 4:281-291. [PMID: 32338276 PMCID: PMC7733674 DOI: 10.1042/etls20190160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Genes under control of super-enhancers are expressed at extremely high levels and are frequently associated with nuclear speckles. Recent data suggest that the high concentration of unphosphorylated RNA polymerase II (Pol II) and Mediator recruited to super-enhancers create phase-separated condensates. Transcription initiates within or at the surface of these phase-separated droplets and the phosphorylation of Pol II, associated with transcription initiation and elongation, dissociates Pol II from these domains leading to engagement with nuclear speckles, which are enriched with RNA processing factors. The transitioning of Pol II from transcription initiation domains to RNA processing domains effectively co-ordinates transcription and processing of highly expressed RNAs which are then rapidly exported into the cytoplasm.
Collapse
|
39
|
Grob S. Three-dimensional chromosome organization in flowering plants. Brief Funct Genomics 2021; 19:83-91. [PMID: 31680170 DOI: 10.1093/bfgp/elz024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Research on plant three-dimensional (3D) genome architecture made rapid progress over the past 5 years. Numerous Hi-C interaction data sets were generated in a wide range of plant species, allowing for a comprehensive overview on 3D chromosome folding principles in the plant kingdom. Plants lack important genes reported to be vital for chromosome folding in animals. However, similar 3D structures such as topologically associating domains and chromatin loops were identified. Recent studies in Arabidopsis thaliana revealed how chromosomal regions are positioned within the nucleus by determining their association with both, the nuclear periphery and the nucleolus. Additionally, many plant species exhibit high-frequency interactions among KNOT entangled elements, which are associated with safeguarding the genome from invasive DNA elements. Many of the recently published Hi-C data sets were generated to aid de novo genome assembly and remain to date little explored. These data sets represent a valuable resource for future comparative studies, which may lead to a more profound understanding of the evolution of 3D chromosome organization in plants.
Collapse
Affiliation(s)
- Stefan Grob
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
40
|
Gamarra N, Narlikar GJ. Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol 2021; 433:166876. [PMID: 33556407 PMCID: PMC8989640 DOI: 10.1016/j.jmb.2021.166876] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.
Collapse
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; TETRAD Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.
| |
Collapse
|
41
|
Monfils K, Barakat TS. Models behind the mystery of establishing enhancer-promoter interactions. Eur J Cell Biol 2021; 100:151170. [PMID: 34246183 DOI: 10.1016/j.ejcb.2021.151170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
Enhancers and promoters are transcriptional regulatory elements whose facilitated interactions increase gene expression. Enhancer DNA sequences can be located far away from the promoter sequences that they regulate. Currently, the mechanism facilitating the establishment of enhancer-promoter interactions remains unclear. However, mutations causing errors in these interactions have been linked to cancer and disease, further conveying the need to understand the full mechanism. This review discusses multiple models that have been proposed to describe how enhancers go the distance to interact with promoters. Evidence supporting loop formation models is reviewed in addition to more complex hypotheses involving aspects of 3D chromatin organization and phase separation.
Collapse
Affiliation(s)
- Kathryn Monfils
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
42
|
Razin SV, Gavrilov AA. Non-coding RNAs in chromatin folding and nuclear organization. Cell Mol Life Sci 2021; 78:5489-5504. [PMID: 34117518 PMCID: PMC11072467 DOI: 10.1007/s00018-021-03876-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as scaffolds for the construction of various intracellular structures. The term "architectural RNAs" was proposed to designate this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell nucleus and maintenance of the three-dimensional organization of the genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
43
|
Li J, Pertsinidis A. New insights into promoter-enhancer communication mechanisms revealed by dynamic single-molecule imaging. Biochem Soc Trans 2021; 49:1299-1309. [PMID: 34060610 PMCID: PMC8325597 DOI: 10.1042/bst20200963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
Establishing cell-type-specific gene expression programs relies on the action of distal enhancers, cis-regulatory elements that can activate target genes over large genomic distances - up to Mega-bases away. How distal enhancers physically relay regulatory information to target promoters has remained a mystery. Here, we review the latest developments and insights into promoter-enhancer communication mechanisms revealed by live-cell, real-time single-molecule imaging approaches.
Collapse
Affiliation(s)
- Jieru Li
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, NY 10065, USA
| | | |
Collapse
|
44
|
MacKay K, Kusalik A. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data. Brief Funct Genomics 2021; 19:292-308. [PMID: 32353112 PMCID: PMC7388788 DOI: 10.1093/bfgp/elaa004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
The advent of high-resolution chromosome conformation capture assays (such as 5C, Hi-C and Pore-C) has allowed for unprecedented sequence-level investigations into the structure-function relationship of the genome. In order to comprehensively understand this relationship, computational tools are required that utilize data generated from these assays to predict 3D genome organization (the 3D genome reconstruction problem). Many computational tools have been developed that answer this need, but a comprehensive comparison of their underlying algorithmic approaches has not been conducted. This manuscript provides a comprehensive review of the existing computational tools (from November 2006 to September 2019, inclusive) that can be used to predict 3D genome organizations from high-resolution chromosome conformation capture data. Overall, existing tools were found to use a relatively small set of algorithms from one or more of the following categories: dimensionality reduction, graph/network theory, maximum likelihood estimation (MLE) and statistical modeling. Solutions in each category are far from maturity, and the breadth and depth of various algorithmic categories have not been fully explored. While the tools for predicting 3D structure for a genomic region or single chromosome are diverse, there is a general lack of algorithmic diversity among computational tools for predicting the complete 3D genome organization from high-resolution chromosome conformation capture data.
Collapse
|
45
|
Lu JY, Chang L, Li T, Wang T, Yin Y, Zhan G, Han X, Zhang K, Tao Y, Percharde M, Wang L, Peng Q, Yan P, Zhang H, Bi X, Shao W, Hong Y, Wu Z, Ma R, Wang P, Li W, Zhang J, Chang Z, Hou Y, Zhu B, Ramalho-Santos M, Li P, Xie W, Na J, Sun Y, Shen X. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res 2021; 31:613-630. [PMID: 33514913 PMCID: PMC8169921 DOI: 10.1038/s41422-020-00466-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
Organization of the genome into euchromatin and heterochromatin appears to be evolutionarily conserved and relatively stable during lineage differentiation. In an effort to unravel the basic principle underlying genome folding, here we focus on the genome itself and report a fundamental role for L1 (LINE1 or LINE-1) and B1/Alu retrotransposons, the most abundant subclasses of repetitive sequences, in chromatin compartmentalization. We find that homotypic clustering of L1 and B1/Alu demarcates the genome into grossly exclusive domains, and characterizes and predicts Hi-C compartments. Spatial segregation of L1-rich sequences in the nuclear and nucleolar peripheries and B1/Alu-rich sequences in the nuclear interior is conserved in mouse and human cells and occurs dynamically during the cell cycle. In addition, de novo establishment of L1 and B1 nuclear segregation is coincident with the formation of higher-order chromatin structures during early embryogenesis and appears to be critically regulated by L1 and B1 transcripts. Importantly, depletion of L1 transcripts in embryonic stem cells drastically weakens homotypic repeat contacts and compartmental strength, and disrupts the nuclear segregation of L1- or B1-rich chromosomal sequences at genome-wide and individual sites. Mechanistically, nuclear co-localization and liquid droplet formation of L1 repeat DNA and RNA with heterochromatin protein HP1α suggest a phase-separation mechanism by which L1 promotes heterochromatin compartmentalization. Taken together, we propose a genetically encoded model in which L1 and B1/Alu repeats blueprint chromatin macrostructure. Our model explains the robustness of genome folding into a common conserved core, on which dynamic gene regulation is overlaid across cells.
Collapse
Affiliation(s)
- J Yuyang Lu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, and College of Future Technology, Peking University, Beijing, 100871, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, China
| | - Tong Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yafei Yin
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ge Zhan
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue Han
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ke Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yibing Tao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS), London, W120NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W120NN, UK
| | - Liang Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qi Peng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pixi Yan
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hui Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xianju Bi
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wen Shao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yantao Hong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongyang Wu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runze Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peizhe Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenzhi Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zai Chang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yingping Hou
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, and College of Future Technology, Peking University, Beijing, 100871, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, M5T 3H7, Canada
| | - Pilong Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xie
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jie Na
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, and College of Future Technology, Peking University, Beijing, 100871, China.
| | - Xiaohua Shen
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
Nichols MH, Corces VG. Principles of 3D compartmentalization of the human genome. Cell Rep 2021; 35:109330. [PMID: 34192544 PMCID: PMC8265014 DOI: 10.1016/j.celrep.2021.109330] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatin is organized in the nucleus via CTCF loops and compartmental domains. Here, we compare different cell types to identify distinct paradigms of compartmental domain formation in human tissues. We identify and quantify compartmental forces correlated with histone modifications characteristic of transcriptional activity and previously underappreciated roles for distinct compartmental domains correlated with the presence of H3K27me3 and H3K9me3, respectively. We present a computer simulation model capable of predicting compartmental organization based on the biochemical characteristics of independent chromatin features. Using this model, we show that the underlying forces responsible for compartmental domain formation in human cells are conserved and that the diverse compartmentalization patterns seen across cell types are due to differences in chromatin features. We extend these findings to Drosophila to suggest that the same principles are at work beyond humans. These results offer mechanistic insights into the fundamental forces driving the 3D organization of the genome. Using high-resolution Hi-C data and computer simulations, Nichols and Corces show that compartments arise as a consequence of interactions among proteins that correlate with the presence of H3K27ac, H3K27me3, and H3K9me3, suggesting that human cells contain at least three distinct compartments. The same principles apply to other organisms.
Collapse
Affiliation(s)
- Michael H Nichols
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA.
| |
Collapse
|
47
|
Sumner MC, Torrisi SB, Brickner DG, Brickner JH. Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement. eLife 2021; 10:66238. [PMID: 34002694 PMCID: PMC8195609 DOI: 10.7554/elife.66238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
Collapse
Affiliation(s)
- Michael Chas Sumner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Steven B Torrisi
- Department of Physics, Harvard University, Cambridge, United States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
48
|
Turowski TW, Boguta M. Specific Features of RNA Polymerases I and III: Structure and Assembly. Front Mol Biosci 2021; 8:680090. [PMID: 34055890 PMCID: PMC8160253 DOI: 10.3389/fmolb.2021.680090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase I (RNAPI) and RNAPIII are multi-heterogenic protein complexes that specialize in the transcription of highly abundant non-coding RNAs, such as ribosomal RNA (rRNA) and transfer RNA (tRNA). In terms of subunit number and structure, RNAPI and RNAPIII are more complex than RNAPII that synthesizes thousands of different mRNAs. Specific subunits of the yeast RNAPI and RNAPIII form associated subcomplexes that are related to parts of the RNAPII initiation factors. Prior to their delivery to the nucleus where they function, RNAP complexes are assembled at least partially in the cytoplasm. Yeast RNAPI and RNAPIII share heterodimer Rpc40-Rpc19, a functional equivalent to the αα homodimer which initiates assembly of prokaryotic RNAP. In the process of yeast RNAPI and RNAPIII biogenesis, Rpc40 and Rpc19 form the assembly platform together with two small, bona fide eukaryotic subunits, Rpb10 and Rpb12. We propose that this assembly platform is co-translationally seeded while the Rpb10 subunit is synthesized by cytoplasmic ribosome machinery. The translation of Rpb10 is stimulated by Rbs1 protein, which binds to the 3′-untranslated region of RPB10 mRNA and hypothetically brings together Rpc19 and Rpc40 subunits to form the αα-like heterodimer. We suggest that such a co-translational mechanism is involved in the assembly of RNAPI and RNAPIII complexes.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
49
|
Jarrous N, Mani D, Ramanathan A. Coordination of transcription and processing of tRNA. FEBS J 2021; 289:3630-3641. [PMID: 33929081 DOI: 10.1111/febs.15904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Coordination of transcription and processing of RNA is a basic principle in regulation of gene expression in eukaryotes. In the case of mRNA, coordination is primarily founded on a co-transcriptional processing mechanism by which a nascent precursor mRNA undergoes maturation via cleavage and modification by the transcription machinery. A similar mechanism controls the biosynthesis of rRNA. However, the coordination of transcription and processing of tRNA, a rather short transcript, remains unknown. Here, we present a model for high molecular weight initiation complexes of human RNA polymerase III that assemble on tRNA genes and process precursor transcripts to mature forms. These multifunctional initiation complexes may support co-transcriptional processing, such as the removal of the 5' leader of precursor tRNA by RNase P. Based on this model, maturation of tRNA is predetermined prior to transcription initiation.
Collapse
Affiliation(s)
- Nayef Jarrous
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dhivakar Mani
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aravind Ramanathan
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
50
|
Repression of transcription by the glucocorticoid receptor: A parsimonious model for the genomics era. J Biol Chem 2021; 296:100687. [PMID: 33891947 PMCID: PMC8141881 DOI: 10.1016/j.jbc.2021.100687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are potent anti-inflammatory drugs that are used to treat an extraordinary range of human disease, including COVID-19, underscoring the ongoing importance of understanding their molecular mechanisms. Early studies of GR signaling led to broad acceptance of models in which glucocorticoid receptor (GR) monomers tether repressively to inflammatory transcription factors, thus abrogating inflammatory gene expression. However, newer data challenge this core concept and present an exciting opportunity to reframe our understanding of GR signaling. Here, we present an alternate, two-part model for transcriptional repression by glucocorticoids. First, widespread GR-mediated induction of transcription results in rapid, primary repression of inflammatory gene transcription and associated enhancers through competition-based mechanisms. Second, a subset of GR-induced genes, including targets that are regulated in coordination with inflammatory transcription factors such as NF-κB, exerts secondary repressive effects on inflammatory gene expression. Within this framework, emerging data indicate that the gene set regulated through the cooperative convergence of GR and NF-κB signaling is central to the broad clinical effectiveness of glucocorticoids in terminating inflammation and promoting tissue repair.
Collapse
|